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Preface

I am pleased to see the text reach its eighth edition. The continued support and en-
thusiasm of the many users has been most gratifying. Linear algebra is more exciting
now than at almost any time in the past. Its applications continue to spread to more
and more fields. Largely due to the computer revolution of the last half century, linear
algebra has risen to a role of prominence in the mathematical curriculum rivaling that
of calculus. Modern software has also made it possible to dramatically improve the
way the course is taught. I teach linear algebra every semester and continue to seek
new ways to optimize student understanding. For this edition, every chapter has been
carefully scrutinized and enhanced. Additionally, many of the revisions in this edition
are due to the helpful suggestions received from users and reviewers. Consequently,
this new edition, while retaining the essence of previous editions, incorporates a variety
of substantive improvements.

What's New in the Eighth Edition?

1. New Section on Matrix Arithmetic
One of the longer sections in the previous edition was the section on matrix algebra
in Chapter 1. The material in that section has been expanded further for the current
edition. Rather than include an overly long revised section, we have divided the
material into sections titled Matrix Arithmetic and Matrix Algebra.

2. New Exercises
After seven editions it was quite a challenge to come up with additional original
exercises. However, the eighth edition has more than 130 new exercises.

3. New Subsections and Applications
A new subsection on cross products has been included in Section 3 of Chapter 2.
A new application to Newtonian Mechanics has also been added to that section. In
Section 4 of Chapter 6 (Hermitian Matrices), a new subsection on the Real Schur
Decomposition has been added.

4. New and Improved Notation
The standard notation for the j th column vector of a matrix A is a j , however, there
seems to be no universally accepted notation for row vectors. In the MATLAB
package, the i th row of A is denoted by A(i, :). In previous editions of this book we
used a similar notation a(i, :); however, this notation seems somewhat artificial. For
this edition we use the same notation as a column vector except we put a horizontal
arrow above the letter to indicate that the vector is a row vector (a horizontal array)
rather than a column vector (a vertical array). Thus the i th row of A is now denoted
by �ai .

We have also introduced improved notation for the standard Euclidean vector
spaces and their complex counterparts. We now use the symbols R

n and C
n in place

of the Rn and Cn notation used in earlier editions.
ix
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5. Special Web Site and Supplemental Web Materials
Pearson has developed a special Web site to accompany the 8th edition:

www.pearsonhighered.com/leon

This site includes a host of materials for both students and instructors.

Overview of Text

This book is suitable for either a sophomore-level course or for a junior/senior-level
course. The student should have some familiarity with the basics of differential and
integral calculus. This prerequisite can be met by either one semester or two quarters
of elementary calculus.

If the text is used for a sophomore-level course, the instructor should probably
spend more time on the early chapters and omit many of the sections in the later chap-
ters. For more advanced courses, a quick review of many of the topics in the first two
chapters and then a more complete coverage of the later chapters would be appropri-
ate. The explanations in the text are given in sufficient detail so that beginning students
should have little trouble reading and understanding the material. To further aid the
student, a large number of examples have been worked out completely. Additionally,
computer exercises at the end of each chapter give students the opportunity to perform
numerical experiments and try to generalize the results. Applications are presented
throughout the book. These applications can be used to motivate new material or to
illustrate the relevance of material that has already been covered.

The text contains all the topics recommended by the National Science Foundation
(NSF) sponsored Linear Algebra Curriculum Study Group (LACSG) and much more.
Although there is more material than can be covered in a one-quarter or one-semester
course, I feel that it is easier for an instructor to leave out or skip material than it is to
supplement a book with outside material. Even if many topics are omitted, the book
should still provide students with a feeling for the overall scope of the subject matter.
Furthermore, many students may use the book later as a reference and consequently
may end up learning many of the omitted topics on their own.

In the next section of this preface a number of outlines are provided for one-
semester courses at either the sophomore level or the junior/senior level and with either
a matrix-oriented emphasis or a slightly more theoretical emphasis. To further aid the
instructor in the choice of topics, three sections have been designated as optional and
are marked with a dagger in the table of contents. These sections are not prerequisites
for any of the following sections in the book. They may be skipped without any loss
of continuity.

Ideally the entire book could be covered in a two-quarter or two-semester se-
quence. Although two semesters of linear algebra has been recommended by the
LACSG, it is still not practical at many universities and colleges. At present there is no
universal agreement on a core syllabus for a second course. Indeed, if all of the topics
that instructors would like to see in a second course were included in a single volume, it
would be a weighty book. An effort has been made in this text to cover all of the basic
linear algebra topics that are necessary for modern applications. Furthermore, two ad-
ditional chapters for a second course are available for downloading from the Internet.
See the special Pearson Web page discussed earlier: www.pearsonhighered.com/leon.

www.pearsonhighered.com/leon
www.pearsonhighered.com/leon
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Suggested Course Outlines

I. Two-Semester Sequence: In a two semester sequence it is possible to cover all 39
sections of the book. Additional flexibility is possible by omitting any of the three
optional sections in Chapters 2, 5, and 6. One could also include an extra lecture
demonstrating how to use the MATLAB software.

II. One-Semester Sophomore-Level Course
A. A Basic Sophomore-Level Course

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 9 lectures
Chapter 4 Sections 1–3 4 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–3 4 lectures

Total 35 lectures

B. The LACSG Matrix Oriented Course: The core course recommended by the
Linear Algebra Curriculum Study Group involves only the Euclidean vector
spaces. Consequently, for this course you should omit Section 1 of Chapter 3
(on general vector spaces) and all references and exercises involving function
spaces in Chapters 3 to 6. All of the topics in the LACSG core syllabus are
included in the text. It is not necessary to introduce any supplementary materi-
als. The LACSG recommended 28 lectures to cover the core material. This is
possible if the class is taught in lecture format with an additional recitation sec-
tion meeting once a week. If the course is taught without recitations, it is my
feeling that the following schedule of 35 lectures is perhaps more reasonable.

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 2–6 7 lectures
Chapter 4 Section 1–3 2 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1, 3–5 8 lectures

Total 35 lectures

III. One-Semester Junior/Senior-Level Courses: The coverage in an upper division
course is dependent on the background of the students. Below are two possible
courses with 35 lectures each.
A. Course 1

Chapter 1 Sections 1–6 6 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 7 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–7 10 lectures

Section 8 if time allows
Chapter 7 Section 4 1 lecture

Total 35 lectures



xii Preface

B. Course 2

Review of Topics in Chapters 1–3 5 lectures
Chapter 4 Sections 1–3 2 lectures
Chapter 5 Sections 1–6 10 lectures
Chapter 6 Sections 1–7 11 lectures

Section 8 if time allows
Chapter 7 Sections 4–7 7 lectures

If time allows, Sections 1–3
Total 35 lectures

Computer Exercises

This edition contains a section of computing exercises at the end of each chapter. These
exercises are based on the software package MATLAB. The MATLAB Appendix in the
book explains the basics of using the software. MATLAB has the advantage that it is a
powerful tool for matrix computations and yet it is easy to learn. After reading the Ap-
pendix, students should be able to do the computing exercises without having to refer
to any other software books or manuals. To help students get started we recommend
one 50 minute classroom demonstration of the software. The assignments can be done
either as ordinary homework assignments or as part of a formally scheduled computer
laboratory course.

Another source of MATLAB exercises for linear algebra is the ATLAST book
which is available as a companion manual to supplement this book. (See the list of
supplementary materials in the next section of this preface.)

While the course can be taught without any reference to the computer, we believe
that computer exercises can greatly enhance student learning and provide a new di-
mension to linear algebra education. The Linear Algebra Curriculum Study Group has
recommended that technology be used for a first course in linear algebra. and this view
is generally accepted throughout the greater mathematics community.

Supplementary Materials

Additional Chapters

Two supplemental chapters for this book may be downloaded using links from my
home page: www.umassd.edu/cas/mathematics/people/leon or from the Pearson Web
site.

• Chapter 8. Iterative Methods
• Chapter 9. Canonical Forms

My home page also contains a link to the errata list for this textbook.

Web Supplements

The Pearson Web site for this book has an impressive collection of supplementary
materials including links to the two supplementary chapters that were previously dis-

www.umassd.edu/cas/mathematics/people/leon
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cussed. The URL for the Web site is:

www.pearsonhighered.com/leon

Companion Books

A Student Study Guide has been developed to accompany this textbook. A number of
MATLAB and Maple computer manuals are also available as companion books. In-
structors wishing to use one of the companion manuals along with the textbook can
order both the book and the manual for their classes and have each pair bundled to-
gether in a shrink-wrapped package. These packages are available for classes at spe-
cial rates that are comparable to the price of ordering the textbook alone. Thus, when
students buy the textbook, they get the manual at little or no extra cost. To obtain in-
formation about the companion packages available, instructors should either consult
their Pearson sales representative or search the instructor section of the Pearson higher
education Web site (www.pearsonhighered.com). The following is a list of some of the
companion books being offered as bundles with this textbook.

• Student Guide to Linear Algebra with Applications, ISBN 0-13-600930-1. The
manual is available to students as a study tool to accompany this textbook. The
manual summarizes important theorems, definitions, and concepts presented
in the textbook. It provides solutions to some of the exercises and hints and
suggestions on many other exercises.

• ATLAST Computer Exercises for Linear Algebra, Second edition, ISBN 0-13-
101121-9.
ATLAST (Augmenting the Teaching of Linear Algebra through the use of Soft-
ware Tools) was an NSF sponsored project to encourage and facilitate the use
of software in the teaching of linear algebra. During a five year period, 1992–
1997, the ATLAST Project conducted 18 faculty workshops using the MAT-
LAB software package. Participants in those workshops designed computer
exercises, projects, and lesson plans for software-based teaching of linear alge-
bra. A selection of these materials was first published as a manual in 1997. That
manual was greatly expanded for the second edition published in 2003. Each
of the eight chapters in the second edition contains a section of short exercises
and a section of longer projects.

The collection of software tools (M-files) developed to accompany the AT-
LAST book may be downloaded from the ATLAST Web site:

www.umassd.edu/specialprograms/atlast

Additionally, Mathematica users can download the collection of ATLAST Math-
ematica Notebooks that has been developed by Richard Neidinger.

• Linear Algebra Labs with MATLAB: 3rd ed. by David Hill and David Zitarelli
• Visualizing Linear Algebra using Maple, by Sandra Keith
• Maple Supplement for Linear Algebra, by John Maloney
• Understanding Linear Algebra Using MATLAB, by Irwin and Margaret Klein-

feld

www.pearsonhighered.com/leon
www.pearsonhighered.com
www.umassd.edu/specialprograms/atlast
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Matrices and Systems of Equations
Probably the most important problem in mathematics is that of solving a system of
linear equations. Well over 75 percent of all mathematical problems encountered in
scientific or industrial applications involve solving a linear system at some stage. By
using the methods of modern mathematics, it is often possible to take a sophisticated
problem and reduce it to a single system of linear equations. Linear systems arise in
applications to such areas as business, economics, sociology, ecology, demography, ge-
netics, electronics, engineering, and physics. Therefore, it seems appropriate to begin
this book with a section on linear systems.

1.1 Systems of Linear Equations

A linear equation in n unknowns is an equation of the form

a1x1 + a2x2 + · · · + anxn = b

where a1, a2, . . . , an and b are real numbers and x1, x2, . . . , xn are variables. A linear
system of m equations in n unknowns is then a system of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(1)

where the ai j ’s and the bi ’s are all real numbers. We will refer to systems of the form (1)
as m × n linear systems. The following are examples of linear systems:

(a) x1 + 2x2 = 5
2x1 + 3x2 = 8

(b) x1 − x2 + x3 = 2
2x1 + x2 − x3 = 4

(c) x1 + x2 = 2
x1 − x2 = 1
x1 = 4

1



2 Chapter 1 Matrices and Systems of Equations

System (a) is a 2 × 2 system, (b) is a 2 × 3 system, and (c) is a 3 × 2 system.
By a solution of an m × n system, we mean an ordered n-tuple of numbers

(x1, x2, . . . , xn) that satisfies all the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

1 · (1) + 2 · (2) = 5
2 · (1) + 3 · (2) = 8

The ordered triple (2, 0, 0) is a solution of system (b), since

1 · (2) − 1 · (0) + 1 · (0) = 2
2 · (2) + 1 · (0) − 1 · (0) = 4

Actually, system (b) has many solutions. If α is any real number, it is easily seen
that the ordered triple (2, α, α) is a solution. However, system (c) has no solution. It
follows from the third equation that the first coordinate of any solution would have to
be 4. Using x1 = 4 in the first two equations, we see that the second coordinate must
satisfy

4 + x2 = 2
4 − x2 = 1

Since there is no real number that satisfies both of these equations, the system has no
solution. If a linear system has no solution, we say that the system is inconsistent. If
the system has at least one solution, we say that it is consistent. Thus, system (c) is
inconsistent, while systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the solution set of the system.
If a system is inconsistent, its solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we must find its solution set.

2 × 2 Systems

Let us examine geometrically a system of the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Each equation can be represented graphically as a line in the plane. The ordered pair
(x1, x2) will be a solution of the system if and only if it lies on both lines. For example,
consider the three systems

(i) x1 + x2 = 2
x1 − x2 = 2

(ii) x1 + x2 = 2
x1 + x2 = 1

(iii) x1 + x2 = 2
−x1 − x2 = −2

The two lines in system (i) intersect at the point (2, 0). Thus, {(2, 0)} is the solution
set of (i). In system (ii) the two lines are parallel. Therefore, system (ii) is inconsistent
and hence its solution set is empty. The two equations in system (iii) both represent the
same line. Any point on this line will be a solution of the system (see Figure 1.1.1).

In general, there are three possibilities: the lines intersect at a point, they are par-
allel, or both equations represent the same line. The solution set then contains either
one, zero, or infinitely many points.
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(i) (ii) (iii)

(2, 0)

x2 x2

x1 x1

x2

x1

Figure 1.1.1.

The situation is the same for m × n systems. An m × n system may or may not
be consistent. If it is consistent, it must have either exactly one solution or infinitely
many solutions. These are the only possibilities. We will see why this is so in Section 2
when we study the row echelon form. Of more immediate concern is the problem of
finding all solutions of a given system. To tackle this problem, we introduce the notion
of equivalent systems.

Equivalent Systems

Consider the two systems

(a) 3x1 + 2x2 − x3 = −2
x2 = 3

2x3 = 4

(b) 3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

3x1 + 2x2 + x3 = 2

System (a) is easy to solve because it is clear from the last two equations that
x2 = 3 and x3 = 2. Using these values in the first equation, we get

3x1 + 2 · 3 − 2 = −2
x1 = −2

Thus, the solution of the system is (−2, 3, 2). System (b) seems to be more difficult
to solve. Actually, system (b) has the same solution as system (a). To see this, add the
first two equations of the system:

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

x2 = 3

If (x1, x2, x3) is any solution of (b), it must satisfy all the equations of the system.
Thus, it must satisfy any new equation formed by adding two of its equations. There-
fore, x2 must equal 3. Similarly, (x1, x2, x3) must satisfy the new equation formed by
subtracting the first equation from the third:

3x1 + 2x2 + x3 = 2
3x1 + 2x2 − x3 = −2

2x3 = 4
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Therefore, any solution of system (b) must also be a solution of system (a). By a
similar argument, it can be shown that any solution of (a) is also a solution of (b). This
can be done by subtracting the first equation from the second:

x2 = 3
3x1 + 2x2 − x3 = −2

−3x1 − x2 + x3 = 5

Then add the first and third equations:

33x1 + 2x2 − x3 = −2
2x3 = 4

3x1 + 2x2 + x3 = 2

Thus, (x1, x2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(−2, 3, 2)}.

Definition Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

Clearly, if we interchange the order in which two equations of a system are written,
this will have no effect on the solution set. The reordered system will be equivalent to
the original system. For example, the systems

x1 + 2x2 = 4
3x1 − x2 = 2
4x1 + x2 = 6

and
4x1 + x2 = 6
3x1 − x2 = 2

x1 + 2x2 = 4

both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

x1 + x2 + x3 = 3
−2x1 − x2 + 4x3 = 1

and
2x1 + 2x2 + 2x3 = 6

−2x1 − x2 + 4x3 = 1

are equivalent.
If a multiple of one equation is added to another equation, the new system will

be equivalent to the original system. This follows since the n-tuple (x1, . . . , xn) will
satisfy the two equations

ai1x1 + · · · + ainxn = bi

a j1x1 + · · · + a jnxn = b j

if and only if it satisfies the equations

ai1x1 + · · · + ainxn = bi

(a j1 + αai1)x1 + · · · + (a jn + αain)xn = b j + αbi



1.1 Systems of Linear Equations 5

To summarize, there are three operations that can be used on a system to obtain an
equivalent system:

I. The order in which any two equations are written may be interchanged.
II. Both sides of an equation may be multiplied by the same nonzero real number.

III. A multiple of one equation may be added to (or subtracted from) another.

Given a system of equations, we may use these operations to obtain an equivalent
system that is easier to solve.

n × n Systems

Let us restrict ourselves to n × n systems for the remainder of this section. We will
show that if an n × n system has exactly one solution, then operations I and III can be
used to obtain an equivalent “strictly triangular system.”

Definition A system is said to be in strict triangular form if, in the kth equation, the coef-
ficients of the first k − 1 variables are all zero and the coefficient of xk is nonzero
(k = 1, . . . , n).

EXAMPLE 1 The system

3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4

is in strict triangular form, since in the second equation the coefficients are 0, 1, −1,
respectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because
of the strict triangular form, the system is easy to solve. It follows from the third
equation that x3 = 2. Using this value in the second equation, we obtain

x2 − 2 = 2 or x2 = 4

Using x2 = 4, x3 = 2 in the first equation, we end up with

3x1 + 2 · 4 + 2 = 1
x1 = −3

Thus, the solution of the system is (−3, 4, 2).

Any n × n strictly triangular system can be solved in the same manner as the last
example. First, the nth equation is solved for the value of xn . This value is used in the
(n − 1)st equation to solve for xn−1. The values xn and xn−1 are used in the (n − 2)nd
equation to solve for xn−2, and so on. We will refer to this method of solving a strictly
triangular system as back substitution.
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EXAMPLE 2 Solve the system
2x1 − x2 + 3x3 − 2x4 = 1

x2 − 2x3 + 3x4 = 2
4x3 + 3x4 = 3

4x4 = 4

Solution
Using back substitution, we obtain

4x4 = 4
4x3 + 3 · 1 = 3

x2 − 2 · 0 + 3 · 1 = 2
2x1 − (−1) + 3 · 0 − 2 · 1 = 1

x4 = 1
x3 = 0
x2 = −1
x1 = 1

Thus, the solution is (1, −1, 0, 1).

In general, given a system of n linear equations in n unknowns, we will use opera-
tions I and III to try to obtain an equivalent system that is strictly triangular. (We will
see in the next section of the book that it is not possible to reduce the system to strictly
triangular form in the cases where the system does not have a unique solution.)

EXAMPLE 3 Solve the system
x1 + 2x2 + x3 = 3

3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4

Solution
Subtracting 3 times the first row from the second row yields

−7x2 − 6x3 = −10

Subtracting 2 times the first row from the third row yields

−x2 − x3 = −2

If the second and third equations of our system, respectively, are replaced by these new
equations, we obtain the equivalent system

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10
−x2 − x3 = −2

If the third equation of this system is replaced by the sum of the third equation and − 1
7

times the second equation, we end up with the following strictly triangular system:

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10

− 1
7 x3 = − 4

7
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Using back substitution, we get

x3 = 4, x2 = −2, x1 = 3

Let us look back at the system of equations in the last example. We can associate
with that system a 3 × 3 array of numbers whose entries are the coefficients of the xi ’s:⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 −1 −3
2 3 1

⎫⎪⎪⎪⎪⎪⎭
We will refer to this array as the coefficient matrix of the system. The term matrix
means simply a rectangular array of numbers. A matrix having m rows and n columns
is said to be m × n. A matrix is said to be square if it has the same number of rows and
columns—that is, if m = n.

If we attach to the coefficient matrix an additional column whose entries are the
numbers on the right-hand side of the system, we obtain the new matrix⎧⎪⎪⎪⎪⎪⎩

1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫⎪⎪⎪⎪⎪⎭
We will refer to this new matrix as the augmented matrix. In general, when an m × r
matrix B is attached to an m ×n matrix A in this way, the augmented matrix is denoted
by (A|B). Thus, if

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b11 b12 · · · b1r

b21 b22 · · · b2r
...

bm1 bm2 · · · bmr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then

(A |B) =
⎧⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b11 · · · b1r
...

...

am1 · · · amn bm1 · · · bmr

⎫⎪⎪⎪⎪⎪⎪⎭
With each system of equations, we may associate an augmented matrix of the form⎧⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b1
...

...

am1 · · · amn bm

⎫⎪⎪⎪⎪⎪⎪⎭
The system can be solved by performing operations on the augmented matrix. The xi ’s
are placeholders that can be omitted until the end of the computation. Corresponding
to the three operations used to obtain equivalent systems, the following row operations
may be applied to the augmented matrix:

Elementary Row Operations

I. Interchange two rows.
II. Multiply a row by a nonzero real number.

III. Replace a row by its sum with a multiple of another row.
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Returning to the example, we find that the first row is used to eliminate the ele-
ments in the first column of the remaining rows. We refer to the first row as the pivotal
row. For emphasis, the entries in the pivotal row are all in bold type and the entire row
is color shaded. The first nonzero entry in the pivotal row is called the pivot.

(pivot a11 = 1)
entries to be eliminated

a21 = 3 and a31 = 2

}
→

⎧⎪⎪⎪⎪⎪⎩1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫⎪⎪⎪⎪⎪⎭
← pivotal row

By using row operation III, 3 times the first row is subtracted from the second row and
2 times the first row is subtracted from the third. When this is done, we end up with
the matrix ⎧⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10
0 −1 −1 −2

⎫⎪⎪⎪⎪⎪⎭← pivotal row

At this step we choose the second row as our new pivotal row and apply row opera-
tion III to eliminate the last element in the second column. This time, the pivot is −7
and the quotient −1

−7 = 1
7 is the multiple of the pivotal row that is subtracted from the

third row. We end up with the matrix⎧⎪⎪⎪⎪⎪⎩
1 2 1 3
0 −7 −6 −10
0 0 − 1

7 − 4
7

⎫⎪⎪⎪⎪⎪⎭
This is the augmented matrix for the strictly triangular system, which is equivalent to
the original system. The solution of the system is easily obtained by back substitution.

EXAMPLE 4 Solve the system
4 − x2 − x3 + x4 = 0

x1 + x2 + x3 + x4 = 6
2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

Solution
The augmented matrix for this system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since it is not possible to eliminate any entries by using 0 as a pivot element, we will
use row operation I to interchange the first two rows of the augmented matrix. The new
first row will be the pivotal row and the pivot element will be 1:

(pivot a11 = 1)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
← pivot row
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Row operation III is then used twice to eliminate the two nonzero entries in the first
column: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 2 −1 −4 −13
0 −2 −5 −1 −15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next, the second row is used as the pivotal row to eliminate the entries in the second
column below the pivot element −1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 −3 −3 −15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Finally, the third row is used as the pivotal row to eliminate the last element in the third
column: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 0 −1 −2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
This augmented matrix represents a strictly triangular system. Solving by back substi-
tution, we obtain the solution (2, −1, 3, 2).

In general, if an n ×n linear system can be reduced to strictly triangular form, then
it will have a unique solution that can be obtained by performing back substitution on
the triangular system. We can think of the reduction process as an algorithm involving
n − 1 steps. At the first step, a pivot element is chosen from among the nonzero entries
in the first column of the matrix. The row containing the pivot element is called the
pivotal row. We interchange rows (if necessary) so that the pivotal row is the new first
row. Multiples of the pivotal row are then subtracted from each of the remaining n − 1
rows so as to obtain 0’s in the first entries of rows 2 through n. At the second step,
a pivot element is chosen from the nonzero entries in column 2, rows 2 through n, of
the matrix. The row containing the pivot is then interchanged with the second row of
the matrix and is used as the new pivotal row. Multiples of the pivotal row are then
subtracted from the remaining n − 2 rows so as to eliminate all entries below the pivot
in the second column. The same procedure is repeated for columns 3 through n − 1.
Note that at the second step row 1 and column 1 remain unchanged, at the third step
the first two rows and first two columns remain unchanged, and so on. At each step,
the overall dimensions of the system are effectively reduced by 1 (see Figure 1.1.2).

If the elimination process can be carried out as described, we will arrive at an
equivalent strictly triangular system after n − 1 steps. However, the procedure will
break down if, at any step, all possible choices for a pivot element are equal to 0.
When this happens, the alternative is to reduce the system to certain special echelon,
or staircase-shaped, forms. These echelon forms will be studied in the next section.
They will also be used for m × n systems, where m �= n.
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Figure 1.1.2.

SECTION 1.1 EXERCISES
1. Use back substitution to solve each of the following

systems of equations:

(a) x1 − 3x2 = 2

2x2 = 6

(b) x1 + x2 + x3 = 8

2x2 + x3 = 5

3x3 = 9

(c) x1 + 2x2 + 2x3 + x4 = 5

3x2 + x3 − 2x4 = 1

−x3 + 2x4 = −1

4x4 = 4

(d) x1 + x2 + x3 + x4 + x5 = 5

2x2 + x3 − 2x4 + x5 = 1

4x3 + x4 − 2x5 = 1

x4 − 3x5 = 0

2x5 = 2

2. Write out the coefficient matrix for each of the sys-
tems in Exercise 1.

3. In each of the following systems, interpret each
equation as a line in the plane. For each system,
graph the lines and determine geometrically the
number of solutions.
(a) x1 + x2 = 4

x1 − x2 = 2

(b) x1 + 2x2 = 4

−2x1 − 4x2 = 4

(c) 2x1 − x2 = 3

−4x1 + 2x2 = −6

(d) x1 + x2 = 1

x1 − x2 = 1

−x1 + 3x2 = 3

4. Write an augmented matrix for each of the systems
in Exercise 3.

5. Write out the system of equations that corresponds
to each of the following augmented matrices:

(a)
⎧⎪⎩3 2 8

1 5 7

⎫⎪⎭ (b)
⎧⎪⎩5 −2 1 3

2 3 −4 0

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 1 4 −1
4 −2 3 4
5 2 6 −1

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −3 1 2 4
3 1 −5 6 5
1 1 2 4 8
5 1 3 −2 7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
6. Solve each of the following systems:

(a) x1 − 2x2 = 5

3x1 + x2 = 1

(b) 2x1 + x2 = 8

4x1 − 3x2 = 6

(c) 4x1 + 3x2 = 4
2
3 x1 + 4x2 = 3

(d) x1 + 2x2 − x3 = 1

2x1 − x2 + x3 = 3

−x1 + 2x2 + 3x3 = 7

(e) 2x1 + x2 + 3x3 = 1

4x1 + 3x2 + 5x3 = 1

6x1 + 5x2 + 5x3 = −3

(f) 3x1 + 2x2 + x3 = 0

−2x1 + x2 − x3 = 2

2x1 − x2 + 2x3 = −1

(g) 1
3 x1 + 2

3 x2 + 2x3 = −1

x1 + 2x2 + 3
2 x3 = 3

2
1
2 x1 + 2x2 + 12

5 x3 = 1
10

(h) x2 + x3 + x4 = 0

3x1 + 3x3 − 4x4 = 7

x1 + x2 + x3 + 2x4 = 6

2x1 + 3x2 + x3 + 3x4 = 6
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7. The two systems

2x1 + x2 = 3

4x1 + 3x2 = 5
and

2x1 + x2 = −1

4x1 + 3x2 = 1

have the same coefficient matrix but different right-
hand sides. Solve both systems simultaneously by
eliminating the first entry in the second row of the
augmented matrix⎧⎪⎩2 1 3 −1

4 3 5 1

⎫⎪⎭
and then performing back substitutions for each of
the columns corresponding to the right-hand sides.

