1.) Sriyab, S., Preface; BDEE 2024, Proceedings - 2024 4th International Conference on Big Data Engineering and Education, BDEE 2024, 2024, vii-. 2.) Yotongyos, K., Sriyab, S., Modeling the Spread of COVID-19 Using Nonautonomous Dynamical System with Simplex Algorithm-Based Optimization for Time-Varying Parameters, Journal of Mathematics, 2023, -. 3.) Khan, N.S., Sriyab, S., Kaewkhao, A., Thawinan, E., Hall current effect in bioconvection Oldroyd-B nanofluid flow through a porous medium with Cattaneo-Christov heat and mass flux theory, Scientific Reports, 2022, -. 4.) Owasit, P., Sriyab, S., Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses, Advances in Difference Equations, 2021, -. 5.) Thawinan, E., Sriyab, S., Modeling the transmission dynamics of the covid-19 outbreak in Thailand, Thai Journal of Mathematics, 2020, 1907-1915. 6.) Sriyab, S., The effect of stenotic geometry and non-newtonian property of blood flow through arterial stenosis, Cardiovascular and Hematological Disorders - Drug Targets, 2020, 16-30. 7.) Sriyab, S., Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries, Computational and Mathematical Methods in Medicine, 2014, -. 8.) Sriyab, S., A lattice boltzmann simulation for modeling the non-newtonian blood flow, Global Journal of Pure and Applied Mathematics, 2014, 697-706. 9.) Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S., More realistic model for simulating min protein dynamics: Lattice Boltzmann method incorporating the role of nucleoids, World Academy of Science, Engineering and Technology, 2010, 458-463. 10.) Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S., More realistic model for simulating min protein dynamics: Lattice boltzmann method incorporating the role of nucleoids, International Journal of Computational and Mathematical Sciences, 2010, 177-182. 11.) Ngamsaad, W., Kanthang, P., Modchang, C., Sriyab, S., Triampo, W., The effect of boundary conditions on the mesoscopic lattice Boltzmann method: Case study of a reaction-diffusion based model for Min-protein oscillation, Applied Mathematics and Computation, 2010, 2339-2347. 12.) Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Kanthang, P., Sriyab, S., Triampo, W., Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method, Journal of Mechanical Science and Technology, 2010, 2025-2034. 13.) Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S., More realistic model for simulating min protein dynamics: Lattice Boltzmann method incorporating the role of nucleoids, World Academy of Science, Engineering and Technology, 2010, 456-461. 14.) Sriyab, S., Yojina, J., Ngamsaad, W., Kanthang, P., Modchang, C., Nuttavut, N., Lenbury, Y., Krittanai, C., Triampo, W., Mesoscale modeling technique for studying the dynamics oscillation of Min protein: Pattern formation analysis with lattice Boltzmann method, Computers in Biology and Medicine, 2009, 412-424. 15.) Nishiura, H., Patanarapelert, K., Sriprom, M., Sarakorn, W., Sriyab, S., Ming Tang, I., Modelling potential responses to severe acute respiratory syndrome in Japan: The role of initial attack size, precaution, and quarantine, Journal of Epidemiology and Community Health, 2004, 186-191.