# |
Authors |
Title |
Source |
Year |
Pages |
1 |
Sriyab, S. |
Preface; BDEE 2024 |
Proceedings - 2024 4th International Conference on Big Data Engineering and Education, BDEE 2024 |
2024 |
vii - |
2 |
Yotongyos, K., Sriyab, S. |
Modeling the Spread of COVID-19 Using Nonautonomous Dynamical System with Simplex Algorithm-Based Optimization for Time-Varying Parameters |
Journal of Mathematics |
2023 |
- |
3 |
Khan, N.S., Sriyab, S., Kaewkhao, A., Thawinan, E. |
Hall current effect in bioconvection Oldroyd-B nanofluid flow through a porous medium with Cattaneo-Christov heat and mass flux theory |
Scientific Reports |
2022 |
- |
4 |
Owasit, P., Sriyab, S. |
Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses |
Advances in Difference Equations |
2021 |
- |
5 |
Thawinan, E., Sriyab, S. |
Modeling the transmission dynamics of the covid-19 outbreak in Thailand |
Thai Journal of Mathematics |
2020 |
1907 - 1915 |
6 |
Sriyab, S. |
The effect of stenotic geometry and non-newtonian property of blood flow through arterial stenosis |
Cardiovascular and Hematological Disorders - Drug Targets |
2020 |
16 - 30 |
7 |
Sriyab, S. |
Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries |
Computational and Mathematical Methods in Medicine |
2014 |
- |
8 |
Sriyab, S. |
A lattice boltzmann simulation for modeling the non-newtonian blood flow |
Global Journal of Pure and Applied Mathematics |
2014 |
697 - 706 |
9 |
Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S. |
More realistic model for simulating min protein dynamics: Lattice Boltzmann method incorporating the role of nucleoids |
World Academy of Science, Engineering and Technology |
2010 |
458 - 463 |
10 |
Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S. |
More realistic model for simulating min protein dynamics: Lattice boltzmann method incorporating the role of nucleoids |
International Journal of Computational and Mathematical Sciences |
2010 |
177 - 182 |
11 |
Ngamsaad, W., Kanthang, P., Modchang, C., Sriyab, S., Triampo, W. |
The effect of boundary conditions on the mesoscopic lattice Boltzmann method: Case study of a reaction-diffusion based model for Min-protein oscillation |
Applied Mathematics and Computation |
2010 |
2339 - 2347 |
12 |
Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Kanthang, P., Sriyab, S., Triampo, W. |
Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method |
Journal of Mechanical Science and Technology |
2010 |
2025 - 2034 |
13 |
Yojina, J., Ngamsaad, W., Nuttavut, N., Triampo, D., Lenbury, Y., Triampo, W., Kanthang, P., Sriyab, S. |
More realistic model for simulating min protein dynamics: Lattice Boltzmann method incorporating the role of nucleoids |
World Academy of Science, Engineering and Technology |
2010 |
456 - 461 |
14 |
Sriyab, S., Yojina, J., Ngamsaad, W., Kanthang, P., Modchang, C., Nuttavut, N., Lenbury, Y., Krittanai, C., Triampo, W. |
Mesoscale modeling technique for studying the dynamics oscillation of Min protein: Pattern formation analysis with lattice Boltzmann method |
Computers in Biology and Medicine |
2009 |
412 - 424 |
15 |
Nishiura, H., Patanarapelert, K., Sriprom, M., Sarakorn, W., Sriyab, S., Ming Tang, I. |
Modelling potential responses to severe acute respiratory syndrome in Japan: The role of initial attack size, precaution, and quarantine |
Journal of Epidemiology and Community Health |
2004 |
186 - 191 |