8. Solve the two systems

x1 + 2x2 − 2x3 = 1

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = 9

x1 + 2x2 − 2x3 = 9

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = −2

by doing elimination on a 3 × 5 augmented matrix
and then performing two back substitutions.

9. Given a system of the form

−m1x1 + x2 = b1

−m2x1 + x2 = b2

where m1, m2, b1, and b2 are constants,
(a) Show that the system will have a unique solu-

tion if m1 �= m2.

(b) Show that if m1 = m2, then the system will be
consistent only if b1 = b2.

(c) Give a geometric interpretation of parts (a) and
(b).

10. Consider a system of the form

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

where a11, a12, a21, and a22 are constants. Explain
why a system of this form must be consistent.

11. Give a geometrical interpretation of a linear equa-
tion in three unknowns. Give a geometrical de-
scription of the possible solution sets for a 3 × 3
linear system.

1.2 Row Echelon Form

In Section 1 we learned a method for reducing an n×n linear system to strict triangular
form. However, this method will fail if, at any stage of the reduction process, all the
possible choices for a pivot element in a given column are 0.

EXAMPLE 1 Consider the system represented by the augmented matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 1 1

−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 −1
1 1 2 2 4 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
← pivotal row

If row operation III is used to eliminate the nonzero entries in the last four rows of the
first column, the resulting matrix will be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 2 2 5 3
0 0 1 1 3 −1
0 0 1 1 3 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
← pivotal row

At this stage, the reduction to strict triangular form breaks down. All four possible
choices for the pivot element in the second column are 0. How do we proceed from
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here? Since our goal is to simplify the system as much as possible, it seems natural to
move over to the third column and eliminate the last three entries:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 −1
0 0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the fourth column, all the choices for a pivot element are 0; so again we move on to
the next column. If we use the third row as the pivotal row, the last two entries in the
fifth column are eliminated and we end up with the matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −4
0 0 0 0 0 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The coefficient matrix that we end up with is not in strict triangular form; it is in
staircase, or echelon, form. The horizontal and vertical line segments in the array for
the coefficient matrix indicate the structure of the staircase form. Note that the vertical
drop is 1 for each step, but the horizontal span for a step can be more than 1.

The equations represented by the last two rows are

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −4
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −3

Since there are no 5-tuples that could satisfy these equations, the system is inconsistent.

Suppose now that we change the right-hand side of the system in the last example
so as to obtain a consistent system. For example, if we start with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 3
1 1 2 2 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the reduction process will yield the echelon form augmented matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 0
0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The last two equations of the reduced system will be satisfied for any 5-tuple. Thus,
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the solution set will be the set of all 5-tuples satisfying the first three equations,

x1 + x2 + x3 + x4 + x5 = 1
x3 + x4 + 2x5 = 0

x5 = 3

(1)

The variables corresponding to the first nonzero elements in each row of the reduced
matrix will be referred to as lead variables. Thus, x1, x3, and x5 are the lead variables.
The remaining variables corresponding to the columns skipped in the reduction process
will be referred to as free variables. Hence, x2 and x4 are the free variables. If we
transfer the free variables over to the right-hand side in (1), we obtain the system

x1 + x3 + x5 = 1 − x2 − x4

x3 + 2x5 = −x4

x5 = 3

(2)

System (2) is strictly triangular in the unknowns x1, x3, and x5. Thus, for each pair
of values assigned to x2 and x4, there will be a unique solution. For example, if x2 =
x4 = 0, then x5 = 3, x3 = −6, and x1 = 4, and hence (4, 0, −6, 0, 3) is a solution to
the system.

Definition A matrix is said to be in row echelon form

(i) If the first nonzero entry in each nonzero row is 1.

(ii) If row k does not consist entirely of zeros, the number of leading zero
entries in row k + 1 is greater than the number of leading zero entries in
row k.

(iii) If there are rows whose entries are all zero, they are below the rows having
nonzero entries.

EXAMPLE 2 The following matrices are in row echelon form:⎧⎪⎪⎪⎪⎪⎩
1 4 2
0 1 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 2 3
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 3 1 0
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 3 The following matrices are not in row echelon form:⎧⎪⎪⎪⎪⎪⎩

2 4 6
0 3 5
0 0 4

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎩0 0 0
0 1 0

⎫⎪⎭ ,

⎧⎪⎩0 1
1 0

⎫⎪⎭
The first matrix does not satisfy condition (i). The second matrix fails to satisfy condi-
tion (iii), and the third matrix fails to satisfy condition (ii).

Definition The process of using row operations I, II, and III to transform a linear system into
one whose augmented matrix is in row echelon form is called Gaussian elimina-
tion.
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Note that row operation II is necessary in order to scale the rows so that the leading
coefficients are all 1. If the row echelon form of the augmented matrix contains a row
of the form ⎧⎩0 0 · · · 0 1

⎫⎭
the system is inconsistent. Otherwise, the system will be consistent. If the system is
consistent and the nonzero rows of the row echelon form of the matrix form a strictly
triangular system, the system will have a unique solution.

Overdetermined Systems

A linear system is said to be overdetermined if there are more equations than un-
knowns. Overdetermined systems are usually (but not always) inconsistent.

EXAMPLE 4 Solve each of the following overdetermined systems:
(a) x1 + x2 = 1

x1 − x2 = 3
−x1 + 2x2 = −2

(b) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
2x1 − x2 + 3x3 = 5

(c) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
3x1 + x2 + 2x3 = 3

Solution
By now the reader should be familiar enough with the elimination process that we can
omit the intermediate steps in reducing each of these systems. Thus, we may write

System (a):

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 −1 3

−1 2 −2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
It follows from the last row of the reduced matrix that the system is inconsistent. The
three equations in system (a) represent lines in the plane. The first two lines intersect
at the point (2, −1). However, the third line does not pass through this point. Thus,
there are no points that lie on all three lines (see Figure 1.2.1).

System (b):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1

2 −1 1 2

4 3 3 4

2 −1 3 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1

0 1 1
5 0

0 0 1 3
2

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Using back substitution, we see that system (b) has exactly one solution:
(0.1, −0.3, 1.5). The solution is unique because the nonzero rows of the reduced
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x2

x12

–1

Figure 1.2.1.

matrix form a strictly triangular system.

System (c):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1

2 −1 1 2

4 3 3 4

3 1 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1

0 1 1
5 0

0 0 0 0

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solving for x2 and x1 in terms of x3, we obtain

x2 = −0.2x3

x1 = 1 − 2x2 − x3 = 1 − 0.6x3

It follows that the solution set is the set of all ordered triples of the form
(1 − 0.6α, −0.2α, α), where α is a real number. This system is consistent and has
infinitely many solutions because of the free variable x3.

Underdetermined Systems
A system of m linear equations in n unknowns is said to be underdetermined if there are
fewer equations than unknowns (m < n). Although it is possible for underdetermined
systems to be inconsistent, they are usually consistent with infinitely many solutions.
It is not possible for an underdetermined system to have a unique solution. The reason
for this is that any row echelon form of the coefficient matrix will involve r ≤ m
nonzero rows. Thus, there will be r lead variables and n − r free variables, where
n−r ≥ n−m > 0. If the system is consistent, we can assign the free variables arbitrary
values and solve for the lead variables. Therefore, a consistent underdetermined system
will have infinitely many solutions.

EXAMPLE 5 Solve the following underdetermined systems:
(a) x1 + 2x2 + x3 = 1

2x1 + 4x2 + 2x3 = 3
(b) x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2
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Solution

System (a):
⎧⎪⎩1 2 1 1

2 4 2 3

⎫⎪⎭ →
⎧⎪⎩1 2 1 1

0 0 0 1

⎫⎪⎭
Clearly, system (a) is inconsistent. We can think of the two equations in system (a) and
(b) as representing planes in 3-space. Usually, two planes intersect in a line; however,
in this case the planes are parallel.

System (b):

⎧⎪⎪⎪⎪⎪⎩
1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎭
System (b) is consistent, and since there are two free variables, the system will have
infinitely many solutions. In cases such as these it is convenient to continue the elimi-
nation process and simplify the form of the reduced matrix even further. We continue
eliminating until all the terms above each leading 1 are eliminated. Thus, for sys-
tem (b), we will continue and eliminate the first two entries in the fifth column and
then the first element in the fourth column, as follows:⎧⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1 0 3
0 0 0 1 0 2
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎪⎩
1 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎭
If we put the free variables over on the right-hand side, it follows that

x1 = 1 − x2 − x3

x4 = 2

x5 = −1

Thus, for any real numbers α and β, the 5-tuple

(1 − α − β, α, β, 2, −1)

is a solution of the system.

In the case where the row echelon form of a consistent system has free variables,
the standard procedure is to continue the elimination process until all the entries above
each leading 1 have been eliminated, as in system (b) of the previous example. The
resulting reduced matrix is said to be in reduced row echelon form.

Reduced Row Echelon Form

Definition A matrix is said to be in reduced row echelon form if

(i) The matrix is in row echelon form.

(ii) The first nonzero entry in each row is the only nonzero entry in its column.
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The following matrices are in reduced row echelon form:

⎧⎪⎩1 0
0 1

⎫⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 0 0 3
0 1 0 2
0 0 1 1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0 1 2 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 2 0 1
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
The process of using elementary row operations to transform a matrix into reduced row
echelon form is called Gauss–Jordan reduction.

EXAMPLE 6 Use Gauss–Jordan reduction to solve the system

−x1 + x2 − x3 + 3x4 = 0
3x1 + x2 − x3 − x4 = 0
2x1 − x2 − 2x3 − x4 = 0

Solution

⎧⎪⎪⎪⎪⎪⎩
−1 1 −1 3 0

3 1 −1 −1 0
2 −1 −2 −1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 1 −4 5 0

⎫⎪⎪⎪⎪⎪⎭

→
⎧⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 0 −3 3 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 −1 1 −3 0
0 1 −1 2 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭
row
echelon
form

→
⎧⎪⎪⎪⎪⎪⎩

1 −1 0 −2 0
0 1 0 1 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭
reduced
row echelon
form

If we set x4 equal to any real number α, then x1 = α, x2 = −α, and x3 = α. Thus, all
ordered 4-tuples of the form (α, −α, α, α) are solutions of the system.

APPLICATION 1 Traffic Flow

In the downtown section of a certain city, two sets of one-way streets intersect as shown
in Figure 1.2.2. The average hourly volume of traffic entering and leaving this section
during rush hour is given in the diagram. Determine the amount of traffic between each
of the four intersections.

Solution
At each intersection, the number of automobiles entering must be the same as the
number leaving. For example, at intersection A, the number of automobiles entering is
x1 + 450 and the number leaving is x2 + 610. Thus,

x1 + 450 = x2 + 610 (intersection A)
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600520
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Figure 1.2.2.

Similarly,
x2 + 520 = x3 + 480 (intersection B)
x3 + 390 = x4 + 600 (intersection C)
x4 + 640 = x1 + 310 (intersection D)

The augmented matrix for the system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 0 0 160
0 1 −1 0 −40
0 0 1 −1 210

−1 0 0 1 −330

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The reduced row echelon form for this matrix is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 −1 330
0 1 0 −1 170
0 0 1 −1 210
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The system is consistent, and since there is a free variable, there are many possible
solutions. The traffic flow diagram does not give enough information to determine x1,
x2, x3, and x4 uniquely. If the amount of traffic were known between any pair of inter-
sections, the traffic on the remaining arteries could easily be calculated. For example,
if the amount of traffic between intersections C and D averages 200 automobiles per
hour, then x4 = 200. Using this value, we can then solve for x1, x2, and x3:

x1 = x4 + 330 = 530
x2 = x4 + 170 = 370
x3 = x4 + 210 = 410
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APPLICATION 2 Electrical Networks

In an electrical network, it is possible to determine the amount of current in each branch
in terms of the resistances and the voltages. An example of a typical circuit is given in
Figure 1.2.3.

i3

A B

9 volts

8 volts

4 ohms

2 ohms

2 ohms3 ohms

i1

i2

Figure 1.2.3.

The symbols in the figure have the following meanings:

A path along which current may flow

An electrical source

A resistor

The electrical source is usually a battery (with a voltage measured in volts) that drives
a charge and produces a current. The current will flow out from the terminal of the
battery that is represented by the longer vertical line. The resistances are measured in
ohms. The letters represent nodes and the i’s represent the currents between the nodes.
The currents are measured in amperes. The arrows show the direction of the currents.
If, however, one of the currents, say i2, turns out to be negative, this would mean that
the current along that branch is in the direction opposite that of the arrow.

To determine the currents, the following rules are used:

Kirchhoff’s Laws
1. At every node, the sum of the incoming currents equals the sum of the outgoing

currents.
2. Around every closed loop, the algebraic sum of the voltage gains must equal

the algebraic sum of the voltage drops.

The voltage drops E for each resistor are given by Ohm’s law,

E = iR

where i represents the current in amperes and R the resistance in ohms.
Let us find the currents in the network pictured in Figure 1.2.3. From the first law,

we have
i1 − i2 + i3 = 0

−i1 + i2 − i3 = 0
(node A)
(node B)
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By the second law,
4i1 + 2i2 = 8
2i2 + 5i3 = 9

(top loop)
(bottom loop)

The network can be represented by the augmented matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 1 0

−1 1 −1 0
4 2 0 8
0 2 5 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
This matrix is easily reduced to row echelon form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 1 0

0 1 − 2
3

4
3

0 0 1 1

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solving by back substitution, we see that i1 = 1, i2 = 2, and i3 = 1.

Homogeneous Systems

A system of linear equations is said to be homogeneous if the constants on the right-
hand side are all zero. Homogeneous systems are always consistent. It is a trivial
matter to find a solution; just set all the variables equal to zero. Thus, if an m × n ho-
mogeneous system has a unique solution, it must be the trivial solution (0, 0, . . . , 0).
The homogeneous system in Example 6 consisted of m = 3 equations in n = 4 un-
knowns. In the case that n > m, there will always be free variables and, consequently,
additional nontrivial solutions. This result has essentially been proved in our discussion
of underdetermined systems, but, because of its importance, we state it as a theorem.

Theorem 1.2.1 An m × n homogeneous system of linear equations has a nontrivial solution if n > m.

Proof A homogeneous system is always consistent. The row echelon form of the matrix can
have at most m nonzero rows. Thus there are at most m lead variables. Since there are
n variables altogether and n > m, there must be some free variables. The free variables
can be assigned arbitrary values. For each assignment of values to the free variables,
there is a solution of the system.

APPLICATION 3 Chemical Equations

In the process of photosynthesis, plants use radiant energy from sunlight to convert
carbon dioxide (CO2) and water (H2O) into glucose (C6H12O6) and oxygen (O2). The
chemical equation of the reaction is of the form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

To balance the equation, we must choose x1, x2, x3, and x4 so that the numbers of
carbon, hydrogen, and oxygen atoms are the same on each side of the equation. Since
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carbon dioxide contains one carbon atom and glucose contains six, to balance the car-
bon atoms we require that

x1 = 6x4

Similarly, to balance the oxygen, we need

2x1 + x2 = 2x3 + 6x4

and finally, to balance the hydrogen, we need

2x2 = 12x4

If we move all the unknowns to the left-hand sides of the three equations, we end up
with the homogeneous linear system

x1 − 6x4 = 0
2x1 + x2 − 2x3 − 6x4 = 0

2x2 − 12x4 = 0

By Theorem 1.2.1, the system has nontrivial solutions. To balance the equation, we
must find solutions (x1, x2, x3, x4) whose entries are nonnegative integers. If we solve
the system in the usual way, we see that x4 is a free variable and

x1 = x2 = x3 = 6x4

In particular, if we take x4 = 1, then x1 = x2 = x3 = 6 and the equation takes the form

6CO2 + 6H2O → 6O2 + C6H12O6

APPLICATION 4 Economic Models for Exchange of Goods

Suppose that in a primitive society the members of a tribe are engaged in three oc-
cupations: farming, manufacturing of tools and utensils, and weaving and sewing of
clothing. Assume that initially the tribe has no monetary system and that all goods and
services are bartered. Let us denote the three groups by F , M , and C , and suppose that
the directed graph in Figure 1.2.4 indicates how the bartering system works in practice.

The figure indicates that the farmers keep half of their produce and give one-fourth
of their produce to the manufacturers and one-fourth to the clothing producers. The
manufacturers divide the goods evenly among the three groups, one-third going to
each group. The group producing clothes gives half of the clothes to the farmers and
divides the other half evenly between the manufacturers and themselves. The result is
summarized in the following table:

F M C

F 1
2

1
3

1
2

M 1
4

1
3

1
4

C 1
4

1
3

1
4
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M C

F

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
2

Figure 1.2.4.

The first column of the table indicates the distribution of the goods produced by the
farmers, the second column indicates the distribution of the manufactured goods, and
the third column indicates the distribution of the clothing.

As the size of the tribe grows, the system of bartering becomes too cumbersome
and, consequently, the tribe decides to institute a monetary system of exchange. For
this simple economic system, we assume that there will be no accumulation of capital
or debt and that the prices for each of the three types of goods will reflect the values of
the existing bartering system. The question is how to assign values to the three types
of goods that fairly represent the current bartering system.

The problem can be turned into a linear system of equations using an economic
model that was originally developed by the Nobel Prize-winning economist Wassily
Leontief. For this model, we will let x1 be the monetary value of the goods produced
by the farmers, x2 be the value of the manufactured goods, and x3 be the value of all
the clothing produced. According to the first row of the table, the value of the goods
received by the farmers amounts to half the value of the farm goods produced, plus
one-third the value of the manufactured products and half the value of the clothing
goods. Thus, the total value of goods received by the farmer is 1

2 x1 + 1
3 x2 + 1

2 x3. If
the system is fair, the total value of goods received by the farmers should equal x1, the
total value of the farm goods produced. Hence, we have the linear equation

1

2
x1 + 1

3
x2 + 1

2
x3 = x1

Using the second row of the table and equating the value of the goods produced and
received by the manufacturers, we obtain a second equation:

1

4
x1 + 1

3
x2 + 1

4
x3 = x2
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Finally, using the third row of the table, we get

1

4
x1 + 1

3
x2 + 1

4
x3 = x3

These equations can be rewritten as a homogeneous system:

− 1
2 x1 + 1

3 x2 + 1
2 x3 = 0

1
4 x1 − 2

3 x2 + 1
4 x3 = 0

1
4 x1 + 1

3 x2 − 3
4 x3 = 0

The reduced row echelon form of the augmented matrix for this system is⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 − 5

3 0

0 1 −1 0

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭
There is one free variable: x3. Setting x3 = 3, we obtain the solution (5, 3, 3), and the
general solution consists of all multiples of (5, 3, 3). It follows that the variables x1,
x2, and x3 should be assigned values in the ratio

x1 : x2 : x3 = 5 : 3 : 3

This simple system is an example of the closed Leontief input–output model.
Leontief’s models are fundamental to our understanding of economic systems. Mod-
ern applications would involve thousands of industries and lead to very large linear
systems. The Leontief models will be studied in greater detail later, in Section 8 of
Chapter 6.

SECTION 1.2 EXERCISES
1. Which of the matrices that follow are in row eche-

lon form? Which are in reduced row echelon form?

(a)
⎧⎪⎩1 2 3 4

0 0 1 2

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
0 1
0 0
0 0

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 1 2
0 0 3

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
1 4 6
0 0 1
0 1 3

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
1 0 0 1 2
0 1 0 2 4
0 0 1 3 6

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
0 1 3 4
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭

2. The augmented matrices that follow are in row ech-
elon form. For each case, indicate whether the cor-
responding linear system is consistent. If the sys-
tem has a unique solution, find it.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 2 4
0 1 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 3 1
0 1 −1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 −2 4 1
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
1 −2 2 −2
0 1 −1 3
0 0 1 2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 3 2 −2
0 0 1 4
0 0 0 1

⎫⎪⎪⎪⎪⎪⎭
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(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 3 8
0 1 2 7
0 0 1 2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. The augmented matrices that follow are in reduced

row echelon form. In each case, find the solution
set of the corresponding linear system.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 0 0 −2
0 1 0 5
0 0 1 3

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 4 0 2
0 0 1 3
0 0 0 1

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 −3 0 2
0 0 1 −2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎩1 2 0 1 5
0 0 1 3 4

⎫⎪⎭

(e)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 5 −2 0 3
0 0 0 1 6
0 0 0 0 0
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
0 1 0 2
0 0 1 −1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
4. For each of the systems in Exercise 3, make a list

of the lead variables and a second list of the free
variables.

5. For each of the systems of equations that follow,
use Gaussian elimination to obtain an equivalent
system whose coefficient matrix is in row echelon
form. Indicate whether the system is consistent. If
the system is consistent and involves no free vari-
ables, use back substitution to find the unique solu-
tion. If the system is consistent and there are free
variables, transform it to reduced row echelon form
and find all solutions.
(a) x1 − 2x2 = 3

2x1 − x2 = 9

(b) 2x1 − 3x2 = 5

−4x1 + 6x2 = 8

(c) x1 + x2 = 0

2x1 + 3x2 = 0

3x1 − 2x2 = 0

(d) 3x1 + 2x2 − x3 = 4

x1 − 2x2 + 2x3 = 1

11x1 + 2x2 + x3 = 14

(e) 2x1 + 3x2 + x3 = 1

x1 + x2 + x3 = 3

3x1 + 4x2 + 2x3 = 4

(f) x1 − x2 + 2x3 = 4

2x1 + 3x2 − x3 = 1

7x1 + 3x2 + 4x3 = 7

(g) x1 + x2 + x3 + x4 = 0

2x1 + 3x2 − x3 − x4 = 2

3x1 + 2x2 + x3 + x4 = 5

3x1 + 6x2 − x3 − x4 = 4

(h) x1 − 2x2 = 3

2x1 + x2 = 1

−5x1 + 8x2 = 4

(i) −x1 + 2x2 − x3 = 2

−2x1 + 2x2 + x3 = 4

3x1 + 2x2 + 2x3 = 5

−3x1 + 8x2 + 5x3 = 17

(j) x1 + 2x2 − 3x3 + x4 = 1

−x1 − x2 + 4x3 − x4 = 6

−2x1 − 4x2 + 7x3 − x4 = 1

(k) x1 + 3x2 + x3 + x4 = 3

2x1 − 2x2 + x3 + 2x4 = 8

x1 − 5x2 + x4 = 5

(l) x1 − 3x2 + x3 = 1

2x1 + x2 − x3 = 2

x1 + 4x2 − 2x3 = 1

5x1 − 8x2 + 2x3 = 5

6. Use Gauss–Jordan reduction to solve each of the
following systems:

(a) x1 + x2 = −1

4x1 − 3x2 = 3

(b) x1 + 3x2 + x3 + x4 = 3

2x1 − 2x2 + x3 + 2x4 = 8

3x1 + x2 + 2x3 − x4 = −1

(c) x1 + x2 + x3 = 0

x1 − x2 − x3 = 0

(d) x1 + x2 + x3 + x4 = 0

2x1 + x2 − x3 + 3x4 = 0

x1 − 2x2 + x3 + x4 = 0

7. Give a geometric explanation of why a homoge-
neous linear system consisting of two equations in
three unknowns must have infinitely many solu-
tions. What are the possible numbers of solutions
of a nonhomogeneous 2 × 3 linear system? Give a
geometric explanation of your answer.
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8. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 2 1 1

−1 4 3 2
2 −2 a 3

⎫⎪⎪⎪⎪⎪⎭
For what values of a will the system have a unique
solution?

9. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 2 1 0
2 5 3 0

−1 1 β 0

⎫⎪⎪⎪⎪⎪⎭
(a) Is it possible for the system to be inconsistent?

Explain.

(b) For what values of β will the system have in-
finitely many solutions?

10. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 1 3 2
1 2 4 3
1 3 a b

⎫⎪⎪⎪⎪⎪⎭
(a) For what values of a and b will the system have

infinitely many solutions?

(b) For what values of a and b will the system be
inconsistent?

11. Given the linear systems

(a) x1 + 2x2 = 2

3x1 + 7x2 = 8

(b) x1 + 2x2 = 1

3x1 + 7x2 = 7

solve both systems by incorporating the right-hand
sides into a 2 × 2 matrix B and computing the re-
duced row echelon form of

(A |B) =
⎧⎪⎩1 2 2 1

3 7 8 7

⎫⎪⎭
12. Given the linear systems

(a) x1 + 2x2 + x3 = 2

−x1 − x2 + 2x3 = 3

2x1 + 3x2 = 0

(b) x1 + 2x2 + x3 = −1

−x1 − x2 + 2x3 = 2

2x1 + 3x2 = −2

solve both systems by computing the row echelon
form of an augmented matrix (A |B) and perform-
ing back substitution twice.

13. Given a homogeneous system of linear equations,
if the system is overdetermined, what are the possi-
bilities as to the number of solutions? Explain.

14. Given a nonhomogeneous system of linear equa-
tions, if the system is underdetermined, what are
the possibilities as to the number of solutions? Ex-
plain.

15. Determine the values of x1, x2, x3, and x4 for the
following traffic flow diagram:

x4

x1

x2

x3

380

430 450

400540

420 470

420

16. Consider the traffic flow diagram that follows,
where a1, a2, a3, a4, b1, b2, b3, b4 are fixed positive
integers. Set up a linear system in the unknowns x1,
x2, x3, x4 and show that the system will be consis-
tent if and only if

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

What can you conclude about the number of auto-
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mobiles entering and leaving the traffic network?

x1 a4b1

x4

a3

b4

x3a2 b3

x2

a1

b2

17. Let (c1, c2) be a solution of the 2 × 2 system

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

Show that, for any real number α, the ordered pair
(αc1, αc2) is also a solution.

18. In Application 3, the solution (6, 6, 6, 1) was ob-
tained by setting the free variable x4 = 1.
(a) Determine the solution corresponding to x4 =

0. What information, if any, does this solution
give about the chemical reaction? Is the term
“trivial solution” appropriate in this case?

(b) Choose some other values of x4, such as 2, 4, or
5, and determine the corresponding solutions.
How are these nontrivial solutions related?

19. Liquid benzene burns in the atmosphere. If a cold
object is placed directly over the benzene, water
will condense on the object and a deposit of soot
(carbon) will also form on the object. The chemi-
cal equation for this reaction is of the form

x1C6H6 + x2O2 → x3C + x4H2O

Determine values of x1, x2, x3, and x4 to balance
the equation.

20. Nitric acid is prepared commercially by a series of
three chemical reactions. In the first reaction, nitro-
gen (N2) is combined with hydrogen (H2) to form
ammonia (NH3). Next, the ammonia is combined
with oxygen (O2) to form nitrogen dioxide (NO2)
and water. Finally, the NO2 reacts with some of the
water to form nitric acid (HNO3) and nitric oxide
(NO). The amounts of each of the components of

these reactions are measured in moles (a standard
unit of measurement for chemical reactions). How
many moles of nitrogen, hydrogen, and oxygen are
necessary to produce 8 moles of nitric acid?

21. In Application 4, determine the relative values of
x1, x2, and x3 if the distribution of goods is as de-
scribed in the following table:

F M C

F 1
3

1
3

1
3

M 1
3

1
2

1
6

C 1
3

1
6

1
2

22. Determine the amount of each current for the fol-
lowing networks:
(a)

A B

3 ohms

16 volts

2 ohms

2 ohms

i1

i2

i3

(b)

A B

2 ohms

20 volts 4 ohms

2 ohms i1

i2

i3

(c)

A B

4 ohms

8 volts

4 ohms

5 ohms

2 ohms

C D

i1

i4i3

10 volts
i6

i2

i5
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1.3 Matrix Arithmetic

In this section, we introduce the standard notations used for matrices and vectors and
define arithmetic operations (addition, subtraction, and multiplication) with matrices.
We will also introduce two additional operations: scalar multiplication and transposi-
tion. We will see how to represent linear systems as equations involving matrices and
vectors and then derive a theorem characterizing when a linear system is consistent.

The entries of a matrix are called scalars. They are usually either real or complex
numbers. For the most part, we will be working with matrices whose entries are real
numbers. Throughout the first five chapters of the book, the reader may assume that
the term scalar refers to a real number. However, in Chapter 6 there will be occasions
when we will use the set of complex numbers as our scalar field.

Matrix Notation

If we wish to refer to matrices without specifically writing out all their entries, we will
use capital letters A, B, C , and so on. In general, ai j will denote the entry of the matrix
A that is in the i th row and the j th column. We will refer to this entry as the (i, j)
entry of A. Thus, if A is an m × n matrix, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We will sometimes shorten this to A = (ai j ). Similarly, a matrix B may be referred to
as (bi j ), a matrix C as (ci j ), and so on.

Vectors

Matrices that have only one row or one column are of special interest, since they are
used to represent solutions of linear systems. A solution of a system of m linear equa-
tions in n unknowns is an n-tuple of real numbers. We will refer to an n-tuple of real
numbers as a vector. If an n-tuple is represented in terms of a 1 × n matrix, then we
will refer to it as a row vector. Alternatively, if the n-tuple is represented by an n × 1
matrix, then we will refer to it as a column vector. For example, the solution of the
linear system

x1 + x2 = 3
x1 − x2 = 1

can be represented by the row vector (2, 1) or the column vector
⎧⎪⎩2

1

⎫⎪⎭.

In working with matrix equations, it is generally more convenient to represent the
solutions in terms of column vectors (n × 1 matrices). The set of all n × 1 matrices of
real numbers is called Euclidean n-space and is usually denoted by R

n . Since we will
be working almost exclusively with column vectors in the future, we will generally
omit the word “column” and refer to the elements of R

n as simply vectors, rather than
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as column vectors. The standard notation for a column vector is a boldface lowercase
letter, as in

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

For row vectors, there is no universal standard notation. In this book, we will
represent both row and column vectors with boldface lowercase letters, and to distin-
guish a row vector from a column vector we will place a horizontal arrow above the
letter. Thus, the horizontal arrow indicates a horizontal array (row vector) rather than
a vertical array (column vector).

For example,

�x = (x1, x2, x3, x4) and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2

y3

y4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
are row and column vectors with four entries each.

Given an m × n matrix A, it is often necessary to refer to a particular row or
column. The standard notation for the j th column vector of A is a j . There is no
universally accepted standard notation for the i th row vector of a matrix A. In this
book, since we use horizontal arrows to indicate row vectors, we denote the i th row
vector of A by �ai .

If A is an m × n matrix, then the row vectors of A are given by

�ai = (ai1, ai2, . . . , ain) i = 1, . . . , m

and the column vectors are given by

a j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1 j

a2 j
...

amj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ j = 1, . . . , n

The matrix A can be represented in terms of either its column vectors or its row vectors:

A = (a1, a2, . . . , an) or A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1

�a2
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Similarly, if B is an n × r matrix, then

B = (b1, b2, . . . , br ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�b1�b2
...

�bn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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EXAMPLE 1 If

A =
⎧⎪⎩ 3 2 5

−1 8 4

⎫⎪⎭
then

a1 =
⎧⎪⎩ 3

−1

⎫⎪⎭ , a2 =
⎧⎪⎩2

8

⎫⎪⎭ , a3 =
⎧⎪⎩5

4

⎫⎪⎭
and

�a1 = (3, 2, 5), �a2 = (−1, 8, 4)

Equality

For two matrices to be equal, they must have the same dimensions and their corre-
sponding entries must agree.

Definition Two m × n matrices A and B are said to be equal if ai j = bi j for each i and j .

Scalar Multiplication

If A is a matrix and α is a scalar, then αA is the matrix formed by multiplying each of
the entries of A by α.

Definition If A is an m × n matrix and α is a scalar, then αA is the m × n matrix whose (i, j)
entry is αai j .

For example, if

A =
⎧⎪⎩4 8 2

6 8 10

⎫⎪⎭
then

1

2
A =

⎧⎪⎩2 4 1
3 4 5

⎫⎪⎭ and 3A =
⎧⎪⎩12 24 6

18 24 30

⎫⎪⎭

Matrix Addition

Two matrices with the same dimensions can be added by adding their corresponding
entries.

Definition If A = (ai j ) and B = (bi j ) are both m × n matrices, then the sum A + B is the
m × n matrix whose (i, j) entry is ai j + bi j for each ordered pair (i, j).
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For example, ⎧⎪⎩3 2 1
4 5 6

⎫⎪⎭ +
⎧⎪⎩2 2 2

1 2 3

⎫⎪⎭ =
⎧⎪⎩5 4 3

5 7 9

⎫⎪⎭⎧⎪⎪⎪⎪⎪⎩
2
1
8

⎫⎪⎪⎪⎪⎪⎭ +
⎧⎪⎪⎪⎪⎪⎩

−8
3
2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−6
4

10

⎫⎪⎪⎪⎪⎪⎭
If we define A − B to be A + (−1)B, then it turns out that A − B is formed by

subtracting the corresponding entry of B from each entry of A. Thus,⎧⎪⎩2 4
3 1

⎫⎪⎭ −
⎧⎪⎩4 5

2 3

⎫⎪⎭ =
⎧⎪⎩2 4

3 1

⎫⎪⎭ + (−1)

⎧⎪⎩4 5
2 3

⎫⎪⎭
=
⎧⎪⎩2 4

3 1

⎫⎪⎭ +
⎧⎪⎩−4 −5

−2 −3

⎫⎪⎭
=
⎧⎪⎩2 − 4 4 − 5

3 − 2 1 − 3

⎫⎪⎭
=
⎧⎪⎩−2 −1

1 −2

⎫⎪⎭
If O represents the matrix, with the same dimensions as A, whose entries are all 0,
then

A + O = O + A = A

We will refer to O as the zero matrix. It acts as an additive identity on the set of all
m × n matrices. Furthermore, each m × n matrix A has an additive inverse. Indeed,

A + (−1)A = O = (−1)A + A

It is customary to denote the additive inverse by −A. Thus,

−A = (−1)A

Matrix Multiplication and Linear Systems
We have yet to define the most important operation: the multiplication of two matrices.
Much of the motivation behind the definition comes from the applications to linear
systems of equations. If we have a system of one linear equation in one unknown, it
can be written in the form

ax = b (2)

We generally think of a, x , and b as being scalars; however, they could also be treated
as 1 × 1 matrices. Our goal now is to generalize equation (2) so that we can represent
an m × n linear system by a single matrix equation of the form

Ax = b

where A is an m × n matrix, x is an unknown vector in R
n , and b is in R

m . We consider
first the case of one equation in several unknowns.
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Case 1. One Equation in Several Unknowns
Let us begin by examining the case of one equation in several variables. Consider, for
example, the equation

3x1 + 2x2 + 5x3 = 4

If we set

A =
⎧⎩3 2 5

⎫⎭ and x =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax =
⎧⎩3 2 5

⎫⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ = 3x1 + 2x2 + 5x3

then the equation 3x1 + 2x2 + 5x3 = 4 can be written as the matrix equation

Ax = 4

For a linear equation with n unknowns of the form

a1x1 + a2x2 + · · · + anxn = b

if we let

A =
⎧⎩a1 a2 . . . an

⎫⎭ and x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax = a1x1 + a2x2 + · · · + anxn

then the system can be written in the form Ax = b.
For example, if

A =
⎧⎩2 1 −3 4

⎫⎭ and x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
then

Ax = 2 · 3 + 1 · 2 + (−3) · 1 + 4 · (−2) = −3

Note that the result of multiplying a row vector on the left by a column vector on the
right is a scalar. Consequently, this type of multiplication is often referred to as a scalar
product.
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Case 2. M Equations in N Unknowns
Consider now an m × n linear system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(3)

It is desirable to write the system (3) in a form similar to (2)—that is, as a matrix
equation

Ax = b (4)

where A = (ai j ) is known, x is an n × 1 matrix of unknowns, and b is an m × 1 matrix
representing the right-hand side of the system. Thus, if we set

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2
...

bm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

then the linear system of equations (3) is equivalent to the matrix equation (4).
Given an m × n matrix A and a vector x in R

n , it is possible to compute a product
Ax by (5). The product Ax will be an m × 1 matrix—that is, a vector in R

m . The rule
for determining the i th entry of Ax is

ai1x1 + ai2x2 + · · · + ainxn

which is equal to �ai x, the scalar product of the i th row vector of A and the column
vector x. Thus,

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1x
�a2x
...

�anx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 2

A =
⎧⎪⎩4 2 1

5 3 7

⎫⎪⎭ , x =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭
Ax =

⎧⎪⎪⎪⎩ 4x1 + 2x2 + x3

5x1 + 3x2 + 7x3

⎫⎪⎪⎪⎭
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EXAMPLE 3

A =
⎧⎪⎪⎪⎪⎪⎩

−3 1
2 5
4 2

⎫⎪⎪⎪⎪⎪⎭ , x =
⎧⎪⎩2

4

⎫⎪⎭

Ax =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

−3 · 2 + 1 · 4
2 · 2 + 5 · 4
4 · 2 + 2 · 4

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−2
24
16

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 4 Write the following system of equations as a matrix equation of the form Ax = b:

3x1 + 2x2 + x3 = 5
x1 − 2x2 + 5x3 = −2

2x1 + x2 − 3x3 = 1

Solution ⎧⎪⎪⎪⎪⎪⎩
3 2 1
1 −2 5
2 1 −3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
−2

1

⎫⎪⎪⎪⎪⎪⎭
An alternative way to represent the linear system (3) as a matrix equation is to

express the product Ax as a sum of column vectors:

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11

a21
...

am1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + x2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a12

a22
...

am2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + · · · + xn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1n

a2n
...

amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, we have

Ax = x1a1 + x2a2 + · · · + xnan (6)

Using this formula, we can represent the system of equations (3) as a matrix equation
of the form

x1a1 + x2a2 + · · · + xnan = b (7)

EXAMPLE 5 The linear system
2x1 + 3x2 − 2x3 = 5
5x1 − 4x2 + 2x3 = 6

can be written as a matrix equation

x1

⎧⎪⎩2
5

⎫⎪⎭ + x2

⎧⎪⎩ 3
−4

⎫⎪⎭ + x3

⎧⎪⎩−2
2

⎫⎪⎭ =
⎧⎪⎩5

6

⎫⎪⎭
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Definition If a1, a2, . . . , an are vectors in R
m and c1, c2, . . . , cn are scalars, then a sum of the

form
c1a1 + c2a2 + · · · + cnan

is said to be a linear combination of the vectors a1, a2, . . . , an .

It follows from equation (6) that the product Ax is a linear combination of the
column vectors of A. Some books even use this linear combination representation as
the definition of matrix vector multiplication.

If A is an m × n matrix and x is a vector in R
n , then

Ax = x1a1 + x2a2 + · · · + xnan

EXAMPLE 6 If we choose x1 = 2, x2 = 3, and x3 = 4 in Example 5, then⎧⎪⎩5
6

⎫⎪⎭ = 2
⎧⎪⎩2

5

⎫⎪⎭ + 3
⎧⎪⎩ 3

−4

⎫⎪⎭ + 4
⎧⎪⎩−2

2

⎫⎪⎭
Thus, the vector

⎧⎪⎩5
6

⎫⎪⎭ is a linear combination of the three column vectors of the coef-

ficient matrix. It follows that the linear system in Example 5 is consistent and

x =
⎧⎪⎪⎪⎪⎪⎩

2
3
4

⎫⎪⎪⎪⎪⎪⎭
is a solution of the system.

The matrix equation (7) provides a nice way of characterizing whether a linear sys-
tem of equations is consistent. Indeed, the following theorem is a direct consequence
of (7).

Theorem 1.3.1 Consistency Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b can be written as a linear combi-
nation of the column vectors of A.

EXAMPLE 7 The linear system
x1 + 2x2 = 1

2x1 + 4x2 = 1

is inconsistent, since the vector
⎧⎪⎩1

1

⎫⎪⎭ cannot be written as a linear combination of the

column vectors
⎧⎪⎩1

2

⎫⎪⎭ and
⎧⎪⎩2

4

⎫⎪⎭. Note that any linear combination of these vectors

would be of the form

x1

⎧⎪⎩1
2

⎫⎪⎭ + x2

⎧⎪⎩2
4

⎫⎪⎭ =
⎧⎪⎩ x1 + 2x2

2x1 + 4x2

⎫⎪⎭
and hence the second entry of the vector must be double the first entry.
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Matrix Multiplication

More generally, it is possible to multiply a matrix A times a matrix B if the number
of columns of A equals the number of rows of B. The first column of the product is
determined by the first column of B; that is, the first column of AB is Ab1, the second
column of AB is Ab2, and so on. Thus the product AB is the matrix whose columns
are Ab1, Ab2, . . . , Abn:

AB = (Ab1, Ab2, . . . , Abn)

The (i, j) entry of AB is the i th entry of the column vector Ab j . It is determined
by multiplying the i th row vector of A times the j th column vector of B.

Definition If A = (ai j ) is an m × n matrix and B = (bi j ) is an n × r matrix, then the product
AB = C = (ci j ) is the m × r matrix whose entries are defined by

ci j = �ai b j =
n∑

k=1

aikbk j

EXAMPLE 8 If

A =
⎧⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩−2 1 3

4 1 6

⎫⎪⎭
then

AB =
⎧⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩−2 1 3

4 1 6

⎫⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

3 · (−2) − 2 · 4 3 · 1 − 2 · 1 3 · 3 − 2 · 6
2 · (−2) + 4 · 4 2 · 1 + 4 · 1 2 · 3 + 4 · 6
1 · (−2) − 3 · 4 1 · 1 − 3 · 1 1 · 3 − 3 · 6

⎫⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

−14 1 −3
12 6 30

−14 −2 −15

⎫⎪⎪⎪⎪⎪⎭
The shading indicates how the (2, 3) entry of the product AB is computed as a scalar
product of the second row vector of A and the third column vector of B. It is also
possible to multiply B times A, however, the resulting matrix B A is not equal to AB.
In fact, AB and B A do not even have the same dimensions, as the following multipli-
cation shows:

BA =
⎧⎪⎩−2 · 3 + 1 · 2 + 3 · 1 − 2 · (−2) + 1 · 4 + 3 · (−3)

4 · 3 + 1 · 2 + 6 · 1 4 · (−2) + 1 · 4 + 6 · (−3)

⎫⎪⎭
=
⎧⎪⎩−1 −1

20 −22

⎫⎪⎭
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EXAMPLE 9 If

A =
⎧⎪⎩3 4

1 2

⎫⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫⎪⎪⎪⎪⎪⎭
then it is impossible to multiply A times B, since the number of columns of A does not
equal the number of rows of B. However, it is possible to multiply B times A.

BA =
⎧⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩3 4

1 2

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5 8
17 26
15 24

⎫⎪⎪⎪⎪⎪⎭
If A and B are both n × n matrices, then AB and BA will also be n × n matrices,

but, in general, they will not be equal. Multiplication of matrices is not commutative.

EXAMPLE 10 If

A =
⎧⎪⎩1 1

0 0

⎫⎪⎭ and B =
⎧⎪⎩1 1

2 2

⎫⎪⎭
then

AB =
⎧⎪⎩1 1

0 0

⎫⎪⎭⎧⎪⎩1 1
2 2

⎫⎪⎭ =
⎧⎪⎩3 3

0 0

⎫⎪⎭
and

BA =
⎧⎪⎩1 1

2 2

⎫⎪⎭⎧⎪⎩1 1
0 0

⎫⎪⎭ =
⎧⎪⎩1 1

2 2

⎫⎪⎭
Hence, AB �= BA.

APPLICATION 1 Production Costs

A company manufactures three products. Its production expenses are divided into three
categories. In each category, an estimate is given for the cost of producing a single
item of each product. An estimate is also made of the amount of each product to be
produced per quarter. These estimates are given in Tables 1 and 2. At its stockholders’
meeting, the company would like to present a single table showing the total costs for
each quarter in each of the three categories: raw materials, labor, and overhead.

Table 1 Production Costs per Item (dollars)

Product

Expenses A B C

Raw materials 0.10 0.30 0.15

Labor 0.30 0.40 0.25

Overhead and miscellaneous 0.10 0.20 0.15
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Table 2 Amount Produced per Quarter

Season

Product Summer Fall Winter Spring

A 4000 4500 4500 4000

B 2000 2600 2400 2200

C 5800 6200 6000 6000

Solution
Let us consider the problem in terms of matrices. Each of the two tables can be repre-
sented by a matrix, namely,

M =
⎧⎪⎪⎪⎪⎪⎩

0.10 0.30 0.15
0.30 0.40 0.25
0.10 0.20 0.15

⎫⎪⎪⎪⎪⎪⎭
and

P =
⎧⎪⎪⎪⎪⎪⎩

4000 4500 4500 4000
2000 2600 2400 2200
5800 6200 6000 6000

⎫⎪⎪⎪⎪⎪⎭
If we form the product MP , the first column of MP will represent the costs for the
summer quarter:

Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870
Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450
Overhead and
miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670

The costs for the fall quarter are given in the second column of MP:

Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160
Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940
Overhead and
miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900

Columns 3 and 4 of MP represent the costs for the winter and spring quarters, respec-
tively. Thus, we have

MP =
⎧⎪⎪⎪⎪⎪⎩

1870 2160 2070 1960
3450 3940 3810 3580
1670 1900 1830 1740

⎫⎪⎪⎪⎪⎪⎭
The entries in row 1 of MP represent the total cost of raw materials for each of the four
quarters. The entries in rows 2 and 3 represent the total cost for labor and overhead,
respectively, for each of the four quarters. The yearly expenses in each category may
be obtained by adding the entries in each row. The numbers in each of the columns
may be added to obtain the total production costs for each quarter. Table 3 summarizes
the total production costs.
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Table 3

Season

Summer Fall Winter Spring Year

Raw materials 1,870 2,160 2,070 1,960 8,060

Labor 3,450 3,940 3,810 3,580 14,780

Overhead and miscellaneous 1,670 1,900 1,830 1,740 7,140

Total production costs 6,990 8,000 7,710 7,280 29,980

Notational Rules

Just as in ordinary algebra, if an expression involves both multiplication and addition
and there are no parentheses to indicate the order of the operations, multiplications are
carried out before additions. This is true for both scalar and matrix multiplications.
For example, if

A =
⎧⎪⎩3 4

1 2

⎫⎪⎭ , B =
⎧⎪⎩1 3

2 1

⎫⎪⎭ , C =
⎧⎪⎩−2 1

3 2

⎫⎪⎭
then

A + BC =
⎧⎪⎩3 4

1 2

⎫⎪⎭ +
⎧⎪⎩ 7 7

−1 4

⎫⎪⎭ =
⎧⎪⎩10 11

0 6

⎫⎪⎭
and

3A + B =
⎧⎪⎩9 12

3 6

⎫⎪⎭ +
⎧⎪⎩1 3

2 1

⎫⎪⎭ =
⎧⎪⎩10 15

5 7

⎫⎪⎭
The Transpose of a Matrix

Given an m ×n matrix A, it is often useful to form a new n ×m matrix whose columns
are the rows of A.

Definition The transpose of an m × n matrix A is the n × m matrix B defined by

b ji = ai j (8)

for j = 1, . . . , n and i = 1, . . . , m. The transpose of A is denoted by AT .

It follows from (8) that the j th row of AT has the same entries, respectively, as the
j th column of A, and the i th column of AT has the same entries, respectively, as the
i th row of A.

EXAMPLE 11 (a) If A =
⎧⎪⎩1 2 3

4 5 6

⎫⎪⎭, then AT =
⎧⎪⎪⎪⎪⎪⎩

1 4
2 5
3 6

⎫⎪⎪⎪⎪⎪⎭.

(b) If B =
⎧⎪⎪⎪⎪⎪⎩

−3 2 1
4 3 2
1 2 5

⎫⎪⎪⎪⎪⎪⎭, then BT =
⎧⎪⎪⎪⎪⎪⎩

−3 4 1
2 3 2
1 2 5

⎫⎪⎪⎪⎪⎪⎭.
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(c) If C =
⎧⎪⎩1 2

2 3

⎫⎪⎭, then CT =
⎧⎪⎩1 2

2 3

⎫⎪⎭.

The matrix C in Example 11 is its own transpose. This frequently happens with
matrices that arise in applications.

Definition An n × n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

⎧⎪⎩1 0
0 −4

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 3 4
3 1 5
4 5 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 1 2
1 1 −2
2 −2 −3

⎫⎪⎪⎪⎪⎪⎭
APPLICATION 2 Information Retrieval

The growth of digital libraries on the Internet has led to dramatic improvements in the
storage and retrieval of information. Modern retrieval methods are based on matrix
theory and linear algebra.

In a typical situation, a database consists of a collection of documents and we wish
to search the collection and find the documents that best match some particular search
conditions. Depending on the type of database, we could search for such items as
research articles in journals, Web pages on the Internet, books in a library, or movies
in a film collection.

To see how the searches are done, let us assume that our database consists of m
documents and that there are n dictionary words that can be used as keywords for
searches. Not all words are allowable, since it would not be practical to search for
common words such as articles or prepositions. If the key dictionary words are or-
dered alphabetically, then we can represent the database by an m × n matrix A. Each
document is represented by a column of the matrix. The first entry in the j th column
of A would be a number representing the relative frequency of the first key dictionary
word in the j th document. The entry a2 j represents the relative frequency of the sec-
ond word in the j th document, and so on. The list of keywords to be used in the search
is represented by a vector x in R

m . The i th entry of x is taken to be 1 if the i th word
in the list of keywords is on our search list; otherwise, we set xi = 0. To carry out the
search, we simply multiply AT times x.

Simple Matching Searches

The simplest type of search determines how many of the key search words are in each
document; it does not take into account the relative frequencies of the words. Suppose,
for example, that our database consists of these book titles:

B1. Applied Linear Algebra
B2. Elementary Linear Algebra
B3. Elementary Linear Algebra with Applications
B4. Linear Algebra and Its Applications
B5. Linear Algebra with Applications



40 Chapter 1 Matrices and Systems of Equations

B6. Matrix Algebra with Applications
B7. Matrix Theory

The collection of keywords is given by the following alphabetical list:

algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1’s, rather than relative frequen-
cies for the entries of the database matrix. Thus, the (i, j) entry of the matrix will be 1
if the i th word appears in the title of the j th book and 0 if it does not. We will assume
that our search engine is sophisticated enough to equate various forms of a word. So,
for example, in our list of titles the words applied and applications are both counted
as forms of the word application. The database matrix for our list of books is the array
defined by Table 4.

Table 4 Array Representation for Database of Linear Algebra Books

Books

Key Words B1 B2 B3 B4 B5 B6 B7

algebra 1 1 1 1 1 1 0

application 1 0 1 1 1 1 0

elementary 0 1 1 0 0 0 0

linear 1 1 1 1 1 0 0

matrix 0 0 0 0 0 1 1

theory 0 0 0 0 0 0 1

If the words we are searching for are applied, linear, and algebra, then the database
matrix and search vector are respectively given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 0
1 0 1 1 1 1 0
0 1 1 0 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If we set y = AT x, then

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 0 0 0 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
3
3
3
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The value of y1 is the number of search word matches in the title of the first book,
the value of y2 is the number of matches in the second book title, and so on. Since
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y1 = y3 = y4 = y5 = 3, the titles of books B1, B3, B4, and B5 must contain all three
search words. If the search is set up to find titles matching all search words, then the
search engine will report the titles of the first, third, fourth, and fifth books.

Relative-Frequency Searches

Searches of noncommercial databases generally find all documents containing the key
search words and then order the documents based on the relative frequencies of the
keywords. In this case, the entries of the database matrix should represent the relative
frequencies of the keywords in the documents. For example, suppose that in the dic-
tionary of all key words of the database the 6th word is algebra and the 8th word is
applied, where all words are listed alphabetically. If, say, document 9 in the database
contains a total of 200 occurrences of keywords from the dictionary, and if the word al-
gebra occurred 10 times in the document and the word applied occurred 6 times, then
the relative frequencies for these words would be 10

200 and 6
200 , and the corresponding

entries in the database matrix would be

a69 = 0.05 and a89 = 0.03

To search for these two words, we take our search vector x to be the vector whose
entries x6 and x8 are both equal to 1 and whose remaining entries are all 0. We then
compute

y = AT x

The entry of y corresponding to document 9 is

y9 = a69 · 1 + a89 · 1 = 0.08

Note that 16 of the 200 words (8% of the words) in document 9 match the key search
words. If y j is the largest entry of y, this would indicate that the j th document in the
database is the one that contains the keywords with the greatest relative frequencies.

Advanced Search Methods

A search for the keywords linear and algebra could easily turn up hundreds of docu-
ments, some of which may not even be about linear algebra. If we were to increase the
number of search words and require that all search words be matched, then we would
run the risk of excluding some crucial linear algebra documents. Rather than match
all words of the expanded search list, our database search should give priority to those
documents which match most of the keywords with high relative frequencies. To ac-
complish this, we need to find the columns of the database matrix A that are “closest”
to the search vector x. One way to measure how close two vectors are is to define the
angle between the vectors. We will do this in Section 1 of Chapter 5.

We will also revisit the information retrieval application after we have learned
about the singular value decomposition (Chapter 6, Section 5). This decomposition
can be used to find a simpler approximation to the database matrix, which will speed up
the searches dramatically. Often it has the added advantage of filtering out noise; that
is, using the approximate version of the database matrix may automatically have the
effect of eliminating documents that use keywords in unwanted contexts. For example,
a dental student and a mathematics student could both use calculus as one of their
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search words. Since the list of mathematics search words does not contain any other
dental terms, a mathematics search using an approximate database matrix is likely to
eliminate all documents relating to dentistry. Similarly, the mathematics documents
would be filtered out in the dental student’s search.

Web Searches and Page Ranking
Modern Web searches could easily involve billions of documents with hundreds of
thousands of keywords. Indeed, as of July 2008, there were more than 1 trillion Web
pages on the Internet, and it is not uncommon for search engines to acquire or update
as many as 10 million Web pages in a single day. Although the database matrix for
pages on the Internet is extremely large, searches can be simplified dramatically, since
the matrices and search vectors are sparse; that is, most of the entries in any column
are 0’s.

For Internet searches, the better search engines will do simple matching searches
to find all pages matching the keywords, but they will not order them on the basis of the
relative frequencies of the keywords. Because of the commercial nature of the Internet,
people who want to sell products may deliberately make repeated use of keywords to
ensure that their Web site is highly ranked in any relative-frequency search. In fact, it
is easy to surreptitiously list a keyword hundreds of times. If the font color of the word
matches the background color of the page, then the viewer will not be aware that the
word is listed repeatedly.

For Web searches, a more sophisticated algorithm is necessary for ranking the
pages that contain all of the key search words. In Chapter 6, we will study a special
type of matrix model for assigning probabilities in certain random processes. This
type of model is referred to as a Markov process or a Markov chain. In Section 3
of Chapter 6, we will see how to use Markov chains to model Web surfing and obtain
rankings of Web pages.

References
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SECTION 1.3 EXERCISES
1. If

A =
⎧⎪⎪⎪⎪⎪⎩

3 1 4
−2 0 1

1 2 2

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 0 2
−3 1 1

2 −4 1

⎫⎪⎪⎪⎪⎪⎭
compute
(a) 2A (b) A + B

(c) 2A − 3B (d) (2A)T − (3B)T

(e) AB (f) BA

(g) ATBT (h) (BA)T

2. For each of the pairs of matrices that follow, de-
termine whether it is possible to multiply the first
matrix times the second. If it is possible, perform
the multiplication.

(a)
⎧⎪⎩ 3 5 1

−2 0 2

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 1
1 3
4 1

⎫⎪⎪⎪⎪⎪⎭

(b)

⎧⎪⎪⎪⎪⎪⎩
4 −2
6 −4
8 −6

⎫⎪⎪⎪⎪⎪⎭
⎧⎩1 2 3

⎫⎭
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(c)

⎧⎪⎪⎪⎪⎪⎩
1 4 3
0 1 4
0 0 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3 2
1 1
4 5

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎩4 6
2 1

⎫⎪⎭⎧⎪⎩3 1 5
4 1 6

⎫⎪⎭
(e)

⎧⎪⎩4 6 1
2 1 1

⎫⎪⎭⎧⎪⎩3 1 5
4 1 6

⎫⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
2

−1
3

⎫⎪⎪⎪⎪⎪⎭
⎧⎩3 2 4 5

⎫⎭
3. For which of the pairs in Exercise 2 is it possible to

multiply the second matrix times the first, and what
would the dimension of the product matrix be?

4. Write each of the following systems of equations as
a matrix equation.

(a) 3x1 + 2x2 = 1

2x1 − 3x2 = 5

(b) x1 + x2 = 5

2x1 + x2 − x3 = 6

3x1 − 2x2 + 2x3 = 7

(c) 2x1 + x2 + x3 = 4

x1 − x2 + 2x3 = 2

3x1 − 2x2 − x3 = 0

5. If

A =
⎧⎪⎪⎪⎪⎪⎩

3 4
1 1
2 7

⎫⎪⎪⎪⎪⎪⎭
verify that
(a) 5A = 3A + 2A (b) 6A = 3(2A)

(c) (AT )T = A

6. If

A =
⎧⎪⎩4 1 6

2 3 5

⎫⎪⎭ and B =
⎧⎪⎩ 1 3 0

−2 2 −4

⎫⎪⎭
verify that
(a) A + B = B + A

(b) 3(A + B) = 3A + 3B

(c) (A + B)T = AT + BT

7. If

A =
⎧⎪⎪⎪⎪⎪⎩

2 1
6 3

−2 4

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩2 4

1 6

⎫⎪⎭
verify that
(a) 3(AB) = (3A)B = A(3B)

(b) (AB)T = BTAT

8. If

A =
⎧⎪⎩2 4

1 3

⎫⎪⎭ , B =
⎧⎪⎩−2 1

0 4

⎫⎪⎭ , C =
⎧⎪⎩3 1

2 1

⎫⎪⎭
verify that
(a) (A + B) + C = A + (B + C)

(b) (AB)C = A(BC)

(c) A(B + C) = AB + AC
(d) (A + B)C = AC + BC

9. Let

A =
⎧⎪⎩1 2

1 −2

⎫⎪⎭ , b =
⎧⎪⎩4

0

⎫⎪⎭ , c =
⎧⎪⎩−3

−2

⎫⎪⎭
(a) Write b as a linear combination of the column

vectors a1 and a2.
(b) Use the result from part (a) to determine a so-

lution of the linear system Ax = b. Does the
system have any other solutions? Explain.

(c) Write c as a linear combination of the column
vectors a1 and a2.

10. For each of the choices of A and b that follow, de-
termine whether the system Ax = b is consistent
by examining how b relates to the column vectors
of A. Explain your answers in each case.

(a) A =
⎧⎪⎩ 2 1

−2 −1

⎫⎪⎭ , b =
⎧⎪⎩3

1

⎫⎪⎭
(b) A =

⎧⎪⎩1 4
2 3

⎫⎪⎭ , b =
⎧⎪⎩5

5

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
3 2 1
3 2 1
3 2 1

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭
11. Let A be a 5 × 3 matrix. If

b = a1 + a2 = a2 + a3

then what can you conclude about the number of
solutions of the linear system Ax = b? Explain.

12. Let A be a 3 × 4 matrix. If

b = a1 + a2 + a3 + a4

then what can you conclude about the number of
solutions of the linear system Ax = b? Explain.

13. Let Ax = b be a linear system whose augmented
matrix (A |b) has reduced row echelon form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 0 3 1 −2
0 0 1 2 4 5
0 0 0 0 0 0
0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find all solutions to the system.



44 Chapter 1 Matrices and Systems of Equations

(b) If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
3
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and a3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−1
1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
determine b.

14. Let A be an m × n matrix. Explain why the matrix
multiplications ATA and AAT are possible.

15. A matrix A is said to be skew symmetric if AT =
−A. Show that if a matrix is skew symmetric, then
its diagonal entries must all be 0.

16. In Application 2, suppose that we are searching
the database of seven linear algebra books for the
search words elementary, matrix, algebra. Form
a search vector x, and then compute a vector y that
represents the results of the search. Explain the sig-
nificance of the entries of the vector y.

17. Let A be a 2 × 2 matrix with a11 �= 0 and let
α = a21/a11. Show that A can be factored into a
product of the form⎧⎪⎩ 1 0

α 1

⎫⎪⎭⎧⎪⎩a11 a12

0 b

⎫⎪⎭
What is the value of b?

1.4 Matrix Algebra

The algebraic rules used for real numbers may or may not work when matrices are
used. For example, if a and b are real numbers then

a + b = b + a and ab = ba

For real numbers, the operations of addition and multiplication are both commutative.
The first of these algebraic rules works when we replace a and b by square matrices A
and B; that is,

A + B = B + A

However, we have already seen that matrix multiplication is not commutative. This
fact deserves special emphasis.

Warning: In general, AB �= BA. Matrix multiplication is not commutative.

In this section we examine which algebraic rules work for matrices and which do not.

Algebraic Rules

The following theorem provides some useful rules for doing matrix algebra:

Theorem 1.4.1 Each of the following statements is valid for any scalars α and β and for any matrices
A, B, and C for which the indicated operations are defined.

1. A + B = B + A
2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. A(B + C) = AB + AC
5. (A + B)C = AC + BC
6. (αβ)A = α(βA)
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7. α(AB) = (αA)B = A(αB)

8. (α + β)A = αA + βA
9. α(A + B) = αA + αB

We will prove two of the rules and leave the rest for the reader to verify.

Proof of
Rule 4

Assume that A = (ai j ) is an m × n matrix and B = (bi j ) and C = (ci j ) are both n × r
matrices. Let D = A(B + C) and E = AB + AC . It follows that

di j =
n∑

k=1

aik(bkj + ck j )

and

ei j =
n∑

k=1

aikbk j +
n∑

k=1

aikck j

But
n∑

k=1

aik(bkj + ck j ) =
n∑

k=1

aikbk j +
n∑

k=1

aikck j

so that di j = ei j and hence A(B + C) = AB + AC .

Proof of
Rule 3

Let A be an m × n matrix, B an n × r matrix, and C an r × s matrix. Let D = AB and
E = BC . We must show that DC = AE . By the definition of matrix multiplication,

dil =
n∑

k=1

aikbkl and ek j =
r∑

l=1

bklcl j

The (i, j) entry of DC is

r∑
l=1

dilcl j =
r∑

l=1

(
n∑

k=1

aikbkl

)
cl j

and the (i, j) entry of AE is

n∑
k=1

aikek j =
n∑

k=1

aik

(
r∑

l=1

bklcl j

)

Since

r∑
l=1

(
n∑

k=1

aikbkl

)
cl j =

r∑
l=1

(
n∑

k=1

aikbklcl j

)
=

n∑
k=1

aik

(
r∑

l=1

bklcl j

)

it follows that

(AB)C = DC = AE = A(BC)
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The algebraic rules given in Theorem 1.4.1 seem quite natural, since they are simi-
lar to the rules that we use with real numbers. However, there are important differences
between the rules for matrix algebra and the algebraic rules for real numbers. Some of
these differences are illustrated in Exercises 1 through 5 at the end of this section.

EXAMPLE 1 If

A =
⎧⎪⎩1 2

3 4

⎫⎪⎭ , and B =
⎧⎪⎩ 2 1

−3 2

⎫⎪⎭ , and C =
⎧⎪⎩1 0

2 1

⎫⎪⎭
verify that A(BC) = (AB)C and A(B + C) = AB + AC .

Solution

A(BC) =
⎧⎪⎩1 2

3 4

⎫⎪⎭⎧⎪⎩4 1
1 2

⎫⎪⎭ =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭
(AB)C =

⎧⎪⎩−4 5
−6 11

⎫⎪⎭⎧⎪⎩1 0
2 1

⎫⎪⎭ =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭
Thus,

A(BC) =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭ = (AB)C

A(B + C) =
⎧⎪⎩1 2

3 4

⎫⎪⎭⎧⎪⎩ 3 1
−1 3

⎫⎪⎭ =
⎧⎪⎩1 7

5 15

⎫⎪⎭
AB + AC =

⎧⎪⎩−4 5
−6 11

⎫⎪⎭ +
⎧⎪⎩ 5 2

11 4

⎫⎪⎭ =
⎧⎪⎩1 7

5 15

⎫⎪⎭
Therefore,

A(B + C) = AB + AC

Notation

Since (AB)C = A(BC), we may simply omit the parentheses and write ABC . The
same is true for a product of four or more matrices. In the case where an n × n matrix
is multiplied by itself a number of times, it is convenient to use exponential notation.
Thus, if k is a positive integer, then

Ak = AA · · · A︸ ︷︷ ︸
k times

EXAMPLE 2 If

A =
⎧⎪⎩1 1

1 1

⎫⎪⎭
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then

A2 =
⎧⎪⎩1 1

1 1

⎫⎪⎭⎧⎪⎩1 1
1 1

⎫⎪⎭ =
⎧⎪⎩2 2

2 2

⎫⎪⎭
A3 = AAA = AA2 =

⎧⎪⎩1 1
1 1

⎫⎪⎭⎧⎪⎩2 2
2 2

⎫⎪⎭ =
⎧⎪⎩4 4

4 4

⎫⎪⎭
and, in general,

An =
⎧⎪⎪⎩2n−1 2n−1

2n−1 2n−1

⎫⎪⎪⎭

APPLICATION 1 A Simple Model for Marital Status Computations

In a certain town, 30 percent of the married women get divorced each year and 20
percent of the single women get married each year. There are 8000 married women and
2000 single women. Assuming that the total population of women remains constant,
how many married women and how many single women will there be after 1 year?
After 2 years?

Solution
Form a matrix A as follows: The entries in the first row of A will be the percentages
of married and single women, respectively, who are married after 1 year. The entries
in the second row will be the percentages of women who are single after 1 year. Thus,

A =
⎧⎪⎩0.70 0.20

0.30 0.80

⎫⎪⎭
If we let x =

⎧⎪⎩8000
2000

⎫⎪⎭, the number of married and single women after 1 year can be

computed by multiplying A times x.

Ax =
⎧⎪⎩0.70 0.20

0.30 0.80

⎫⎪⎭⎧⎪⎩8000
2000

⎫⎪⎭ =
⎧⎪⎩6000

4000

⎫⎪⎭
After 1 year, there will be 6000 married women and 4000 single women. To find the
number of married and single women after 2 years, compute

A2x = A(Ax) =
⎧⎪⎩0.70 0.20

0.30 0.80

⎫⎪⎭⎧⎪⎩6000
4000

⎫⎪⎭ =
⎧⎪⎩5000

5000

⎫⎪⎭
After 2 years, half of the women will be married and half will be single. In general, the
number of married and single women after n years can be determined by computing
Anx.
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APPLICATION 2 Ecology: Demographics of the Loggerhead Sea Turtle

The management and preservation of many wildlife species depends on our ability to
model population dynamics. A standard modeling technique is to divide the life cycle
of a species into a number of stages. The models assume that the population sizes for
each stage depend only on the female population and that the probability of survival
of an individual female from one year to the next depends only on the stage of the
life cycle and not on the actual age of an individual. For example, let us consider a
four-stage model for analyzing the population dynamics of the loggerhead sea turtle
(see Figure 1.4.1).

Figure 1.4.1. Loggerhead Sea Turtle

At each stage, we estimate the probability of survival over a 1-year period. We
also estimate the ability to reproduce in terms of the expected number of eggs laid in
a given year. The results are summarized in Table 1. The approximate ages for each
stage are listed in parentheses next to the stage description.

Table 1 Four-Stage Model for Loggerhead Sea Turtle Demographics

Stage Description Annual Eggs laid
Number (age in years) survivorship per year

1 Eggs, hatchlings (<1) 0.67 0

2 Juveniles and subadults (1–21) 0.74 0

3 Novice breeders (22) 0.81 127

4 Mature breeders (23–54) 0.81 79

If di represents the duration of the i th stage and si is the annual survivorship rate for
that stage, then it can be shown that the proportion remaining in stage i the following
year will be

pi =
(

1 − sdi −1
i

1 − sdi
i

)
si (1)

and the proportion of the population that will survive and move into stage i + 1 the
following year will be

qi = sdi
i (1 − si )

1 − sdi
i

(2)
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If we let ei denote the average number of eggs laid by a member of stage i (i = 2, 3, 4)
in 1 year and form the matrix

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
p1 e2 e3 e4

q1 p2 0 0
0 q2 p3 0
0 0 q3 p4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (3)

then L can be used to predict the turtle populations at each stage in future years. A
matrix of the form (3) is called a Leslie matrix, and the corresponding population
model is sometimes referred to as a Leslie population model. Using the figures from
Table 1, the Leslie matrix for our model is

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8077

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Suppose that the initial populations at each stage were 200,000, 300,000, 500,

and 1500, respectively. If we represent these initial populations by a vector x0, the
populations at each stage after 1 year are determined with the matrix equation

x1 = Lx0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8077

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

200,000
300,000

500
1,500

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
182,000
355,820

180
1,617

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(The computations have been rounded to the nearest integer.) To determine the popu-
lation vector after 2 years, we multiply again by the matrix L:

x2 = Lx1 = L2x0

In general, the population after k years is determined by computing xk = Lkx0. To
see longer range trends, we compute x10, x25, and x50. The results are summarized in
Table 2. The model predicts that the total number of breeding-age turtles will decrease
by 80 percent over a 50-year period.

Table 2 Loggerhead Sea Turtle Population Projections

Stage Initial 10 25 50
Number population years years years

1 200,000 114,264 74,039 35,966

2 300,000 329,212 213,669 103,795

3 500 214 139 68

4 1,500 1,061 687 334

A seven-stage model describing the population dynamics is presented in refer-
ence [1] to follow. We will use the seven-stage model in the computer exercises at the
end of this chapter. Reference [2] is the original paper by Leslie.
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The Identity Matrix

Just as the number 1 acts as an identity for the multiplication of real numbers, there is
a special matrix I that acts as an identity for matrix multiplication; that is,

I A = AI = A (4)

for any n × n matrix A. It is easy to verify that, if we define I to be an n × n matrix
with 1’s on the main diagonal and 0’s elsewhere, then I satisfies equation (4) for any
n × n matrix A. More formally, we have the following definition:

Definition The n × n identity matrix is the matrix I = (δi j ), where

δi j =
{

1 if i = j
0 if i �= j

As an example, let us verify equation (4) in the case n = 3. We have

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
and ⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
In general, if B is any m × n matrix and C is any n × r matrix, then

B I = B and I C = C

The column vectors of the n × n identity matrix I are the standard vectors used
to define a coordinate system in Euclidean n-space. The standard notation for the j th
column vector of I is e j , rather than the usual i j . Thus, the n × n identity matrix can
be written

I = (e1, e2, . . . , en)
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Matrix Inversion

A real number a is said to have a multiplicative inverse if there exists a number b such
that ab = 1. Any nonzero number a has a multiplicative inverse b = 1

a . We generalize
the concept of multiplicative inverses to matrices with the following definition:

Definition An n × n matrix A is said to be nonsingular or invertible if there exists a matrix
B such that AB = B A = I . The matrix B is said to be a multiplicative inverse of
A.

If B and C are both multiplicative inverses of A, then

B = B I = B(AC) = (B A)C = I C = C

Thus, a matrix can have at most one multiplicative inverse. We will refer to the multi-
plicative inverse of a nonsingular matrix A as simply the inverse of A and denote it by
A−1.

EXAMPLE 3 The matrices ⎧⎪⎩2 4
3 1

⎫⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩− 1
10

2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭
are inverses of each other, since

⎧⎪⎩2 4
3 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩− 1

10
2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩1 0

0 1

⎫⎪⎭
and ⎧⎪⎪⎪⎪⎪⎩− 1

10
2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩2 4

3 1

⎫⎪⎭ =
⎧⎪⎩1 0

0 1

⎫⎪⎭
EXAMPLE 4 The 3 × 3 matrices ⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
are inverses, since ⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
and ⎧⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
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EXAMPLE 5 The matrix

A =
⎧⎪⎩1 0

0 0

⎫⎪⎭
has no inverse. Indeed, if B is any 2 × 2 matrix, then

BA =
⎧⎪⎩b11 b12

b21 b22

⎫⎪⎭⎧⎪⎩1 0
0 0

⎫⎪⎭ =
⎧⎪⎩b11 0

b21 0

⎫⎪⎭
Thus, BA cannot equal I .

Definition An n × n matrix is said to be singular if it does not have a multiplicative inverse.

Note

Only square matrices have multiplicative inverses. One should not use the terms sin-
gular and nonsingular when referring to nonsquare matrices.

Often we will be working with products of nonsingular matrices. It turns out that
any product of nonsingular matrices is nonsingular. The following theorem character-
izes how the inverse of the product of a pair of nonsingular matrices A and B is related
to the inverses of A and B:

Theorem 1.4.2 If A and B are nonsingular n × n matrices, then AB is also nonsingular and
(AB)−1 = B−1 A−1.

Proof (B−1 A−1)AB = B−1(A−1 A)B = B−1 B = I

(AB)(B−1 A−1) = A(B B−1)A−1 = AA−1 = I

It follows by induction that, if A1, . . . , Ak are all nonsingular n × n matrices, then
the product A1 A2 · · · Ak is nonsingular and

(A1 A2 · · · Ak)
−1 = A−1

k · · · A−1
2 A−1

1

In the next section, we will learn how to determine whether a matrix has a multi-
plicative inverse. We will also learn a method for computing the inverse of a nonsin-
gular matrix.

Algebraic Rules for Transposes

There are four basic algebraic rules involving transposes:

Algebraic Rules for Transposes

1. (AT )T = A
2. (αA)T = αAT

3. (A + B)T = AT + BT

4. (AB)T = BTAT
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The first three rules are straightforward. We leave it to the reader to verify that they are
valid. To prove the fourth rule, we need only show that the (i, j) entries of (AB)T and
BTAT are equal. If A is an m ×n matrix, then, for the multiplications to be possible, B
must have n rows. The (i, j) entry of (AB)T is the ( j, i) entry of AB. It is computed
by multiplying the j th row vector of A times the i th column vector of B:

�a j bi = (a j1, a j2, . . . , a jn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1i

b2i
...

bni

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = a j1b1i + a j2b2i + · · · + a jnbni (5)

The (i, j) entry of BTAT is computed by multiplying the i th row of BT times the j th
column of AT . Since the i th row of BT is the transpose of the i th column of B and the
j th column of AT is the transpose of the j th row of A, it follows that the (i, j) entry
of BTAT is given by

bT
i �aT

j = (b1i , b2i , . . . , bni )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a j1

a j2
...

a jn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = b1i a j1 + b2i a j2 + · · · + bni a jn (6)

It follows from (5) and (6) that the (i, j) entries of (AB)T and BTAT are equal.
The next example illustrates the idea behind the last proof.

EXAMPLE 6 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫⎪⎪⎪⎪⎪⎭
Note that, on the one hand, the (3, 2) entry of AB is computed taking the scalar product
of the third row of A and the second column of B:

AB =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

10 6 5
34 23 14
15 8 9

⎫⎪⎪⎪⎪⎪⎭
When the product is transposed, the (3, 2) entry of AB becomes the (2, 3) entry
of (AB)T :

(AB)T =
⎧⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫⎪⎪⎪⎪⎪⎭
On the other hand, the (2, 3) entry of BT AT is computed taking the scalar product of
the second row of BT and the third column of AT :

BT AT =
⎧⎪⎪⎪⎪⎪⎩

1 2 5
0 1 4
2 1 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 3 2
2 3 4
1 5 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫⎪⎪⎪⎪⎪⎭
In both cases, the arithmetic for computing the (3, 2) entry is the same.
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Symmetric Matrices and Networks

Recall that a matrix A is symmetric if AT = A. One type of application that leads to
symmetric matrices is problems involving networks. These problems are often solved
with the techniques of an area of mathematics called graph theory.

APPLICATION 3 Networks and Graphs

Graph theory is an important areas of applied mathematics. It is used to model prob-
lems in virtually all the applied sciences. Graph theory is particularly useful in appli-
cations involving communication networks.

A graph is defined to be a set of points called vertices, together with a set of
unordered pairs of vertices, which are referred to as edges. Figure 1.4.2 gives a geo-
metrical representation of a graph. We can think of the vertices V1, V2, V3, V4, and V5

as corresponding to the nodes in a communication network.

V1 V2

V3

V4V5

Figure 1.4.2.

The line segments joining the vertices correspond to the edges:

{V1, V2}, {V2, V5}, {V3, V4}, {V3, V5}, {V4, V5}
Each edge represents a direct communication link between two nodes of the network.

An actual communication network could involve a large number of vertices and
edges. Indeed, if there are millions of vertices, a graphical picture of the network would
be quite confusing. An alternative is to use a matrix representation for the network. If
the graph contains a total of n vertices, we can define an n × n matrix A by

ai j =
{

1 if {Vi , Vj } is an edge of the graph
0 if there is no edge joining Vi and Vj

The matrix A is called the adjacency matrix of the graph. The adjacency matrix for the
graph in Figure 1.4.2 is given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Note that the matrix A is symmetric. Indeed, any adjacency matrix must be symmetric,
for if {Vi , Vj } is an edge of the graph, then ai j = a ji = 1 and ai j = a ji = 0 if there is
no edge joining Vi and Vj . In either case, ai j = a ji .

We can think of a walk in a graph as a sequence of edges linking one vertex to
another. For example, in Figure 1.4.2 the edges {V1, V2}, {V2, V5} represent a walk
from vertex V1 to vertex V5. The length of the walk is said to be 2, since it consists
of two edges. A simple way to describe the walk is to indicate the movement between
vertices by arrows. Thus, V1 → V2 → V5 denotes a walk of length 2 from V1 to
V5. Similarly, V4 → V5 → V2 → V1 represents a walk of length 3 from V4 to
V1. It is possible to traverse the same edges more than once in a walk. For example,
V5 → V3 → V5 → V3 is a walk of length 3 from V5 to V3. In general, by taking powers
of the adjacency matrix, we can determine the number of walks of any specified length
between two vertices.

Theorem 1.4.3 If A is an n × n adjacency matrix of a graph and a(k)
i j represents the (i, j) entry of Ak ,

then a(k)
i j is equal to the number of walks of length k from Vi to Vj .

Proof The proof is by mathematical induction. In the case k = 1, it follows from the defini-
tion of the adjacency matrix that ai j represents the number of walks of length 1 from
Vi to Vj . Assume for some m that each entry of Am is equal to the number of walks
of length m between the corresponding vertices. Thus, a(m)

il is the number of walks
of length m from Vi to Vl . Now, on the one hand, if there is an edge {Vl, Vj }, then
a(m)

il al j = a(m)
il is the number of walks of length m + 1 from Vi to Vj of the form

Vi → · · · → Vl → Vj

On the other hand, if {Vl, Vj } is not an edge, then there are no walks of length m + 1
of this form from Vi to Vj and

a(m)
il al j = a(m)

il · 0 = 0

It follows that the total number of walks of length m + 1 from Vi to Vj is given by

a(m)

i1 a1 j + a(m)

i2 a2 j + · · · + a(m)
in anj

But this is just the (i, j) entry of Am+1.

EXAMPLE 7 To determine the number of walks of length 3 between any two vertices of the graph
in Figure 1.4.2, we need only compute

A3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 2 1 1 0
2 0 1 1 4
1 1 2 3 4
1 1 3 2 4
0 4 4 4 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, the number of walks of length 3 from V3 to V5 is a(3)

35 = 4. Note that the matrix
A3 is symmetric. This reflects the fact that there are the same number of walks of
length 3 from Vi to Vj as there are from Vj to Vi .
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SECTION 1.4 EXERCISES
1. Explain why each of the following algebraic rules

will not work in general when the real numbers a
and b are replaced by n × n matrices A and B.
(a) (a + b)2 = a2 + 2ab + b2

(b) (a + b)(a − b) = a2 − b2

2. Will the rules in Exercise 1 work if a is replaced by
an n × n matrix A and b is replaced by the n × n
identity matrix I ?

3. Find nonzero 2 × 2 matrices A and B such that
AB = O .

4. Find nonzero matrices A, B, and C such that

AC = BC and A �= B

5. The matrix

A =
⎧⎪⎩1 −1

1 −1

⎫⎪⎭
has the property that A2 = O . Is it possible for a
nonzero symmetric 2 × 2 matrix to have this prop-
erty? Prove your answer.

6. Prove the associative law of multiplication for 2×2
matrices; that is, let

A =
⎧⎪⎩a11 a12

a21 a22

⎫⎪⎭ , B =
⎧⎪⎩b11 b12

b21 b22

⎫⎪⎭ ,

C =
⎧⎪⎩c11 c12

c21 c22

⎫⎪⎭
and show that

(AB)C = A(BC)

7. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1
2 − 1

2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
Compute A2 and A3 . What will An turn out to be?

8. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2 − 1
2 − 1

2

− 1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2

− 1
2 − 1

2 − 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Compute A2 and A3. What will A2n and A2n+1 turn
out to be?

9. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Show that An = O for n ≥ 4.

10. Let A and B be symmetric n × n matrices. For
each of the following, determine whether the given
matrix must be symmetric or could be nonsymmet-
ric:
(a) C = A + B (b) D = A2

(c) E = AB (d) F = AB A

(e) G = AB + B A (f) H = AB − B A

11. Let C be a nonsymmetric n × n matrix. For each of
the following, determine whether the given matrix
must be symmetric or could be nonsymmetric:
(a) A = C + CT (b) B = C − CT

(c) D = CT C (d) E = CT C − CCT

(e) F = (I + C)(I + CT )

(f) G = (I + C)(I − CT )

12. Let

A =
⎧⎪⎩a11 a12

a21 a22

⎫⎪⎭
Show that if d = a11a22 − a21a12 �= 0, then

A−1 = 1

d

⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
13. Use the result from Exercise 12 to find the inverse

of each of the following matrices:

(a)
⎧⎪⎩7 2

3 1

⎫⎪⎭ (b)
⎧⎪⎩3 5

2 3

⎫⎪⎭ (c)
⎧⎪⎩4 3

2 2

⎫⎪⎭
14. Let A and B be n × n matrices. Show that if

AB = A and B �= I

then A must be singular.

15. Let A be a nonsingular matrix. Show that A−1 is
also nonsingular and (A−1)−1 = A.

16. Prove that if A is nonsingular, then AT is nonsin-
gular and

(AT )−1 = (A−1)T

[Hint: (AB)T = BTAT .]

17. Let A be an n × n matrix and let x and y be vectors
in R

n . Show that if Ax = Ay and x �= y, then the
matrix A must be singular.
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18. Let A be a nonsingular n × n matrix. Use math-
ematical induction to prove that Am is nonsingular
and

(Am)−1 = (A−1)m

for m = 1, 2, 3, . . . .

19. Let A be an n × n matrix. Show that if A2 = O ,
then I − A is nonsingular and (I − A)−1 = I + A.

20. Let A be an n × n matrix. Show that if Ak+1 = O ,
then I − A is nonsingular and

(I − A)−1 = I + A + A2 + · · · + Ak

21. Given

R =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
show that R is nonsingular and R−1 = RT .

22. An n × n matrix A is said to be an involution if
A2 = I . Show that if G is any matrix of the form

G =
⎧⎪⎩cos θ sin θ

sin θ − cos θ

⎫⎪⎭
then G is an involution.

23. Let u be a unit vector in R
n (i.e., uT u = 1) and let

H = I − 2uuT . Show that H is an involution.

24. A matrix A is said to be idempotent if A2 = A.
Show that each of the following matrices are idem-
potent:

(a)
⎧⎪⎩1 0

1 0

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
2
3

1
3

2
3

1
3

⎫⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
25. Let A be an idempotent matrix.

(a) Show that I − A is also idempotent.
(b) Show that I + A is nonsingular and

(I + A)−1 = I − 1
2 A

26. Let D be an n × n diagonal matrix whose diagonal
entries are either 0 or 1.
(a) Show that D is idempotent.
(b) Show that if X is a nonsingular matrix and

A = X DX−1, then A is idempotent.

27. Let A be an involution matrix, and let

B = 1

2
(I + A) and C = 1

2
(I − A)

Show that B and C are both idempotent and BC =
O .

28. Let A be an m ×n matrix. Show that ATA and AAT

are both symmetric.

29. Let A and B be symmetric n × n matrices. Prove
that AB = B A if and only if AB is also symmetric.

30. Let A be an n × n matrix and let

B = A + AT and C = A − AT

(a) Show that B is symmetric and C is skew sym-
metric.

(b) Show that every n × n matrix can be repre-
sented as a sum of a symmetric matrix and a
skew-symmetric matrix.

31. In Application 1, how many married women and
how many single women will there be after 3 years?

32. Consider the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 1 1
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
1 0 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Draw a graph that has A as its adjacency ma-

trix. Be sure to label the vertices of the graph.
(b) By inspecting the graph, determine the number

of walks of length 2 from V2 to V3 and from V2

to V5.
(c) Compute the second row of A3, and use it to

determine the number of walks of length 3
from V2 to V3 and from V2 to V5.

33. Consider the graph

V2 V3

V5

V4V1

(a) Determine the adjacency matrix A of the
graph.

(b) Compute A2. What do the entries in the first
row of A2 tell you about walks of length 2 that
start from V1?

(c) Compute A3. How many walks of length 3
are there from V2 to V4? How many walks of
length less than or equal to 3 are there from V2

to V4?
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For each of the conditional statements that follow, an-
swer true if the statement is always true and answer
false otherwise. In the case of a true statement, explain
or prove your answer. In the case of a false statement,
give an example to show that the statement is not always
true.

34. If Ax = Bx for some nonzero vector x, then the

matrices A and B must be equal.

35. If A and B are singular n × n matrices, then A + B
is also singular.

36. If A and B are nonsingular matrices, then (AB)T is
nonsingular and

((AB)T )−1 = (A−1)T (B−1)T

1.5 Elementary Matrices

In this section, we view the process of solving a linear system in terms of matrix
multiplications rather than row operations. Given a linear system Ax = b, we can
multiply both sides by a sequence of special matrices to obtain an equivalent system
in row echelon form. The special matrices we will use are called elementary matrices.
We will use them to see how to compute the inverse of a nonsingular matrix and also
to obtain an important matrix factorization. We begin by considering the effects of
multiplying both sides of a linear system by a nonsingular matrix.

Equivalent Systems

Given an m × n linear system Ax = b, we can obtain an equivalent system by multi-
plying both sides of the equation by a nonsingular m × m matrix M :

Ax = b (1)

MAx = Mb (2)

Clearly, any solution of (1) will also be a solution of (2). On the other hand, if x̂ is a
solution of (2), then

M−1(MAx̂) = M−1(Mb)

Ax̂ = b

and it follows that the two systems are equivalent.
To transform the system Ax = b to a simpler form that is easier to solve, we can

apply a sequence of nonsingular matrices E1, . . . , Ek to both sides of the equation.
The new system will then be of the form

Ux = c

where U = Ek · · · E1 A and c = Ek · · · E2 E1b. The transformed system will be equiv-
alent to the original, provided that M = Ek · · · E1 is nonsingular. However, M is
nonsingular, since it is a product of nonsingular matrices.

We will show next that any of the three elementary row operations can be accom-
plished by multiplying A on the left by a nonsingular matrix.

Elementary Matrices

If we start with the identity matrix I and then perform exactly one elementary row
operation, the resulting matrix is called an elementary matrix.

There are three types of elementary matrices corresponding to the three types of
elementary row operations.
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Type I An elementary matrix of type I is a matrix obtained by interchanging two rows
of I .

EXAMPLE 1 The matrix

E1 =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type I since it was obtained by interchanging the first two
rows of I . If A is a 3 × 3 matrix, then

E1 A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a21 a22 a23

a11 a12 a13

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
AE1 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a12 a11 a13

a22 a21 a23

a32 a31 a33

⎫⎪⎪⎪⎪⎪⎭
Multiplying A on the left by E1 interchanges the first and second rows of A. Right
multiplication of A by E1 is equivalent to the elementary column operation of inter-
changing the first and second columns.

Type II An elementary matrix of type II is a matrix obtained by multiplying a row of
I by a nonzero constant.

EXAMPLE 2

E2 =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type II. If A is a 3 × 3 matrix, then

E2 A =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

3a31 3a32 3a33

⎫⎪⎪⎪⎪⎪⎭
AE2 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a11 a12 3a13

a21 a22 3a23

a31 a32 3a33

⎫⎪⎪⎪⎪⎪⎭
Multiplication on the left by E2 performs the elementary row operation of multiplying
the third row by 3, while multiplication on the right by E2 performs the elementary
column operation of multiplying the third column by 3.

Type III An elementary matrix of type III is a matrix obtained from I by adding a
multiple of one row to another row.
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EXAMPLE 3

E3 =
⎧⎪⎪⎪⎪⎪⎩

1 0 3
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type III. If A is a 3 × 3 matrix, then

E3 A =
⎧⎪⎪⎪⎪⎪⎩

a11 + 3a31 a12 + 3a32 a13 + 3a33

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
AE3 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 3a11 + a13

a21 a22 3a21 + a23

a31 a32 3a31 + a33

⎫⎪⎪⎪⎪⎪⎭
Multiplication on the left by E3 adds 3 times the third row to the first row. Multiplica-
tion on the right adds 3 times the first column to the third column.

In general, suppose that E is an n × n elementary matrix. We can think of E as
being obtained from I by either a row operation or a column operation. If A is an n ×r
matrix, premultiplying A by E has the effect of performing that same row operation on
A. If B is an m × n matrix, postmultiplying B by E is equivalent to performing that
same column operation on B.

Theorem 1.5.1 If E is an elementary matrix, then E is nonsingular and E−1 is an elementary matrix
of the same type.

Proof If E is the elementary matrix of type I formed from I by interchanging the i th and j th
rows, then E can be transformed back into I by interchanging these same rows again.
Therefore, E E = I and hence E is its own inverse. If E is the elementary matrix of
type II formed by multiplying the i th row of I by a nonzero scalar α, then E can be
transformed into the identity matrix by multiplying either its i th row or its i th column
by 1/α. Thus,

E−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
. . . O

1
1/α

1

O
. . .

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
i th row

Finally, if E is the elementary matrix of type III formed from I by adding m times the
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i th row to the j th row, that is,

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O

0 · · · 1
...

. . .

0 · · · m · · · 1
...

. . .

0 · · · 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i th row

j th row

then E can be transformed back into I either by subtracting m times the i th row from
the j th row or by subtracting m times the j th column from the i th column. Thus,

E−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O
0 · · · 1
...

. . .

0 · · · −m · · · 1
...

. . .

0 · · · 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Definition A matrix B is row equivalent to a matrix A if there exists a finite sequence

E1, E2, . . . , Ek of elementary matrices such that

B = Ek Ek−1 · · · E1 A

In other words, B is row equivalent to A if B can be obtained from A by a finite
number of row operations. In particular, if two augmented matrices (A | b) and (B | c)
are row equivalent, then Ax = b and Bx = c are equivalent systems.

The following properties of row equivalent matrices are easily established:

I. If A is row equivalent to B, then B is row equivalent to A.
II. If A is row equivalent to B, and B is row equivalent to C , then A is row

equivalent to C .

Property (I) can be proved using Theorem 1.5.1. The details of the proofs of (I) and
(II) are left as an exercise for the reader.

Theorem 1.5.2 Equivalent Conditions for Nonsingularity
Let A be an n × n matrix. The following are equivalent:

(a) A is nonsingular.

(b) Ax = 0 has only the trivial solution 0.

(c) A is row equivalent to I .
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Proof We prove first that statement (a) implies statement (b). If A is nonsingular and x̂ is a
solution of Ax = 0, then

x̂ = I x̂ = (A−1 A)x̂ = A−1(Ax̂) = A−10 = 0

Thus, Ax = 0 has only the trivial solution. Next, we show that statement (b) implies
statement (c). If we use elementary row operations, the system can be transformed
into the form Ux = 0, where U is in row echelon form. If one of the diagonal ele-
ments of U were 0, the last row of U would consist entirely of 0’s. But then Ax = 0
would be equivalent to a system with more unknowns than equations and, hence, by
Theorem 1.2.1, would have a nontrivial solution. Thus, U must be a strictly triangular
matrix with diagonal elements all equal to 1. It then follows that I is the reduced row
echelon form of A and hence A is row equivalent to I .

Finally, we will show that statement (c) implies statement (a). If A is row equiva-
lent to I , there exist elementary matrices E1, E2, . . . , Ek such that

A = Ek Ek−1 · · · E1 I = Ek Ek−1 · · · E1

But since Ei is invertible, i = 1, . . . , k, the product Ek Ek−1 · · · E1 is also invertible.
Hence, A is nonsingular and

A−1 = (Ek Ek−1 · · · E1)
−1 = E−1

1 E−1
2 · · · E−1

k

Corollary 1.5.3 The system Ax = b of n linear equations in n unknowns has a unique solution if and
only if A is nonsingular.

Proof If A is nonsingular and x̂ is any solution of Ax = b, then

Ax̂ = b

Multiplying both sides of this equation by A−1, we see that x̂ must be equal to A−1b.
Conversely, if Ax = b has a unique solution x̂, then we claim that A cannot be

singular. Indeed, if A were singular, then the equation Ax = 0 would have a solution
z �= 0. But this would imply that y = x̂ + z is a second solution of Ax = b, since

Ay = A(x̂ + z) = Ax̂ + Az = b + 0 = b

Therefore, if Ax = b has a unique solution, then A must be nonsingular.

If A is nonsingular, then A is row equivalent to I and hence there exist elementary
matrices E1, . . . , Ek such that

Ek Ek−1 · · · E1 A = I

Multiplying both sides of this equation on the right by A−1, we obtain

Ek Ek−1 · · · E1 I = A−1

Thus, the same series of elementary row operations that transforms a nonsingular ma-
trix A into I will transform I into A−1. This gives us a method for computing A−1. If
we augment A by I and perform the elementary row operations that transform A into
I on the augmented matrix, then I will be transformed into A−1. That is, the reduced
row echelon form of the augmented matrix (A | I ) will be

(
I |A−1

)
.
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EXAMPLE 4 Compute A−1 if

A =
⎧⎪⎪⎪⎪⎪⎩

1 4 3
−1 −2 0

2 2 3

⎫⎪⎪⎪⎪⎪⎭
Solution ⎧⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
−1 −2 0 0 1 0

2 2 3 0 0 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
0 2 3 1 1 0
0 −6 −3 −2 0 1

⎫⎪⎪⎪⎪⎪⎭

→
⎧⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
0 2 3 1 1 0
0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 4 0 1

2 − 3
2 − 1

2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 − 1

2 − 1
2

1
2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 − 1

2 − 1
2

1
2

0 1 0 1
4 − 1

4 − 1
4

0 0 1 1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus,

A−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 − 1
2

1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 5 Solve the system

x1 + 4x2 + 3x3 = 12
−x1 − 2x2 = −12
2x1 + 2x2 + 3x3 = 8

Solution
The coefficient matrix of this system is the matrix A of the last example. The solution
of the system is then

x = A−1b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 − 1
2

1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

12
−12

8

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

4

4

− 8
3

⎫⎪⎪⎪⎪⎪⎪⎪⎭

Diagonal and Triangular Matrices

An n × n matrix A is said to be upper triangular if ai j = 0 for i > j and lower
triangular if ai j = 0 for i < j . Also, A is said to be triangular if it is either upper
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triangular or lower triangular. For example, the 3 × 3 matrices⎧⎪⎪⎪⎪⎪⎩
3 2 1
0 2 1
0 0 5

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1 0 0
6 0 0
1 4 3

⎫⎪⎪⎪⎪⎪⎭
are both triangular. The first is upper triangular and the second is lower triangular.

A triangular matrix may have 0’s on the diagonal. However, for a linear system
Ax = b to be in strict triangular form, the coefficient matrix A must be upper triangular
with nonzero diagonal entries.

An n × n matrix A is diagonal if ai j = 0 whenever i �= j . The matrices

⎧⎪⎩1 0
0 2

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 2 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
are all diagonal. A diagonal matrix is both upper triangular and lower triangular.

Triangular Factorization

If an n × n matrix A can be reduced to strict upper triangular form using only row
operation III, then it is possible to represent the reduction process in terms of a matrix
factorization. We illustrate how this is done in the next example.

EXAMPLE 6 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫⎪⎪⎪⎪⎪⎭
and let us use only row operation III to carry out the reduction process. At the first
step, we subtract 1

2 times the first row from the second and then we subtract twice the
first row from the third. ⎧⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 −9 5

⎫⎪⎪⎪⎪⎪⎭
To keep track of the multiples of the first row that were subtracted, we set l21 = 1

2
and l31 = 2. We complete the elimination process by eliminating the −9 in the (3, 2)

position: ⎧⎪⎪⎪⎪⎪⎩
2 4 2
0 3 1
0 −9 5

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 0 8

⎫⎪⎪⎪⎪⎪⎭
Let l32 = −3, the multiple of the second row subtracted from the third row. If we call
the resulting matrix U and set

L =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

l21 1 0

l31 l32 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

2 −3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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then it is easily verified that

LU =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

2 −3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2

0 3 1

0 0 8

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2

1 5 2

4 −1 9

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = A

The matrix L in the previous example is lower triangular with 1’s on the diagonal.
We say that L is unit lower triangular. The factorization of the matrix A into a product
of a unit lower triangular matrix L times a strictly upper triangular matrix U is often
referred to as an LU factorization.

To see why the factorization in Example 6 works, let us view the reduction process
in terms of elementary matrices. The three row operations that were applied to the
matrix A can be represented in terms of multiplications by elementary matrices

E3 E2 E1 A = U (3)

where

E1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

− 1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ , E2 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

−2 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ , E3 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

0 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
correspond to the row operations in the reduction process. Since each of the elementary
matrices is nonsingular, we can multiply equation (3) by their inverses.

A = E−1
1 E−1

2 E−1
3 U

[We multiply in reverse order because (E3 E2 E1)
−1 = E−1

1 E−1
2 E−1

3 .] However, when
the inverses are multiplied in this order, the multipliers l21, l31, l32 fill in below the
diagonal in the product:

E−1
1 E−1

2 E−1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

2 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

0 −3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = L

In general, if an n × n matrix A can be reduced to strict upper triangular form using
only row operation III, then A has an LU factorization. The matrix L is unit lower
triangular, and if i > j , then li j is the multiple of the j th row subtracted from the i th
row during the reduction process.

The LU factorization is a very useful way of viewing the elimination process. We
will find it particularly useful in Chapter 7 when we study computer methods for solv-
ing linear systems. Many of the major topics in linear algebra can be viewed in terms
of matrix factorizations. We will study other interesting and important factorizations
in Chapters 5 through 7.
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SECTION 1.5 EXERCISES
1. Which of the matrices that follow are elementary

matrices? Classify each elementary matrix by type.

(a)
⎧⎪⎩0 1

1 0

⎫⎪⎭ (b)
⎧⎪⎩2 0

0 3

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
5 0 1

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 5 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
2. Find the inverse of each matrix in Exercise 1. For

each elementary matrix, verify that its inverse is an
elementary matrix of the same type.

3. For each of the following pairs of matrices, find an
elementary matrix E such that EA = B:

(a) A =
⎧⎪⎩2 −1

5 3

⎫⎪⎭, B =
⎧⎪⎩−4 2

5 3

⎫⎪⎭
(b) A =

⎧⎪⎪⎪⎪⎪⎩
2 1 3

−2 4 5
3 1 4

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
3 1 4

−2 4 5

⎫⎪⎪⎪⎪⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
4 −2 3
1 0 2

−2 3 1

⎫⎪⎪⎪⎪⎪⎭ ,

B =
⎧⎪⎪⎪⎪⎪⎩

4 −2 3
1 0 2
0 3 5

⎫⎪⎪⎪⎪⎪⎭
4. For each of the following pairs of matrices, find an

elementary matrix E such that AE = B:

(a) A =
⎧⎪⎪⎪⎪⎪⎩

4 1 3
2 1 4
1 3 2

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

3 1 4
4 1 2
2 3 1

⎫⎪⎪⎪⎪⎪⎭
(b) A =

⎧⎪⎩2 4
1 6

⎫⎪⎭, B =
⎧⎪⎩2 −2

1 3

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
4 −2 3

−2 4 2
6 1 −2

⎫⎪⎪⎪⎪⎪⎭,

B =
⎧⎪⎪⎪⎪⎪⎩

2 −2 3
−1 4 2

3 1 −2

⎫⎪⎪⎪⎪⎪⎭
5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
1 0 2

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
2 2 6

⎫⎪⎪⎪⎪⎪⎭ ,

C =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
0 −1 −3
2 2 6

⎫⎪⎪⎪⎪⎪⎭
(a) Find an elementary matrix E such that

EA = B.

(b) Find an elementary matrix F such that
FB = C .

(c) Is C row equivalent to A? Explain.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 1
6 4 5
4 1 3

⎫⎪⎪⎪⎪⎪⎭
(a) Find elementary matrices E1, E2, E3 such that

E3 E2 E1 A = U

where U is an upper triangular matrix.
(b) Determine the inverses of E1, E2, E3 and set

L = E−1
1 E−1

2 E−1
3 . What type of matrix is L?

Verify that A = LU .

7. Let

A =
⎧⎪⎩2 1

6 4

⎫⎪⎭
(a) Express A as a product of elementary matrices.
(b) Express A−1 as a product of elementary matri-

ces.

8. Compute the LU factorization of each of the fol-
lowing matrices:

(a)
⎧⎪⎩3 1

9 5

⎫⎪⎭ (b)
⎧⎪⎩ 2 4

−2 1

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
3 5 6

−2 2 7

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
−2 1 2

4 1 −2
−6 −3 4

⎫⎪⎪⎪⎪⎪⎭
9. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
3 3 4
2 2 3

⎫⎪⎪⎪⎪⎪⎭
(a) Verify that

A−1 =
⎧⎪⎪⎪⎪⎪⎩

1 2 −3
−1 1 −1

0 −2 3

⎫⎪⎪⎪⎪⎪⎭
(b) Use A−1 to solve Ax = b for the following

choices of b:

(i) b = (1, 1, 1)T (ii) b = (1, 2, 3)T

(iii) b = (−2, 1, 0)T

10. Find the inverse of each of the following matrices:

(a)
⎧⎪⎩−1 1

1 0

⎫⎪⎭ (b)
⎧⎪⎩2 5

1 3

⎫⎪⎭
(c)

⎧⎪⎩2 6
3 8

⎫⎪⎭ (d)
⎧⎪⎩3 0

9 3

⎫⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
2 0 5
0 3 0
1 0 3

⎫⎪⎪⎪⎪⎪⎭
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(g)

⎧⎪⎪⎪⎪⎪⎩
−1 −3 −3

2 6 1
3 8 3

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
1 0 1

−1 1 1
−1 −2 −3

⎫⎪⎪⎪⎪⎪⎭
11. Given

A =
⎧⎪⎩3 1

5 2

⎫⎪⎭ and B =
⎧⎪⎩1 2

3 4

⎫⎪⎭
compute A−1 and use it to
(a) find a 2 × 2 matrix X such that AX = B.

(b) find a 2 × 2 matrix Y such that Y A = B.

12. Let

A =
⎧⎪⎩5 3

3 2

⎫⎪⎭ , B =
⎧⎪⎩6 2

2 4

⎫⎪⎭ , C =
⎧⎪⎩ 4 −2

−6 3

⎫⎪⎭
Solve each of the following matrix equations:
(a) AX + B = C (b) XA + B = C

(c) AX + B = X (d) XA + C = X

13. Is the transpose of an elementary matrix an elemen-
tary matrix of the same type? Is the product of two
elementary matrices an elementary matrix?

14. Let U and R be n ×n upper triangular matrices and
set T = UR. Show that T is also upper triangular
and that t j j = u j jr j j for j = 1, . . . , n.

15. Let A be a 3 × 3 matrix and suppose that

2a1 + a2 − 4a3 = 0

How many solutions will the system Ax = 0 have?
Explain. Is A nonsingular? Explain.

16. Let A be a 3 × 3 matrix and suppose that

a1 = 3a2 − 2a3

Will the system Ax = 0 have a nontrivial solution?
Is A nonsingular? Explain your answers.

17. Let A and B be n × n matrices and let C = A − B.
Show that if Ax0 = Bx0 and x0 �= 0, then C must
be singular.

18. Let A and B be n × n matrices and let C = AB.
Prove that if B is singular, then C must be singular.
[Hint: Use Theorem 1.5.2.]

19. Let U be an n × n upper triangular matrix with
nonzero diagonal entries.
(a) Explain why U must be nonsingular.

(b) Explain why U−1 must be upper triangular.

20. Let A be a nonsingular n ×n matrix and let B be an
n × r matrix. Show that the reduced row echelon
form of (A |B) is (I |C), where C = A−1 B.

21. In general, matrix multiplication is not commuta-
tive (i.e., AB �= B A). However, in certain special
cases the commutative property does hold. Show
that
(a) if D1 and D2 are n × n diagonal matrices, then

D1 D2 = D2 D1.

(b) if A is an n × n matrix and

B = a0 I + a1 A + a2 A2 + · · · + ak Ak

where a0, a1, . . . , ak are scalars, then
AB = B A.

22. Show that if A is a symmetric nonsingular matrix,
then A−1 is also symmetric.

23. Prove that if A is row equivalent to B, then B is
row equivalent to A.

24. (a) Prove that if A is row equivalent to B and B is
row equivalent to C , then A is row equivalent
to C .

(b) Prove that any two nonsingular n × n matrices
are row equivalent.

25. Let A and B be m × n matrices. Prove that if B is
row equivalent to A and U is any row echelon form
A, then B is row equivalent to U .

26. Prove that B is row equivalent to A if and only
if there exists a nonsingular matrix M such that
B = MA.

27. Is it possible for a singular matrix B to be row
equivalent to a nonsingular matrix A? Explain.

28. Given a vector x ∈ R
n+1, the (n + 1) × (n + 1)

matrix V defined by

vi j =
{

1 if j = 1

x j−1
i for j = 2, . . . , n + 1

is called the Vandermonde matrix.
(a) Show that if

V c = y

and

p(x) = c1 + c2x + · · · + cn+1xn

then

p(xi ) = yi , i = 1, 2, . . . , n + 1

(b) Suppose that x1, x2, . . . , xn+1 are all distinct.
Show that if c is a solution to V x = 0, then the
coefficients c1, c2, . . . , cn must all be zero and
hence V must be nonsingular.
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For each of the following, answer true if the statement
is always true and answer false otherwise. In the case
of a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

29. If A is row equivalent to I and AB = AC , then B
must equal C .

30. If E and F are elementary matrices and G = E F ,
then G is nonsingular.

31. If A is a 4 × 4 matrix and a1 + a2 = a3 + 2a4, then
A must be singular.

32. If A is row equivalent to both B and C , then A is
row equivalent to B + C .

1.6 Partitioned Matrices

Often it is useful to think of a matrix as being composed of a number of submatrices.
A matrix C can be partitioned into smaller matrices by drawing horizontal lines be-
tween the rows and vertical lines between the columns. The smaller matrices are often
referred to as blocks. For example, let

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 4 1 3
2 1 1 1 1
3 3 2 −1 2
4 6 2 2 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If lines are drawn between the second and third rows and between the third and fourth
columns, then C will be divided into four submatrices, C11, C12, C21, and C22:

⎧⎪⎪⎪⎩C11 C12

C21 C22

⎫⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 4 1 3

2 1 1 1 1

3 3 2 −1 2

4 6 2 2 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
One useful way of partitioning a matrix is into columns. For example, if

B =
⎧⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫⎪⎪⎪⎪⎪⎭
then we can partition B into three column submatrices:

B = (b1, b2, b3) =
⎧⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫⎪⎪⎪⎪⎪⎭
Suppose that we are given a matrix A with three columns; then the product AB

can be viewed as a block multiplication. Each block of B is multiplied by A, and the
result is a matrix with three blocks: Ab1, Ab2, and Ab3; that is,

AB = A(b1, b2, b3) = (Ab1, Ab2, Ab3)

For example, if

A =
⎧⎪⎩1 3 1

2 1 −2

⎫⎪⎭
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then

Ab1 =
⎧⎪⎩ 6

−2

⎫⎪⎭ , Ab2 =
⎧⎪⎩ 15

−1

⎫⎪⎭ , Ab3 =
⎧⎪⎩5

1

⎫⎪⎭
and hence,

A(b1, b2, b3) =
⎧⎪⎩ 6 15 5

−2 −1 1

⎫⎪⎭
In general, if A is an m×n matrix and B is an n×r matrix that has been partitioned

into columns (b1, . . . , br ), then the block multiplication of A times B is given by

AB = (Ab1, Ab2, . . . , Abr )

In particular,

(a1, . . . , an) = A = AI = (Ae1, . . . , Aen)

Let A be an m × n matrix. If we partition A into rows, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1

�a2
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If B is an n × r matrix, the i th row of the product AB is determined by multiplying the
i th row of A times B. Thus the i th row of AB is a(i, :)B. In general, the product AB
can be partitioned into rows as follows:

AB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1 B
�a2 B
...

�am B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
To illustrate this result, let us look at an example. If

A =
⎧⎪⎪⎪⎪⎪⎩

2 5
3 4
1 7

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩ 3 2 −3

−1 1 1

⎫⎪⎭
then

�a1 B =
⎧⎩1 9 −1

⎫⎭
�a2 B =

⎧⎩5 10 −5
⎫⎭

�a3 B =
⎧⎩−4 9 4

⎫⎭
These are the row vectors of the product AB:

AB =
⎧⎪⎪⎪⎪⎪⎩

�a1 B
�a2 B
�a3 B

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 9 −1
5 10 −5

−4 9 4

⎫⎪⎪⎪⎪⎪⎭
Next, we consider how to compute the product AB in terms of more general par-

titions of A and B.
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Block Multiplication

Let A be an m × n matrix and B an n × r matrix. It is often useful to partition A
and B and express the product in terms of the submatrices of A and B. Consider the
following four cases:

Case 1. If B =
⎧⎩ B1 B2

⎫⎭, where B1 is an n × t matrix and B2 is an n × (r − t)

matrix, then

AB = A(b1, . . . , bt , bt+1, . . . , br )

= (Ab1, . . . , Abt , Abt+1, . . . , Abr )

= (A(b1, . . . , bt), A(bt+1, . . . , br ))

=
⎧⎩ AB1 AB2

⎫⎭
Thus,

A
⎧⎩ B1 B2

⎫⎭ =
⎧⎩ AB1 AB2

⎫⎭

Case 2. If A =
⎧⎪⎩ A1

A2

⎫⎪⎭, where A1 is a k × n matrix and A2 is an (m − k) × n matrix,

then

⎧⎪⎪⎪⎩ A1

A2

⎫⎪⎪⎪⎭ B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a1
...

�ak

�ak+1
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a1 B
...

�ak B

�ak+1 B
...

�am B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎩
�a1
...

�ak

⎫⎪⎪⎪⎪⎪⎪⎪⎭B

⎧⎪⎪⎪⎪⎪⎪⎪⎩
�ak+1

...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎭B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎩ A1 B

A2 B

⎫⎪⎪⎪⎭

Thus,

⎧⎪⎩ A1

A2

⎫⎪⎭B =
⎧⎪⎩ A1 B

A2 B

⎫⎪⎭

Case 3. Let A =
⎧⎩ A1 A2

⎫⎭ and B =
⎧⎪⎩ B1

B2

⎫⎪⎭, where A1 is an m × s matrix, A2
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is an m × (n − s) matrix, B1 is an s × r matrix, and B2 is an (n − s) × r matrix. If
C = AB, then

ci j =
n∑

l=1

ailbl j =
s∑

l=1

ailbl j +
n∑

l=s+1

ailbl j

Thus, ci j is the sum of the (i, j) entry of A1 B1 and the (i, j) entry of A2 B2. Therefore,

AB = C = A1 B1 + A2 B2

and it follows that

⎧⎩ A1 A2

⎫⎭⎧⎪⎩ B1

B2

⎫⎪⎭ = A1 B1 + A2 B2

Case 4. Let A and B both be partitioned as follows:

A =
⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ k

m − k

s n − s

, B =
⎧⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎭ s

n − s

t r − t

Let

A1 =
⎧⎪⎩ A11

A21

⎫⎪⎭ A2 =
⎧⎪⎩ A12

A22

⎫⎪⎭
B1 =

⎧⎩ B11 B12

⎫⎭ B2 =
⎧⎩ B21 B22

⎫⎭
It follows from case 3 that

AB =
⎧⎩ A1 A2

⎫⎭⎧⎪⎩ B1

B2

⎫⎪⎭ = A1 B1 + A2 B2

It follows from cases 1 and 2 that

A1 B1 =
⎧⎪⎩ A11

A21

⎫⎪⎭ B1 =
⎧⎪⎩ A11 B1

A21 B1

⎫⎪⎭ =
⎧⎪⎩ A11 B11 A11 B12

A21 B11 A21 B12

⎫⎪⎭
A2 B2 =

⎧⎪⎩ A12

A22

⎫⎪⎭ B2 =
⎧⎪⎩ A12 B2

A22 B2

⎫⎪⎭ =
⎧⎪⎩ A12 B21 A12 B22

A22 B21 A22 B22

⎫⎪⎭
Therefore,⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭ =
⎧⎪⎩ A11 B11 + A12 B21 A11 B12 + A12 B22

A21 B11 + A22 B21 A21 B12 + A22 B22

⎫⎪⎭
In general, if the blocks have the proper dimensions, the block multiplication can

be carried out in the same manner as ordinary matrix multiplication. That is, if

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

A11 · · · A1t
...

As1 · · · Ast

⎫⎪⎪⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

B11 · · · B1r
...

Bt1 · · · Btr

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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then

AB =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

C11 · · · C1r
...

Cs1 · · · Csr

⎫⎪⎪⎪⎪⎪⎪⎪⎭
where

Ci j =
t∑

k=1

Aik Bkj

The multiplication can be carried out in this manner only if the number of columns of
Aik equals the number of rows of Bkj for each k.

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1
2 2 1 1
3 3 2 2

⎫⎪⎪⎪⎪⎪⎭
and

B =
⎧⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Partition A into four blocks and perform the block multiplication.

Solution
Since each Bkj has two rows, the Aik’s must have two columns. Thus, we have one of
two possibilities:

(i)

⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
in which case

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

8 6 4 5

10 9 6 7

18 15 10 12

⎫⎪⎪⎪⎪⎪⎪⎪⎭
or

(ii)

⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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in which case

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

8 6 4 5

10 9 6 7

18 15 10 12

⎫⎪⎪⎪⎪⎪⎪⎪⎭

EXAMPLE 2 Let A be an n × n matrix of the form⎧⎪⎩ A11 O
O A22

⎫⎪⎭
where A11 is a k × k matrix (k < n). Show that A is nonsingular if and only if A11 and
A22 are nonsingular.

Solution
If A11 and A22 are nonsingular, then⎧⎪⎪⎩ A−1

11 O
O A−1

22

⎫⎪⎪⎭⎧⎪⎩ A11 O
O A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ = I

and ⎧⎪⎩ A11 O
O A22

⎫⎪⎭⎧⎪⎪⎩ A−1
11 O

O A−1
22

⎫⎪⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ = I

so A is nonsingular and

A−1 =
⎧⎪⎪⎩ A−1

11 O
O A−1

22

⎫⎪⎪⎭
Conversely, if A is nonsingular, then let B = A−1 and partition B in the same manner
as A. Since

B A = I = AB

it follows that⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭⎧⎪⎩ A11 O
O A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ =
⎧⎪⎩ A11 O

O A22

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭⎧⎪⎩ B11 A11 B12 A22

B21 A11 B22 A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ =
⎧⎪⎩ A11 B11 A11 B12

A22 B21 A22 B22

⎫⎪⎭
Thus,

B11 A11 = Ik = A11 B11

B22 A22 = In−k = A22 B22

Hence, A11 and A22 are both nonsingular with inverses B11 and B22, respectively.
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Outer Product Expansions
Given two vectors x and y in R

n , it is possible to perform a matrix multiplication of the
vectors if we transpose one of the vectors first. The matrix product xT y is the product
of a row vector (a 1 × n matrix) and a column vector (an n × 1 matrix). The result will
be a 1 × 1 matrix, or simply a scalar:

xT y = (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = x1 y1 + x2 y2 + · · · + xn yn

This type of product is referred to as a scalar product or an inner product. The scalar
product is one of the most commonly performed operations. For example, when we
multiply two matrices, each entry of the product is computed as a scalar product (a row
vector times a column vector).

It is also useful to multiply a column vector times a row vector. The matrix product
xyT is the product of an n × 1 matrix times a 1 × n matrix. The result is a full n × n
matrix.

xyT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (y1, y2, . . . , yn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1 y1 x1 y2 · · · x1 yn

x2 y1 x2 y2 · · · x2 yn
...

xn y1 xn y2 · · · xn yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The product xyT is referred to as the outer product of x and y. The outer product matrix
has special structure in that each of its rows is a multiple of yT and each of its column
vectors is a multiple of x. For example, if

x =
⎧⎪⎪⎪⎪⎪⎩

4
1
3

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

3
5
2

⎫⎪⎪⎪⎪⎪⎭
then

xyT =
⎧⎪⎪⎪⎪⎪⎩

4
1
3

⎫⎪⎪⎪⎪⎪⎭
⎧⎩3 5 2

⎫⎭ =
⎧⎪⎪⎪⎪⎪⎩

12 20 8
3 5 2
9 15 6

⎫⎪⎪⎪⎪⎪⎭
Note that each row is a multiple of (3, 5, 2) and each column is a multiple of x.

We are now ready to generalize the idea of an outer product from vectors to ma-
trices. Suppose that we start with an m × n matrix X and a k × n matrix Y . We can
then form a matrix product XY T . If we partition X into columns and Y T into rows
and perform the block multiplication, we see that XY T can be represented as a sum of
outer products of vectors:

XY T = (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
yT

1

yT
2
...

yT
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = x1yT
1 + x2yT

2 + · · · + xnyT
n
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This representation is referred to as an outer product expansion. These types of ex-
pansions play an important role in many applications. In Section 5 of Chapter 6, we
will see how outer product expansions are used in digital imaging and in information
retrieval applications.

EXAMPLE 3 Given

X =
⎧⎪⎪⎪⎪⎪⎩

3 1
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭ and Y =
⎧⎪⎪⎪⎪⎪⎩

1 2
2 4
3 1

⎫⎪⎪⎪⎪⎪⎭
compute the outer product expansion of XY T .

Solution

XY T =
⎧⎪⎪⎪⎪⎪⎩

3 1
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩1 2 3

2 4 1

⎫⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

3
2
1

⎫⎪⎪⎪⎪⎪⎭
⎧⎩1 2 3

⎫⎭ +
⎧⎪⎪⎪⎪⎪⎩

1
4
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎩2 4 1

⎫⎭

=
⎧⎪⎪⎪⎪⎪⎩

3 6 9
2 4 6
1 2 3

⎫⎪⎪⎪⎪⎪⎭ +
⎧⎪⎪⎪⎪⎪⎩

2 4 1
8 16 4
4 8 2

⎫⎪⎪⎪⎪⎪⎭

SECTION 1.6 EXERCISES
1. Let A be a nonsingular n × n matrix. Perform the

following multiplications:

(a) A−1
⎧⎩ A I

⎫⎭ (b)
⎧⎪⎩ A

I

⎫⎪⎭ A−1

(c)
⎧⎩ A I

⎫⎭T ⎧⎩ A I
⎫⎭

(d)
⎧⎩ A I

⎫⎭⎧⎩ A I
⎫⎭T

(e)
⎧⎪⎩ A−1

I

⎫⎪⎭⎧⎩ A I
⎫⎭

2. Let B = ATA. Show that bi j = aT
i a j .

3. Let

A =
⎧⎪⎩1 1

2 −1

⎫⎪⎭ and B =
⎧⎪⎩2 1

1 3

⎫⎪⎭
(a) Calculate Ab1 and Ab2.

(b) Calculate �a1 B and �a2 B.

(c) Multiply AB, and verify that its column vec-
tors are the vectors in part (a) and its row vec-
tors are the vectors in part (b).

4. Let

I =
⎧⎪⎩1 0

0 1

⎫⎪⎭ , E =
⎧⎪⎩0 1

1 0

⎫⎪⎭ , O =
⎧⎪⎩0 0

0 0

⎫⎪⎭
C =

⎧⎪⎩ 1 0
−1 1

⎫⎪⎭ , D =
⎧⎪⎩2 0

0 2

⎫⎪⎭
and

B =
⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Perform each of the following block multiplica-
tions:

(a)
⎧⎪⎩O I

I O

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(b)

⎧⎪⎩ C O
O C

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(c)

⎧⎪⎩ D O
O I

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
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(d)
⎧⎪⎩ E O

O E

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
5. Perform each of the following block multiplica-

tions:

(a)
⎧⎪⎩1 1 1 −1

2 1 2 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 −2 1

2 3 1

1 1 2

1 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −2
2 3
1 1
1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩1 1 1 −1

2 1 2 −1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 − 4

5 0 0
4
5

3
5 0 0

0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
5

4
5 0

− 4
5

3
5 0

0 0 1

0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1

2 −2

3 −3

4 −4

5 −5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
6. Given

X =
⎧⎪⎩2 1 5

4 2 3

⎫⎪⎭ Y =
⎧⎪⎩1 2 4

2 3 1

⎫⎪⎭
(a) Compute the outer product expansion of XY T .

(b) Compute the outer product expansion of Y X T .
How is the outer product expansion of Y X T re-
lated to the outer product expansion of XY T ?

7. Let

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭ and AT =
⎧⎪⎪⎪⎩ AT

11 AT
21

AT
12 AT

22

⎫⎪⎪⎪⎭
Is it possible to perform the block multiplications
of AAT and ATA? Explain.

8. Let A be an m × n matrix, X an n × r matrix, and
B an m × r matrix. Show that

AX = B

if and only if

Ax j = b j , j = 1, . . . , r

9. Let A be an n × n matrix and let D be an n × n
diagonal matrix.

(a) Show that D = (d11e1, d22e2, . . . , dnnen).

(b) Show that AD = (d11a1, d22a2, . . . , dnnan).

10. Let U be an m × m matrix, let V be an n × n ma-
trix, and let

� =
⎧⎪⎩�1

O

⎫⎪⎭
where �1 is an n × n diagonal matrix with diago-
nal entries σ1, σ2, . . . , σn and O is the (m − n) × n
zero matrix.
(a) Show that if U = (U1, U2), where U1 has n

columns, then

U� = U1�1

(b) Show that if A = U�V T , then A can be ex-
pressed as an outer product expansion of the
form

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n

11. Let

A =
⎧⎪⎩ A11 A12

O A22

⎫⎪⎭
where all four blocks are n × n matrices.
(a) If A11 and A22 are nonsingular, show that A

must also be nonsingular and that A−1 must be
of the form ⎧⎪⎪⎪⎩ A−1

11 C

O A−1
22

⎫⎪⎪⎪⎭
(b) Determine C .

12. Let A and B be n × n matrices and let M be a block
matrix of the form

M =
⎧⎪⎩ A O

O B

⎫⎪⎭
Use condition (b) of Theorem 1.5.2 to show that if
either A or B is singular, then M must be singular.

13. Let

A =
⎧⎪⎩O I

B O

⎫⎪⎭
where all four submatrices are k ×k. Determine A2

and A4.

14. Let I denote the n ×n identity matrix. Find a block
form for the inverse of each of the following 2n×2n
matrices:

(a)
⎧⎪⎩O I

I O

⎫⎪⎭ (b)
⎧⎪⎩ I O

B I

⎫⎪⎭
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15. Let O be the k × k matrix whose entries are all 0,
I be the k × k identity matrix, and B be a k × k
matrix with the property that B2 = O . If

A =
⎧⎪⎩O I

I B

⎫⎪⎭
determine the block form of A−1 + A2 + A3.

16. Let A and B be n × n matrices and define 2n × 2n
matrices S and M by

S =
⎧⎪⎩ I A

O I

⎫⎪⎭ , M =
⎧⎪⎩ AB O

B O

⎫⎪⎭
Determine the block form of S−1 and use it to com-
pute the block form of the product S−1 M S.

17. Let

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭
where A11 is a k × k nonsingular matrix. Show that
A can be factored into a product of the form⎧⎪⎩ I O

B I

⎫⎪⎭⎧⎪⎩ A11 A12

O C

⎫⎪⎭
where

B = A21 A−1
11 and C = A22 − A21 A−1

11 A12

(Note that this problem gives a block matrix version
of the factorization in Exercise 17 of Section 3.)

18. Let A, B, L , M , S, and T be n × n matrices with
A, B, and M nonsingular and L , S, and T singular.
Determine whether it is possible to find matrices X
and Y such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O I O O O O
O O I O O O
O O O I O O
O O O O I O
O O O O O X
Y O O O O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
A
T
L
A
B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
T
L
A
S
T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If so, show how; if not, explain why.

19. Let A be an n × n matrix and x ∈ R
n .

(a) A scalar c can also be considered as a 1 × 1
matrix C = (c), and a vector b ∈ R

n can be
considered as an n × 1 matrix B. Although the
matrix multiplication CB is not defined, show
that the matrix product BC is equal to cb, the
scalar multiplication of c times b.

(b) Partition A into columns and x into rows and
perform the block multiplication of A times x.

(c) Show that

Ax = x1a1 + x2a2 + · · · + xnan

20. If A is an n×n matrix with the property that Ax = 0
for all x ∈ R

n , show that A = O . [Hint: Let x = e j

for j = 1, . . . , n.]

21. Let B and C be n × n matrices with the property
that Bx = Cx for all x ∈ R

n . Show that B = C .

22. Consider a system of the form⎧⎪⎩ A a
cT β

⎫⎪⎭⎧⎪⎩ x
xn+1

⎫⎪⎭ =
⎧⎪⎩ b

bn+1

⎫⎪⎭
where A is a nonsingular n ×n matrix and a, b, and
c are vectors in R

n .
(a) Multiply both sides of the system by⎧⎪⎪⎪⎩ A−1 0

−cT A−1 1

⎫⎪⎪⎪⎭
to obtain an equivalent triangular system.

(b) Set y = A−1a and z = A−1b. Show that if
β − cT y �= 0, then the solution of the system
can be determined by letting

xn+1 = bn+1 − cT z
β − cT y

and then setting

x = z − xn+1y

Chapter One Exercises

MATLAB EXERCISES

The exercises that follow are to be solved computation-
ally with the software package MATLAB, which is de-
scribed in the appendix of this book. The exercises
also contain questions that are related to the underlying

mathematical principles illustrated in the computations.
Save a record of your session in a file. After editing and
printing out the file, you can fill in the answers to the
questions directly on the printout.
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MATLAB has a help facility that explains all its op-
erations and commands. For example, to obtain infor-
mation on the MATLAB command rand, you need only
type help rand. The commands used in the MATLAB
exercises for this chapter are inv, floor, rand, tic,
toc, rref, abs, max, round, sum, eye, triu,
ones, zeros, and magic. The operations introduced
are +, −, ∗, ′, and \. The + and − represent the usual
addition and subtraction operations for both scalars
and matrices. The ∗ corresponds to multiplication of
either scalars or matrices. For matrices whose entries
are all real numbers, the ′ operation corresponds to the
transpose operation. If A is a nonsingular n × n ma-
trix and B is any n × r matrix, the operation A\B is
equivalent to computing A−1 B.

1. Use MATLAB to generate random 4 × 4 matrices
A and B. For each of the following, compute A1,
A2, A3, and A4 as indicated and determine which
of the matrices are equal (you can use MATLAB to
test whether two matrices are equal by computing
their difference):
(a) A1 = A ∗ B, A2 = B ∗ A, A3 = (A′ ∗ B ′)′,

A4 = (B ′ ∗ A′)′

(b) A1 = A′ ∗ B ′, A2 = (A ∗ B)′, A3 = B ′ ∗ A′,
A4 = (B ∗ A)′

(c) A1 = inv(A ∗ B), A2 = inv(A) ∗ inv(B),
A3 = inv(B ∗ A), A4 = inv(B) ∗ inv(A)

(d) A1 = inv((A ∗ B)′), A2 = inv(A′ ∗ B ′),
A3 = inv(A′) ∗ inv(B ′),
A4 = (inv(A) ∗ inv(B))′

2. Set n = 200 and generate an n × n matrix and two
vectors in R

n , both having integer entries, by set-
ting

A = floor(10 ∗ rand(n));
b = sum(A′)′;
z = ones(n, 1)

(Since the matrix and vectors are large, we use
semicolons to suppress the printout.)
(a) The exact solution of the system Ax = b

should be the vector z. Why? Explain. One
could compute the solution in MATLAB us-
ing the “\” operation or by computing A−1

and then multiplying A−1 times b. Let us
compare these two computational methods for
both speed and accuracy. One can use MAT-
LAB’s tic and toc commands to measure
the elapsed time for each computation. To do

this, use the commands

tic, x = A\b; toc
tic, y = inv(A) ∗ b; toc

Which method is faster?
To compare the accuracy of the two meth-

ods, we can measure how close the computed
solutions x and y are to the exact solution z.
Do this with the commands

max(abs(x − z))

max(abs(y − z))

Which method produces the most accurate so-
lution?

(b) Repeat part (a), using n = 500 and n = 1000.
3. Set A = floor(10 ∗ rand(6)). By construc-

tion, the matrix A will have integer entries. Let
us change the sixth column of A so as to make the
matrix singular. Set

B = A′, A(:, 6) = −sum(B(1 : 5, :))′

(a) Set x = ones(6, 1) and use MATLAB to
compute Ax. Why do we know that A must
be singular? Explain. Check that A is singular
by computing its reduced row echelon form.

(b) Set
B = x ∗ [1 : 6]

The product AB should equal the zero matrix.
Why? Explain. Verify that this is so by com-
puting AB with the MATLAB operation ∗.

(c) Set

C = floor(10 ∗ rand(6))

and

D = B + C

Although C �= D, the products AC and AD
should be equal. Why? Explain. Compute
A∗C and A∗D, and verify that they are indeed
equal.

4. Construct a matrix as follows: Set

B = eye(10) − triu(ones(10), 1)

Why do we know that B must be nonsingular? Set

C = inv(B) and x = C(:, 10)

Now change B slightly by setting B(10, 1) =
−1/256. Use MATLAB to compute the product
Bx. From the result of this computation, what can
you conclude about the new matrix B? Is it still
nonsingular? Explain. Use MATLAB to compute
its reduced row echelon form.
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5. Generate a matrix A by setting

A = floor(10 ∗ rand(6))

and generate a vector b by setting

b = floor(20 ∗ rand(6, 1)) − 10

(a) Since A was generated randomly, we would
expect it to be nonsingular. The system Ax =
b should have a unique solution. Find the so-
lution using the “\” operation. Use MATLAB
to compute the reduced row echelon form U
of [A b]. How does the last column of U
compare with the solution x? In exact arith-
metic, they should be the same. Why? Ex-
plain. To compare the two, compute the dif-
ference U (:, 7) − x or examine both using
format long.

(b) Let us now change A so as to make it singular.
Set

A(:, 3) = A(:, 1 : 2) ∗ [ 4 3 ]′
Use MATLAB to compute rref([A b]). How
many solutions will the system Ax = b have?
Explain.

(c) Set

y = floor(20 ∗ rand(6, 1)) − 10

and

c = A ∗ y

Why do we know that the system Ax = c must
be consistent? Explain. Compute the reduced
row echelon form U of [ A c ]. How many so-
lutions does the system Ax = c have? Explain.

(d) The free variable determined by the echelon
form should be x3. By examining the system
corresponding to the matrix U , you should be
able to determine the solution corresponding to
x3 = 0. Enter this solution in MATLAB as a
column vector w. To check that Aw = c, com-
pute the residual vector c − Aw.

(e) Set U (:, 7) = zeros(6, 1). The matrix U
should now correspond to the reduced row ech-
elon form of ( A | 0 ). Use U to determine the
solution of the homogeneous system when the
free variable x3 = 1 (do this by hand), and en-
ter your result as a vector z. Check your answer
by computing A ∗ z.

(f) Set v = w + 3 ∗ z. The vector v should be a
solution of the system Ax = c. Why? Explain.
Verify that v is a solution by using MATLAB
to compute the residual vector c − Av. What
is the value of the free variable x3 for this so-
lution? How could we determine all possible
solutions of the system in terms of the vectors
w and z? Explain.

6. Consider the graph

V1

V8 V7

V5 V6

V2

V3V4

(a) Determine the adjacency matrix A for the
graph and enter it into MATLAB.

(b) Compute A2 and determine the number of
walks of length 2 from (i) V1 to V7, (ii) V4 to
V8, (iii) V5 to V6, and (iv) V8 to V3.

(c) Compute A4, A6, and A8 and answer the ques-
tions in part (b) for walks of lengths 4, 6, and 8.
Make a conjecture as to when there will be no
walks of even length from vertex Vi to vertex
Vj .

(d) Compute A3, A5, and A7 and answer the ques-
tions from part (b) for walks of lengths 3, 5,
and 7. Does your conjecture from part (c) hold
for walks of odd length? Explain. Make a
conjecture as to whether there are any walks
of length k from Vi to Vj based on whether
i + j + k is odd or even.

(e) If we add the edges {V3, V6}, {V5, V8} to the
graph, the adjacency matrix B for the new
graph can be generated by setting B = A and
then setting

B(3, 6) = 1, B(6, 3) = 1,

B(5, 8) = 1, B(8, 5) = 1

Compute Bk for k = 2, 3, 4, 5. Is your conjec-
ture from part (d) still valid for the new graph?

(f) Add the edge {V6, V8} to the figure and con-
struct the adjacency matrix C for the result-
ing graph. Compute powers of C to determine
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whether your conjecture from part (d) will still
hold for this new graph.

7. In Application 1 of Section 4, the numbers
of married and single women after 1 and 2
years were determined by computing the prod-

ucts AX and A2 X for the given matrices A and
X . Use format long and enter these matrices
into MATLAB. Compute Ak and Ak X for k =
5, 10, 15, 20. What is happening to Ak as k gets
large? What is the long-run distribution of married
and single women in the town?

8. The following table describes a seven-stage model for the life cycle of the loggerhead sea turtle.

Table 1 Seven-Stage Model for Loggerhead Sea Turtle Demographics

Stage Description Annual Eggs laid
Number (age in years) survivorship per year

1 Eggs, hatchlings (<1) 0.6747 0

2 Small juveniles (1–7) 0.7857 0

3 Large juveniles (8–15) 0.6758 0

4 Subadults (16–21) 0.7425 0

5 Novice breeders (22) 0.8091 127

6 First-year remigrants (23) 0.8091 4

7 Mature breeders (24–54) 0.8091 80

The corresponding Leslie matrix is

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 127 4 80
0.6747 0.7370 0 0 0 0 0

0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8091 0.8089

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Suppose that the number of turtles in each stage of the initial turtle population is described by the vector

x0 = (200,000 130,000 100,000 70,000 500 400 1100)T

(a) Enter L and x0 into MATLAB and use the com-
mand

x50 = round(Lˆ50∗x0)

to compute x50. Compute also the values of x100,
x150, x200, x250, and x300.

(b) Loggerhead sea turtles lay their eggs on land.
Suppose that conservationists take special mea-
sures to protect these eggs and, as a result, the
survival rate for eggs and hatchlings increases to
77 percent. To incorporate this change into our
model, we need only change the (2,1) entry of L
to 0.77. Make this modification to the matrix L
and repeat part (a). Has the survival potential of
the loggerhead sea turtle improved significantly?

(c) Suppose that, instead of improving the survival
rate for eggs and hatchlings, we could devise a

means of protecting the small juveniles so that
their survival rate increases to 88 percent. Use
equations (1) and (2) from Application 2 of Sec-
tion 4 to determine the proportion of small juve-
niles that survive and remain in the same stage
and the proportion that survive and grow to the
next stage. Modify your original matrix L ac-
cordingly and repeat part (a), using the new ma-
trix. Has the survival potential of the loggerhead
sea turtle improved significantly?

9. Set A = magic(8) and then compute its reduced
row echelon form. The leading 1’s should correspond
to the first three variables x1, x2, and x3, and the re-
maining five variables are all free.
(a) Set c = [1 : 8]′ and determine whether the sys-

tem Ax = c is consistent by computing the re-
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duced row echelon form of [A c]. Does the sys-
tem turn out to be consistent? Explain.

(b) Set

b = [8 − 8 − 8 8 8 − 8 − 8 8]′ ;
and consider the system Ax = b. This sys-
tem should be consistent. Verify that it is by
computing U = rref([A b]). We should
be able to find a solution for any choice of
the five free variables. Indeed, set x2 =
floor(10 ∗ rand(5, 1)). If x2 represents the
last five coordinates of a solution of the sys-
tem, then we should be able to determine x1 =
(x1, x2, x3)

T in terms of x2. To do this, set
U = rref([A b]). The nonzero rows of U
correspond to a linear system with block form⎧⎩ I V

⎫⎭⎧⎪⎩x1
x2

⎫⎪⎭ = c (1)

To solve equation (1), set

V = U (1 : 3, 4 : 8), c = U (1 : 3, 9)

and use MATLAB to compute x1 in terms of x2,
c, and V . Set x = [x1; x2] and verify that x is a
solution of the system.

10. Set

B = [−1, −1; 1, 1]
and

A = [zeros(2),eye(2); eye(2), B]
and verify that B2 = O .
(a) Use MATLAB to compute A2, A4, A6, and A8.

Make a conjecture as to what the block form of
A2k will be in terms of the submatrices I , O ,
and B. Use mathematical induction to prove that
your conjecture is true for any positive integer k.

(b) Use MATLAB to compute A3, A5, A7, and A9.
Make a conjecture as to what the block form of
A2k−1 will be in terms of the submatrices I , O ,
and B. Prove your conjecture.

11. (a) The MATLAB commands

A = floor(10 ∗ rand(6)), B = A′ ∗ A

will result in a symmetric matrix with integer en-
tries. Why? Explain. Compute B in this way and
verify these claims. Next, partition B into four
3 × 3 submatrices. To determine the submatrices
in MATLAB, set

B11 = B(1 : 3, 1 : 3), B12 = B(1 : 3, 4 : 6)

and define B21 and B22 in a similar manner, us-
ing rows 4 through 6 of B.

(b) Set C = inv(B11). It should be the case that
CT = C and B21T = B12. Why? Explain. Use
the MATLAB operation ′ to compute the trans-
poses, and verify these claims. Next, set

E = B21 ∗ C

and

F = B22 − B21 ∗ C ∗ B21′

and use the MATLAB functions eye and
zeros to construct

L =
⎧⎪⎩ I O

E I

⎫⎪⎭ , D =
⎧⎪⎩ B11 O

O F

⎫⎪⎭
Compute H = L ∗ D∗L ′ and compare H with B
by computing H − B. Prove that if all computa-
tions had been done in exact arithmetic, L DLT

would equal B exactly.

CHAPTER TEST A True or False

This chapter test consists of 10 true-or-false questions.
In each case, answer true if the statement is always true
and false otherwise. In the case of a true statement,
explain or prove your answer. In the case of a false
statement, give an example to show that the statement
is not always true. For example, consider the following
statements about n × n matrices A and B:

(i) A + B = B + A

(ii) AB = B A

Statement (i) is always true. Explanation: The
(i, j) entry of A + B is ai j + bi j and the (i, j) entry
of B + A is bi j +ai j . Since ai j +bi j = bi j +ai j for each
i and j , it follows that A + B = B + A.

The answer to statement (ii) is false. Although the
statement may be true in some cases, it is not always
true. To show this, we need only exhibit one instance in
which equality fails to hold. For example, if

A =
⎧⎪⎩1 2

3 1

⎫⎪⎭ and B =
⎧⎪⎩2 3

1 1

⎫⎪⎭
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then

AB =
⎧⎪⎩4 5

7 10

⎫⎪⎭ and B A =
⎧⎪⎩11 7

4 3

⎫⎪⎭
This proves that statement (ii) is false.

1. If the row echelon form of A involves free vari-
ables, then the system Ax = b will have infinitely
many solutions.

2. Every homogeneous linear system is consistent.

3. An n × n matrix A is nonsingular if and only if the
reduced row echelon form of A is I (the identity
matrix).

4. If A is nonsingular, then A can be factored into a
product of elementary matrices.

5. If A and B are nonsingular n × n matrices, then
A + B is also nonsingular and

(A + B)−1 = A−1 + B−1.

6. If A = A−1, then A must be equal to either I or
−I .

7. If A and B are n × n matrices, then

(A − B)2 = A2 − 2AB + B2.

8. If AB = AC and A �= O (the zero matrix), then
B = C .

9. If AB = O , then B A = O .

10. If A is a 3 × 3 matrix and a1 + 2a2 − a3 = 0, then
A must be singular.

11. If A is a 4 × 3 matrix and b = a1 + a3, then the
system Ax = b must be consistent.

12. Let A be a 4 × 3 matrix with a2 = a3. If b =
a1 + a2 + a3, then the system Ax = b will have
infinitely many solutions.

13. If E is an elementary matrix, then E T is also an
elementary matrix.

14. The product of two elementary matrices is an ele-
mentary matrix.

15. If x and y are nonzero vectors in R
n and A = xyT ,

then the row echelon form of A will have exactly
one nonzero row.

CHAPTER TEST B

1. Find all solutions of the linear system

x1 − x2 + 3x3 + 2x4 = 1

−x1 + x2 − 2x3 + x4 = −2

2x1 − 2x2 + 7x3 + 7x4 = 1

2. (a) A linear equation in two unknowns corre-
sponds to a line in the plane. Give a similar
geometric interpretation of a linear equation in
three unknowns.

(b) Given a linear system consisting of two equa-
tions in three unknowns, what is the possible
number of solutions? Give a geometric expla-
nation of your answer.

(c) Given a homogeneous linear system consisting
of two equations in three unknowns, how many
solutions will it have? Explain.

3. Let Ax = b be a system of n linear equations in
n unknowns, and suppose that x1 and x2 are both
solutions and x1 �= x2.
(a) How many solutions will the system have? Ex-

plain.
(b) Is the matrix A nonsingular? Explain.

4. Let A be a matrix of the form

A =
⎧⎪⎩ α β

2α 2β

⎫⎪⎭

where α and β are fixed scalars not both equal to 0.
(a) Explain why the system

Ax =
⎧⎪⎩3

1

⎫⎪⎭
must be inconsistent.

(b) How can one choose a nonzero vector b so that
the system Ax = b will be consistent? Ex-
plain.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
4 2 7
1 3 5

⎫⎪⎪⎪⎪⎪⎭ B =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
1 3 5
4 2 7

⎫⎪⎪⎪⎪⎪⎭
C =

⎧⎪⎪⎪⎪⎪⎩
0 1 3
0 2 7

−5 3 5

⎫⎪⎪⎪⎪⎪⎭
(a) Find an elementary matrix E such that

E A = B.
(b) Find an elementary matrix F such that

AF = C .

6. Let A be a 3 × 3 matrix and let

b = 3a1 + a2 + 4a3

Will the system Ax = b be consistent? Explain.
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7. Let A be a 3 × 3 matrix and suppose that

a1 − 3a2 + 2a3 = 0 (the zero vector)

Is A nonsingular? Explain.
8. Given the vector

x0 =
⎧⎪⎩1

1

⎫⎪⎭
is it possible to find 2 × 2 matrices A and B so that
A �= B and Ax0 = Bx0? Explain.

9. Let A and B be symmetric n × n matrices and let
C = AB. Is C symmetric? Explain.

10. Let E and F be n × n elementary matrices and let
C = E F . Is C nonsingular? Explain.

11. Given

A =
⎧⎪⎪⎪⎪⎪⎩

I O O
O I O
O B I

⎫⎪⎪⎪⎪⎪⎭

where all of the submatrices are n × n, determine
the block form of A−1.

12. Let A and B be 10×10 matrices that are partitioned
into submatrices as follows:

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭ B =
⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(a) If A11 is a 6 × 5 matrix and B11 is a k × r ma-

trix, what conditions, if any, must k and r sat-
isfy in order to make the block multiplication
of A times B possible?

(b) Assuming that the block multiplication is pos-
sible, how would the (2, 2) block of the prod-
uct be determined?
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Determinants
With each square matrix, it is possible to associate a real number called the determinant
of the matrix. The value of this number will tell us whether the matrix is singular.

In Section 1, the definition of the determinant of a matrix is given. In Section 2,
we study properties of determinants and derive an elimination method for evaluating
determinants. The elimination method is generally the simplest method to use for
evaluating the determinant of an n × n matrix when n > 3. In Section 3, we see
how determinants can be applied to solving n × n linear systems and how they can be
used to calculate the inverse of a matrix. Applications of determinants to cryptography
and to Newtonian mechanics are also presented in Section 3. Further applications of
determinants are presented in Chapters 3 and 6.

2.1 The Determinant of a Matrix

With each n × n matrix A, it is possible to associate a scalar, det(A), whose value will
tell us whether the matrix is nonsingular. Before proceeding to the general definition,
let us consider the following cases:

Case 1. 1 × 1 Matrices If A = (a) is a 1×1 matrix, then A will have a multiplicative
inverse if and only if a �= 0. Thus, if we define

det(A) = a

then A will be nonsingular if and only if det(A) �= 0.

Case 2. 2 × 2 Matrices Let

A =
⎧⎪⎩a11 a12

a21 a22

⎫⎪⎭
By Theorem 1.5.2, A will be nonsingular if and only if it is row equivalent to I . Then,
if a11 �= 0, we can test whether A is row equivalent to I by performing the following
operations:

84
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1. Multiply the second row of A by a11⎧⎪⎩ a11 a12

a11a21 a11a22

⎫⎪⎭
2. Subtract a21 times the first row from the new second row⎧⎪⎩a11 a12

0 a11a22 − a21a12

⎫⎪⎭
Since a11 �= 0, the resulting matrix will be row equivalent to I if and only if

a11a22 − a21a12 �= 0 (1)

If a11 = 0, we can switch the two rows of A. The resulting matrix⎧⎪⎩a21 a22

0 a12

⎫⎪⎭
will be row equivalent to I if and only if a21a12 �= 0. This requirement is equivalent to
condition (1) when a11 = 0. Thus, if A is any 2 × 2 matrix and we define

det(A) = a11a22 − a12a21

then A is nonsingular if and only if det(A) �= 0.

Notation

We can refer to the determinant of a specific matrix by enclosing the array between
vertical lines. For example, if

A =
⎧⎪⎩3 4

2 1

⎫⎪⎭
then ∣∣∣∣3 4

2 1

∣∣∣∣
represents the determinant of A.

Case 3. 3 × 3 Matrices We can test whether a 3×3 matrix is nonsingular by perform-
ing row operations to see if the matrix is row equivalent to the identity matrix I . To
carry out the elimination in the first column of an arbitrary 3 × 3 matrix A, let us first
assume that a11 �= 0. The elimination can then be performed by subtracting a21/a11

times the first row from the second and a31/a11 times the first row from the third:

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 a13

0
a11a22 − a21a12

a11

a11a23 − a21a13

a11

0
a11a32 − a31a12

a11

a11a33 − a31a13

a11

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The matrix on the right will be row equivalent to I if and only if

a11

∣∣∣∣∣∣∣∣
a11a22 − a21a12

a11

a11a23 − a21a13

a11

a11a32 − a31a12

a11

a11a33 − a31a13

a11

∣∣∣∣∣∣∣∣ �= 0

Although the algebra is somewhat messy, this condition can be simplified to

a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23

+ a13a21a32 − a13a31a22 �= 0 (2)

Thus, if we define

det(A) = a11a22a33 − a11a32a23 − a12a21a33 (3)

+ a12a31a23 + a13a21a32 − a13a31a22

then, for the case a11 �= 0, the matrix will be nonsingular if and only if det(A) �= 0.
What if a11 = 0? Consider the following possibilities:

(i) a11 = 0, a21 �= 0

(ii) a11 = a21 = 0, a31 �= 0

(iii) a11 = a21 = a31 = 0

In case (i), it is not difficult to show that A is row equivalent to I if and only if

−a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22 �= 0

But this condition is the same as condition (2) with a11 = 0. The details of case (i) are
left as an exercise for the reader (see Exercise 7 at the end of this section).

In case (ii), it follows that

A =
⎧⎪⎪⎪⎪⎪⎩

0 a12 a13

0 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
is row equivalent to I if and only if

a31(a12a23 − a22a13) �= 0

Again, this is a special case of condition (2) with a11 = a21 = 0.
Clearly, in case (iii) the matrix A cannot be row equivalent to I and hence must

be singular. In this case, if we set a11, a21, and a31 equal to 0 in formula (3), the result
will be det(A) = 0.

In general, then, formula (2) gives a necessary and sufficient condition for a 3 × 3
matrix A to be nonsingular (regardless of the value of a11).

We would now like to define the determinant of an n × n matrix. To see how to do
this, note that the determinant of a 2 × 2 matrix

A =
⎧⎪⎩a11 a12

a21 a22

⎫⎪⎭
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can be defined in terms of the two 1 × 1 matrices

M11 = (a22) and M12 = (a21)

The matrix M11 is formed from A by deleting its first row and first column, and M12 is
formed from A by deleting its first row and second column.

The determinant of A can be expressed in the form

det(A) = a11a22 − a12a21 = a11 det(M11) − a12 det(M12) (4)

For a 3 × 3 matrix A, we can rewrite equation (3) in the form

det(A) = a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

For j = 1, 2, 3, let M1 j denote the 2×2 matrix formed from A by deleting its first row
and j th column. The determinant of A can then be represented in the form

det(A) = a11 det(M11) − a12 det(M12) + a13 det(M13) (5)

where

M11 =
⎧⎪⎩a22 a23

a32 a33

⎫⎪⎭ , M12 =
⎧⎪⎩a21 a23

a31 a33

⎫⎪⎭ , M13 =
⎧⎪⎩a21 a22

a31 a32

⎫⎪⎭
To see how to generalize (4) and (5) to the case n > 3, we introduce the following

definition:

Definition Let A = (ai j ) be an n × n matrix, and let Mi j denote the (n − 1) × (n − 1) matrix
obtained from A by deleting the row and column containing ai j . The determinant
of Mi j is called the minor of ai j . We define the cofactor Ai j of ai j by

Ai j = (−1)i+ j det(Mi j )

In view of this definition, for a 2 × 2 matrix A, we may rewrite equation (4) in the
form

det(A) = a11 A11 + a12 A12 (n = 2) (6)

Equation (6) is called the cofactor expansion of det(A) along the first row of A. Note
that we could also write

det(A) = a21(−a12) + a22a11 = a21 A21 + a22 A22 (7)

Equation (7) expresses det(A) in terms of the entries of the second row of A and their
cofactors. Actually, there is no reason that we must expand along a row of the matrix;
the determinant could just as well be represented by the cofactor expansion along one
of the columns:

det(A) = a11a22 + a21(−a12)

= a11 A11 + a21 A21 (first column)

det(A) = a12(−a21) + a22a11

= a12 A12 + a22 A22 (second column)



88 Chapter 2 Determinants

For a 3 × 3 matrix A, we have

det(A) = a11 A11 + a12 A12 + a13 A13 (8)

Thus, the determinant of a 3 × 3 matrix can be defined in terms of the elements in the
first row of the matrix and their corresponding cofactors.

EXAMPLE 1 If

A =
⎧⎪⎪⎪⎪⎪⎩

2 5 4
3 1 2
5 4 6

⎫⎪⎪⎪⎪⎪⎭
then

det(A) = a11 A11 + a12 A12 + a13 A13

= (−1)2a11 det(M11) + (−1)3a12 det(M12) + (−1)4a13 det(M13)

= 2

∣∣∣∣1 2
4 6

∣∣∣∣ − 5

∣∣∣∣3 2
5 6

∣∣∣∣ + 4

∣∣∣∣3 1
5 4

∣∣∣∣
= 2(6 − 8) − 5(18 − 10) + 4(12 − 5)

= −16

As in the case of 2×2 matrices, the determinant of a 3×3 matrix can be represented
as a cofactor expansion using any row or column. For example, equation (3) can be
rewritten in the form

det(A) = a12a31a23 − a13a31a22 − a11a32a23 + a13a21a32 + a11a22a33 − a12a21a33

= a31(a12a23 − a13a22) − a32(a11a23 − a13a21) + a33(a11a22 − a12a21)

= a31 A31 + a32 A32 + a33 A33

This is the cofactor expansion along the third row of A.

EXAMPLE 2 Let A be the matrix in Example 1. The cofactor expansion of det(A) along the second
column is given by

det(A) = −5

∣∣∣∣3 2
5 6

∣∣∣∣ + 1

∣∣∣∣2 4
5 6

∣∣∣∣ − 4

∣∣∣∣2 4
3 2

∣∣∣∣
= −5(18 − 10) + 1(12 − 20) − 4(4 − 12) = −16

The determinant of a 4 × 4 matrix can be defined in terms of a cofactor expansion
along any row or column. To compute the value of the 4 × 4 determinant, we would
have to evaluate four 3 × 3 determinants.
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Definition The determinant of an n × n matrix A, denoted det(A), is a scalar associated with
the matrix A that is defined inductively as

det(A) =
{

a11 if n = 1
a11 A11 + a12 A12 + · · · + a1n A1n if n > 1

where
A1 j = (−1)1+ j det(M1 j ) j = 1, . . . , n

are the cofactors associated with the entries in the first row of A.

As we have seen, it is not necessary to limit ourselves to using the first row for the
cofactor expansion. We state the following theorem without proof:

Theorem 2.1.1 If A is an n×n matrix with n ≥ 2, then det(A) can be expressed as a cofactor expansion
using any row or column of A; that is,

det(A) = ai1 Ai1 + ai2 Ai2 + · · · + ain Ain

= a1 j A1 j + a2 j A2 j + · · · + anj Anj

for i = 1, . . . , n and j = 1, . . . , n.

The cofactor expansion of a 4×4 determinant will involve four 3×3 determinants.
We can often save work by expanding along the row or column that contains the most
zeros. For example, to evaluate ∣∣∣∣∣∣∣

0 2 3 0
0 4 5 0
0 1 0 3
2 0 1 3

∣∣∣∣∣∣∣
we would expand down the first column. The first three terms will drop out, leaving

−2

∣∣∣∣∣∣
2 3 0
4 5 0
1 0 3

∣∣∣∣∣∣ = −2 · 3 ·
∣∣∣∣2 3
4 5

∣∣∣∣ = 12

For n ≤ 3, we have seen that an n × n matrix A is nonsingular if and only if
det(A) �= 0. In the next section, we will show that this result holds for all values
of n. In that section we also look at the effect of row operations on the value of the
determinant, and we will make use of row operations to derive a more efficient method
for computing the value of a determinant.

We close this section with three theorems that are simple consequences of the
cofactor expansion definition. The proofs of the last two theorems are left for the
reader (see Exercises 8, 9, and 10 at the end of this section).

Theorem 2.1.2 If A is an n × n matrix, then det(AT ) = det(A).
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Proof The proof is by induction on n. Clearly, the result holds if n = 1, since a 1 × 1 matrix
is necessarily symmetric. Assume that the result holds for all k × k matrices and that
A is a (k + 1) × (k + 1) matrix. Expanding det(A) along the first row of A, we get

det(A) = a11 det(M11) − a12 det(M12) + − · · · ± a1,k+1 det(M1,k+1)

Since the Mi j ’s are all k × k matrices, it follows from the induction hypothesis that

det(A) = a11 det(MT
11) − a12 det(MT

12) + − · · · ± a1,k+1 det(MT
1,k+1) (9)

The right-hand side of (9) is just the expansion by minors of det(AT ) using the first
column of AT . Therefore,

det(AT ) = det(A)

Theorem 2.1.3 If A is an n × n triangular matrix, then the determinant of A equals the product of the
diagonal elements of A.

Proof In view of Theorem 2.1.2, it suffices to prove the theorem for lower triangular matrices.
The result follows easily using the cofactor expansion and induction on n. The details
are left for the reader (see Exercise 8 at the end of the section).

Theorem 2.1.4 Let A be an n × n matrix.

(i) If A has a row or column consisting entirely of zeros, then det(A) = 0.

(ii) If A has two identical rows or two identical columns, then det(A) = 0.

Both of these results can be easily proved with the use of the cofactor expansion.
The proofs are left for the reader (see Exercises 9 and 10 at the end of the section).

In the next section, we look at the effect of row operations on the value of the
determinant. This will allow us to make use of Theorem 2.1.3 to derive a more efficient
method for computing the value of a determinant.

SECTION 2.1 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 2 4
1 −2 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
(a) Find the values of det(M21), det(M22), and

det(M23).

(b) Find the values of A21, A22, and A23.

(c) Use your answers from part (b) to compute
det(A).

2. Use determinants to determine whether the follow-
ing 2 × 2 matrices are nonsingular:

(a)
⎧⎪⎩3 5

2 4

⎫⎪⎭ (b)
⎧⎪⎩3 6

2 4

⎫⎪⎭
(c)

⎧⎪⎩3 −6
2 4

⎫⎪⎭
3. Evaluate the following determinants:

(a)

∣∣∣∣ 3 5
−2 −3

∣∣∣∣ (b)

∣∣∣∣ 5 −2
−8 4

∣∣∣∣
(c)

∣∣∣∣∣∣
3 1 2
2 4 5
2 4 5

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣
4 3 0
3 1 2
5 −1 −4

∣∣∣∣∣∣
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(e)

∣∣∣∣∣∣
1 3 2
4 1 −2
2 1 3

∣∣∣∣∣∣ (f)

∣∣∣∣∣∣
2 −1 2
1 3 2
5 1 6

∣∣∣∣∣∣
(g)

∣∣∣∣∣∣∣
2 0 0 1
0 1 0 0
1 6 2 0
1 1 −2 3

∣∣∣∣∣∣∣

(h)

∣∣∣∣∣∣∣
2 1 2 1
3 0 1 1

−1 2 −2 1
−3 2 3 1

∣∣∣∣∣∣∣
4. Evaluate the following determinants by inspection:

(a)

∣∣∣∣3 5
2 4

∣∣∣∣ (b)

∣∣∣∣∣∣
2 0 0
4 1 0
7 3 −2

∣∣∣∣∣∣
(c)

∣∣∣∣∣∣
3 0 0
2 1 1
1 2 2

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣∣
4 0 2 1
5 0 4 2
2 0 3 4
1 0 2 3

∣∣∣∣∣∣∣
5. Evaluate the following determinant. Write your an-

swer as a polynomial in x .

∣∣∣∣∣∣
a − x b c

1 −x 0
0 1 −x

∣∣∣∣∣∣
6. Find all values of λ for which the following deter-

minant will equal 0:

∣∣∣∣2 − λ 4
3 3 − λ

∣∣∣∣

7. Let A be a 3 × 3 matrix with a11 = 0 and a21 �= 0.
Show that A is row equivalent to I if and only if

− a12a21a33 + a12a31a23

+ a13a21a32 − a13a31a22 �= 0

8. Write out the details of the proof of Theorem 2.1.3.

9. Prove that if a row or a column of an n × n matrix
A consists entirely of zeros, then det(A) = 0.

10. Use mathematical induction to prove that if A is an
(n + 1) × (n + 1) matrix with two identical rows,
then det(A) = 0.

11. Let A and B be 2 × 2 matrices.
(a) Does det(A + B) = det(A) + det(B)?
(b) Does det(AB) = det(A) det(B)?
(c) Does det(AB) = det(BA)?
Justify your answers.

12. Let A and B be 2 × 2 matrices and let

C =
⎧⎪⎩a11 a12

b21 b22

⎫⎪⎭ , D =
⎧⎪⎩b11 b12

a21 a22

⎫⎪⎭ ,

E =
⎧⎪⎩ 0 α

β 0

⎫⎪⎭
(a) Show that det(A + B) = det(A) + det(B) +

det(C) + det(D).
(b) Show that if B = EA then det(A + B) =

det(A) + det(B).

13. Let A be a symmetric tridiagonal matrix (i.e., A is
symmetric and ai j = 0 whenever |i − j | > 1). Let
B be the matrix formed from A by deleting the first
two rows and columns. Show that

det(A) = a11 det(M11) − a2
12 det(B)

2.2 Properties of Determinants

In this section, we consider the effects of row operations on the determinant of a matrix.
Once these effects have been established, we will prove that a matrix A is singular
if and only if its determinant is zero, and we will develop a method for evaluating
determinants by using row operations. Also, we will establish an important theorem
about the determinant of the product of two matrices. We begin with the following
lemma:

Lemma 2.2.1 Let A be an n × n matrix. If A jk denotes the cofactor of a jk for k = 1, . . . , n, then

ai1 A j1 + ai2 A j2 + · · · + ain A jn =
{

det(A) if i = j
0 if i �= j

(1)
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Proof If i = j , (1) is just the cofactor expansion of det(A) along the i th row of A. To prove
(1) in the case i �= j , let A∗ be the matrix obtained by replacing the j th row of A by
the i th row of A:

A∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n
...

ai1 ai2 · · · ain
...

ai1 ai2 · · · ain
...

an1 an2 · · · ann

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j th row

Since two rows of A∗ are the same, its determinant must be zero. It follows from the
cofactor expansion of det(A∗) along the j th row that

0 = det(A∗) = ai1 A∗
j1 + ai2 A∗

j2 + · · · + ain A∗
jn

= ai1 A j1 + ai2 A j2 + · · · + ain A jn

Let us now consider the effects of each of the three row operations on the value of
the determinant.

Row Operation I

Two rows of A are interchanged.

If A is a 2 × 2 matrix and

E =
⎧⎪⎩0 1

1 0

⎫⎪⎭
then

det(E A) =
∣∣∣∣a21 a22

a11 a12

∣∣∣∣ = a21a12 − a22a11 = − det(A)

For n > 2, let Ei j be the elementary matrix that switches rows i and j of A. It is
a simple induction proof to show that det(Ei j A) = − det(A). We illustrate the idea
behind the proof for the case n = 3. Suppose that the first and third rows of a 3 × 3
matrix A have been interchanged. Expanding det(E13 A) along the second row and
making use of the result for 2 × 2 matrices, we see that

det(E13 A) =
∣∣∣∣∣∣
a31 a32 a33

a21 a22 a23

a11 a12 a13

∣∣∣∣∣∣
= −a21

∣∣∣∣a32 a33

a12 a13

∣∣∣∣ + a22

∣∣∣∣a31 a33

a11 a13

∣∣∣∣ − a23

∣∣∣∣a31 a32

a11 a12

∣∣∣∣
= a21

∣∣∣∣a12 a13

a32 a33

∣∣∣∣ − a22

∣∣∣∣a11 a13

a31 a33

∣∣∣∣ + a23

∣∣∣∣a11 a12

a31 a32

∣∣∣∣
= − det(A)
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In general, if A is an n × n matrix and Ei j is the n × n elementary matrix formed by
interchanging the i th and j th rows of I , then

det(Ei j A) = − det(A)

In particular,
det(Ei j ) = det(Ei j I ) = − det(I ) = −1

Thus, for any elementary matrix E of type I,

det(EA) = − det(A) = det(E) det(A)

Row Operation II

A row of A is multiplied by a nonzero constant.

Let E denote the elementary matrix of type II formed from I by multiplying the
i th row by the nonzero constant α. If det(EA) is expanded by cofactors along the i th
row, then

det(E A) = αai1 Ai1 + αai2 Ai2 + · · · + αain Ain

= α(ai1 Ai1 + ai2 Ai2 + · · · + ain Ain)

= α det(A)

In particular,
det(E) = det(E I ) = α det(I ) = α

and hence,
det(EA) = α det(A) = det(E) det(A)

Row Operation III

A multiple of one row is added to another row.

Let E be the elementary matrix of type III formed from I by adding c times the i th
row to the j th row. Since E is triangular and its diagonal elements are all 1, it follows
that det(E) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the j th row, it follows from Lemma 2.2.1
that

det(E A) = (a j1 + cai1)A j1 + (a j2 + cai2)A j2 + · · · + (a jn +cain)A jn

= (a j1 A j1 + · · · + a jn A jn) + c(ai1 A j1 + · · · + ain A jn)

= det(A)

Thus,
det(E A) = det(A) = det(E) det(A)
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SUMMARY In summation, if E is an elementary matrix, then

det(E A) = det(E) det(A)

where

det(E) =

⎧⎪⎨
⎪⎩

−1 if E is of type I
α �= 0 if E is of type II

1 if E is of type III

(2)

Similar results hold for column operations. Indeed, if E is an elementary matrix,
then ET is also an elementary matrix (see Exercise 8 at the end of this section) and

det(AE) = det
(
(AE)T

) = det
(
ET AT

)
= det

(
ET

)
det

(
AT

) = det(E) det(A)

Thus, the effects that row or column operations have on the value of the determinant
can be summarized as follows:

I. Interchanging two rows (or columns) of a matrix changes the sign of the
determinant.

II. Multiplying a single row or column of a matrix by a scalar has the effect
of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the
value of the determinant.

Note

As a consequence of III, if one row (or column) of a matrix is a multiple of another,
the determinant of the matrix must equal zero.

Main Results

We can now make use of the effects of row operations on determinants to prove two ma-
jor theorems and to establish a simpler method of computing determinants. It follows
from (2) that all elementary matrices have nonzero determinants. This observation can
be used to prove the following theorem:

Theorem 2.2.2 An n × n matrix A is singular if and only if

det(A) = 0

Proof The matrix A can be reduced to row echelon form with a finite number of row opera-
tions. Thus,

U = Ek Ek−1 · · · E1 A

where U is in row echelon form and the Ei ’s are all elementary matrices. It follows
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that

det(U ) = det(Ek Ek−1 · · · E1 A)

= det(Ek) det(Ek−1) · · · det(E1) det(A)

Since the determinants of the Ei ’s are all nonzero, it follows that det(A) = 0 if and
only if det(U ) = 0. If A is singular, then U has a row consisting entirely of zeros,
and hence det(U ) = 0. If A is nonsingular, then U is triangular with 1’s along the
diagonal, and hence det(U ) = 1.

From the proof of Theorem 2.2.2, we can obtain a method for computing det(A).
We reduce A to row echelon form:

U = Ek Ek−1 · · · E1 A

If the last row of U consists entirely of zeros, A is singular and det(A) = 0. Otherwise,
A is nonsingular and

det(A) = [
det(Ek) det(Ek−1) · · · det(E1)

]−1

Actually, if A is nonsingular, it is simpler to reduce A to triangular form. This can be
done using only row operations I and III. Thus,

T = Em Em−1 · · · E1 A

and hence,
det(A) = ± det(T ) = ±t11t22 · · · tnn

where the tii ’s are the diagonal entries of T . The sign will be positive if row operation
I has been used an even number of times and negative otherwise.

EXAMPLE 1 Evaluate ∣∣∣∣∣∣
2 1 3
4 2 1
6 −3 4

∣∣∣∣∣∣
Solution

∣∣∣∣∣∣
2 1 3
4 2 1
6 −3 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 1 3
0 0 −5
0 −6 −5

∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣
2 1 3
0 −6 −5
0 0 −5

∣∣∣∣∣∣
= (−1)(2)(−6)(−5)

= −60

We now have two methods for evaluating the determinant of an n × n matrix A.
If n > 3 and A has nonzero entries, elimination is the most efficient method, in the
sense that it involves fewer arithmetic operations. In Table 1, the number of arithmetic
operations involved in each method is given for n = 2, 3, 4, 5, 10. It is not difficult



96 Chapter 2 Determinants

Table 1

Cofactors Elimination

Multiplications
n Additions Multiplications Additions and Divisions

2

3

4

5

10

1

5

23

119

3,628,799

2

9

40

205

6,235,300

1

5

14

30

285

3

10

23

44

339

to derive general formulas for the number of operations in each of the methods (see
Exercises 20 and 21 at the end of the section).

We have seen that, for any elementary matrix E ,

det(EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem:

Theorem 2.2.3 If A and B are n × n matrices, then

det(AB) = det(A) det(B)

Proof If B is singular, it follows from Theorem 1.5.2 that AB is also singular (see Exercise 14
of Chapter 1, Section 5), and therefore,

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of elementary matrices. We have
already seen that the result holds for elementary matrices. Thus,

det(AB) = det(AEk Ek−1 · · · E1)

= det(A) det(Ek) det(Ek−1) · · · det(E1)

= det(A) det(Ek Ek−1 · · · E1)

= det(A) det(B)

If A is singular, the computed value of det(A) using exact arithmetic must be
0. However, this result is unlikely if the computations are done by computer. Since
computers use a finite number system, roundoff errors are usually unavoidable. Con-
sequently, it is more likely that the computed value of det(A) will only be near 0.
Because of roundoff errors, it is virtually impossible to determine computationally
whether a matrix is exactly singular. In computer applications, it is often more mean-
ingful to ask whether a matrix is “close” to being singular. In general, the value of
det(A) is not a good indicator of nearness to singularity. In Section 5 of Chapter 6, we
will discuss how to determine whether a matrix is close to being singular.
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SECTION 2.2 EXERCISES
1. Evaluate each of the following determinants by in-

spection:

(a)

∣∣∣∣∣∣
0 0 3
0 4 1
2 3 1

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣
1 1 1 3
0 3 1 1
0 0 2 2

−1 −1 −1 2

∣∣∣∣∣∣∣
(c)

∣∣∣∣∣∣∣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣
2. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 2 3
1 1 1 1

−2 −2 3 3
1 2 −2 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use the elimination method to evaluate det(A).

(b) Use the value of det(A) to evaluate

∣∣∣∣∣∣∣
0 1 2 3

−2 −2 3 3
1 2 −2 −3
1 1 1 1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
0 1 2 3
1 1 1 1

−1 −1 4 4
2 3 −1 −2

∣∣∣∣∣∣∣
3. For each of the following, compute the determinant

and state whether the matrix is singular or nonsin-
gular:

(a)
⎧⎪⎩3 1

6 2

⎫⎪⎭ (b)
⎧⎪⎩3 1

4 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
3 3 1
0 1 2
0 2 3

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
4 3 5
2 1 2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
2 −1 3

−1 2 −2
1 4 0

⎫⎪⎪⎪⎪⎪⎭

(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
2 −1 3 2
0 1 2 1
0 0 7 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

4. Find all possible choices of c that would make the
following matrix singular:⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 9 c
1 c 3

⎫⎪⎪⎪⎪⎪⎭
5. Let A be an n × n matrix and α a scalar. Show that

det(αA) = αn det(A)

6. Let A be a nonsingular matrix. Show that

det(A−1) = 1

det(A)

7. Let A and B be 3×3 matrices with det(A) = 4 and
det(B) = 5. Find the value of
(a) det(AB) (b) det(3A)

(c) det(2AB) (d) det(A−1 B)

8. Show that if E is an elementary matrix, then E T is
an elementary matrix of the same type as E .

9. Let E1, E2, and E3 be 3 × 3 elementary matrices of
types I, II, and III, respectively, and let A be a 3×3
matrix with det(A) = 6. Assume, additionally, that
E2 was formed from I by multiplying its second
row by 3. Find the values of each of the following:
(a) det(E1 A) (b) det(E2 A)

(c) det(E3 A) (d) det(AE1)

(e) det(E2
1) (f) det(E1 E2 E3)

10. Let A and B be row equivalent matrices, and sup-
pose that B can be obtained from A by using only
row operations I and III. How do the values of
det(A) and det(B) compare? How will the values
compare if B can be obtained from A by using only
row operation III? Explain your answers.

11. Let A be an n × n matrix. Is it possible for A2+I =
O in the case where n is odd? Answer the same
question in the case where n is even.

12. Consider the 3 × 3 Vandermonde matrix

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that det(V ) = (x2−x1)(x3−x1)(x3−x2).

[Hint: Make use of row operation III.]

(b) What conditions must the scalars x1, x2, and x3

satisfy in order for V to be nonsingular?
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13. Suppose that a 3×3 matrix A factors into a product⎧⎪⎪⎪⎪⎪⎩
1 0 0

l21 1 0
l31 l32 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

u11 u12 u13

0 u22 u23

0 0 u33

⎫⎪⎪⎪⎪⎪⎭
Determine the value of det(A).

14. Let A and B be n ×n matrices. Prove that the prod-
uct AB is nonsingular if and only if A and B are
both nonsingular.

15. Let A and B be n × n matrices. Prove that if
AB = I , then BA = I . What is the significance
of this result in terms of the definition of a nonsin-
gular matrix?

16. A matrix A is said to be skew symmetric if
AT = −A. For example,

A =
⎧⎪⎩ 0 1

−1 0

⎫⎪⎭
is skew symmetric, since

AT =
⎧⎪⎩0 −1

1 0

⎫⎪⎭ = −A

If A is an n × n skew-symmetric matrix and n is
odd, show that A must be singular.

17. Let A be a nonsingular n ×n matrix with a nonzero
cofactor Ann , and set

c = det(A)

Ann

Show that if we subtract c from ann , then the result-
ing matrix will be singular.

18. Let A be a k × k matrix and let B be an
(n − k) × (n − k) matrix. Let

E =
⎧⎪⎩ Ik O

O B

⎫⎪⎭ , F =
⎧⎪⎩ A O

O In−k

⎫⎪⎭ ,

C =
⎧⎪⎩ A O

O B

⎫⎪⎭
where Ik and In−k are the k × k and
(n − k) × (n − k) identity matrices.
(a) Show that det(E) = det(B).
(b) Show that det(F) = det(A).
(c) Show that det(C) = det(A) det(B).

19. Let A and B be k × k matrices and let

M =
⎧⎪⎩O B

A O

⎫⎪⎭
Show that det(M) = (−1)k det(A) det(B).

20. Show that evaluating the determinant of an n × n
matrix by cofactors involves (n! − 1) additions and
n−1∑
k=1

n!/k! multiplications.

21. Show that the elimination method of computing
the value of the determinant of an n × n ma-
trix involves [n(n − 1)(2n − 1)]/6 additions and
[(n − 1)(n2 + n + 3)]/3 multiplications and di-
visions. [Hint: At the ith step of the reduction
process, it takes n − i divisions to calculate the
multiples of the ith row that are to be subtracted
from the remaining rows below the pivot. We must
then calculate new values for the (n − i)2 entries in
rows i +1 through n and columns i +1 through n.]

2.3 Additional Topics and Applications

In this section, we learn a method for computing the inverse of a nonsingular matrix
A using determinants and we learn a method for solving linear systems using determi-
nants. Both methods depend on Lemma 2.2.1. We also show how to use determinants
to define the cross product of two vectors. The cross product is useful in physics appli-
cations involving the motion of a particle in 3-space.
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The Adjoint of a Matrix

Let A be an n × n matrix. We define a new matrix called the adjoint of A by

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 A21 · · · An1
A12 A22 · · · An2

...
A1n A2n · · · Ann

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, to form the adjoint, we must replace each term by its cofactor and then transpose
the resulting matrix. By Lemma 2.2.1,

ai1 A j1 + ai2 A j2 + · · · + ain A jn =
{

det(A) if i = j
0 if i �= j

and it follows that

A(adj A) = det(A)I

If A is nonsingular, det(A) is a nonzero scalar, and we may write

A

(
1

det(A)
adj A

)
= I

Thus,

A−1 = 1

det(A)
adj A when det(A) �= 0

EXAMPLE 1 For a 2 × 2 matrix,

adj A =
⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
If A is nonsingular, then

A−1 = 1

a11a22 − a12a21

⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 2
3 2 2
1 2 3

⎫⎪⎪⎪⎪⎪⎭
Compute adj A and A−1.
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Solution

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣2 2
2 3

∣∣∣∣ −
∣∣∣∣3 2
1 3

∣∣∣∣
∣∣∣∣3 2
1 2

∣∣∣∣
−
∣∣∣∣1 2
2 3

∣∣∣∣
∣∣∣∣2 2
1 3

∣∣∣∣ −
∣∣∣∣2 1
1 2

∣∣∣∣∣∣∣∣1 2
2 2

∣∣∣∣ −
∣∣∣∣2 2
3 2

∣∣∣∣
∣∣∣∣2 1
3 2

∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

=
⎧⎪⎪⎪⎪⎪⎩

2 1 −2
−7 4 2

4 −3 1

⎫⎪⎪⎪⎪⎪⎭

A−1 = 1

det(A)
adj A = 1

5

⎧⎪⎪⎪⎪⎪⎩
2 1 −2

−7 4 2
4 −3 1

⎫⎪⎪⎪⎪⎪⎭
Using the formula

A−1 = 1

det(A)
adj A

we can derive a rule for representing the solution to the system Ax = b in terms of
determinants.

Cramer’s Rule

Theorem 2.3.1 Cramer's Rule
Let A be an n × n nonsingular matrix, and let b ∈ R

n . Let Ai be the matrix obtained
by replacing the i th column of A by b. If x is the unique solution of Ax = b, then

xi = det(Ai )

det(A)
for i = 1, 2, . . . , n

Proof Since

x = A−1b = 1

det(A)
(adj A)b

it follows that

xi = b1 A1i + b2 A2i + · · · + bn Ani

det(A)

= det(Ai )

det(A)

EXAMPLE 3 Use Cramer’s rule to solve

x1 + 2x2 + x3 = 5
2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9
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Solution

det(A) =
∣∣∣∣∣∣
1 2 1
2 2 1
1 2 3

∣∣∣∣∣∣ = −4 det(A1) =
∣∣∣∣∣∣
5 2 1
6 2 1
9 2 3

∣∣∣∣∣∣ = −4

det(A2) =
∣∣∣∣∣∣
1 5 1
2 6 1
1 9 3

∣∣∣∣∣∣ = −4 det(A3) =
∣∣∣∣∣∣
1 2 5
2 2 6
1 2 9

∣∣∣∣∣∣ = −8

Therefore,

x1 = −4

−4
= 1, x2 = −4

−4
= 1, x3 = −8

−4
= 2

Cramer’s rule gives us a convenient method for writing the solution of an n × n
system of linear equations in terms of determinants. To compute the solution, however,
we must evaluate n + 1 determinants of order n. Evaluating even two of these deter-
minants generally involves more computation than solving the system using Gaussian
elimination.

APPLICATION 1 Coded Messages

A common way of sending a coded message is to assign an integer value to each letter
of the alphabet and to send the message as a string of integers. For example, the
message

SEND MONEY

might be coded as
5, 8, 10, 21, 7, 2, 10, 8, 3

Here the S is represented by a 5, the E by an 8, and so on. Unfortunately, this type of
code is generally easy to break. In a longer message we might be able to guess which
letter is represented by a number on the basis of the relative frequency of occurrence
of that number. For example, if 8 is the most frequently occurring number in the
coded message, then it is likely that it represents the letter E, the letter that occurs most
frequently in the English language.

We can disguise the message further by using matrix multiplications. If A is a
matrix whose entries are all integers and whose determinant is ±1, then, since A−1 =
± adj A, the entries of A−1 will be integers. We can use such a matrix to transform the
message. The transformed message will be more difficult to decipher. To illustrate the
technique, let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
2 5 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
The coded message is put into the columns of a matrix B having three rows:

B =
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭
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The product

AB =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
2 5 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

31 37 29
80 83 69
54 67 50

⎫⎪⎪⎪⎪⎪⎭
gives the coded message to be sent:

31, 80, 54, 37, 83, 67, 29, 69, 50

The person receiving the message can decode it by multiplying by A−1:⎧⎪⎪⎪⎪⎪⎩
1 −1 1
2 0 −1

−4 1 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

31 37 29
80 83 69
54 67 50

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭
To construct a coding matrix A, we can begin with the identity I and successively

apply row operation III, being careful to add integer multiples of one row to another.
Row operation I can also be used. The resulting matrix A will have integer entries, and
since

det(A) = ± det(I ) = ±1

A−1 will also have integer entries.

References
1. Hansen, Robert, Two-Year College Mathematics Journal, 13(1), 1982.

The Cross Product

Given two vectors x and y in R
3, one can define a third vector, the cross product,

denoted x × y, by

x × y =
⎧⎪⎪⎪⎪⎪⎩

x2 y3 − y2x3

y1x3 − x1 y3

x1 y2 − y1x2

⎫⎪⎪⎪⎪⎪⎭ (1)

If C is any matrix of the form

C =
⎧⎪⎪⎪⎪⎪⎩

w1 w2 w3

x1 x2 x3

y1 y2 y3

⎫⎪⎪⎪⎪⎪⎭
then

x × y = C11e1 + C12e2 + C13e3 =
⎧⎪⎪⎪⎪⎪⎩

C11

C12

C13

⎫⎪⎪⎪⎪⎪⎭
Expanding det(C) by cofactors along the first row, we see that

det(C) = w1C11 + w2C12 + w3C13 = wT (x × y)
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In particular, if we choose w = x or w = y, then the matrix C will have two identical
rows, and hence its determinant will be 0. We then have

xT (x × y) = yT (x × y) = 0 (2)

In calculus books, it is standard to use row vectors

x = (x1, x2, x3) and y = (y1, y2, y3)

and to define the cross product to be the row vector

x × y = (x2 y3 − y2x3)i − (x1 y3 − y1x3)j + (x1 y2 − y1x2)k

where i, j, and k are the row vectors of the 3 × 3 identity matrix. If one uses i, j, and k
in place of w1, w2, and w3, respectively, in the first row of the matrix M , then the cross
product can be written as a determinant:

x × y =
∣∣∣∣∣∣

i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
In linear algebra courses, it is generally more standard to view x, y, and x×y as column
vectors. In this case, we can represent the cross product in terms of the determinant
of a matrix whose entries in the first row are e1, e2, and e3, the column vectors of the
3 × 3 identity matrix:

x × y =
∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
The relation given in equation (2) has applications in Newtonian mechanics. In

particular, the cross product can be used to define a binormal direction, which Newton
used to derive the laws of motion for a particle in 3-space.

APPLICATION 2 Newtonian Mechanics

If x is a vector in either R
2 or R

3, then we can define the length of x, denoted ‖x‖, by

‖x‖ = (xT x)
1
2

A vector x is said to be a unit vector if ‖x‖ = 1. Unit vectors were used by Newton
to derive the laws of motion for a particle in either the plane or 3-space. If x and y are
nonzero vectors in R

2, then the angle θ between the vectors is the smallest angle of
rotation necessary to rotate one of the two vectors clockwise so that it ends up in the
same direction as the other vector (see Figure 2.3.1).

A particle moving in a plane traces out a curve in the plane. The position of the
particle at any time t can be represented by a vector (x1(t), x2(t)). In describing the
motion of a particle, Newton found it convenient to represent the position of vectors at
time t as linear combinations of the vectors T(t) and N(t), where T(t) is a unit vector
in the direction of the tangent line to curve at the point (x1(t), x2(t)) and N(t) is a unit
vector in the direction of a normal line (a line perpendicular to the tangent line) to the
curve at the given point (see Figure 2.3.2).
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In Chapter 5, we will show that if x and y are nonzero vectors and θ is the angle
between the vectors, then

xT y = ‖x‖‖y‖ cos θ (3)

This equation can also be used to define the angle between nonzero vectors in R
3.

It follows from (3) that the angle between the vectors is a right angle if and only if
xT y = 0. In this case, we say that the vectors x and y are orthogonal. In particular,
since T(t) and N(t) are unit orthogonal vectors in R

2, we have ‖T(t)‖ = ‖N(t)‖ = 1
and the angle between the vectors is π

2 . It follows from (3) that

T(t)T N(t) = 0

In Chapter 5, we will also show that if x and y are vectors in R
3 and θ is the angle

between the vectors, then
‖x × y‖ = ‖x‖‖y‖ sin θ (4)

A particle moving in three dimensions will trace out a curve in 3-space. In this
case, at time t the tangent and normal lines to the curve at the point (x1(t), x2(t))
determine a plane in 3-space. However, in 3-space the motion is not restricted to a
plane. To derive laws describing the motion, Newton needed to use a third vector, a
vector in a direction normal to the plane determined by T(t) and N(t). If z is any
nonzero vector in the direction of the normal line to this plane, then the angle between
the vectors z and T(t) and the angle between z and N(t) should both be right angles.
If we set

B(t) = T(t) × N(t) (5)

then it follows from (2) that B(t) is orthogonal to both T(t) and N(t) and hence is in
the direction of the normal line. Furthermore B(t) is a unit vector, since it follows
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from (4) that

‖B(t)‖ = ‖T(t) × N(t)‖ = ‖T(t)‖‖N(t)‖ sin
π

2
= 1

The vector B(t) defined by (5) is called the binormal vector (see Figure 2.3.3).

B(t)

N(t)

T(t)

Figure 2.3.3.

SECTION 2.3 EXERCISES
1. For each of the following, compute (i) det(A),

(ii) adj A, and (iii) A−1:

(a) A =
⎧⎪⎩1 2

3 −1

⎫⎪⎭ (b) A =
⎧⎪⎩3 1

2 4

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 3 1
2 1 1

−2 2 −1

⎫⎪⎪⎪⎪⎪⎭
(d) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
2. Use Cramer’s rule to solve each of the following

systems:

(a) x1 + 2x2 = 3

3x1 − x2 = 1

(b) 2x1 + 3x2 = 2

3x1 + 2x2 = 5

(c) 2x1 + x2 − 3x3 = 0

4x1 + 5x2 + x3 = 8

−2x1 − x2 + 4x3 = 2

(d) x1 + 3x2 + x3 = 1

2x1 + x2 + x3 = 5

−2x1 + 2x2 − x3 = −8

(e) x1 + x2 = 0

x2 + x3 − 2x4 = 1

x1 + 2x3 + x4 = 0

x1 + x2 + x4 = 0

3. Given

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
0 4 3
1 2 2

⎫⎪⎪⎪⎪⎪⎭
determine the (2, 3) entry of A−1 by computing a
quotient of two determinants.

4. Let A be the matrix in Exercise 3. Compute the
third column of A−1 by using Cramer’s rule to solve
Ax = e3.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 3
2 3 4
3 4 5

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the determinant of A. Is A nonsingu-

lar?
(b) Compute adj A and the product A adj A.

6. If A is singular, what can you say about the product
A adj A?
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7. Let Bj denote the matrix obtained by replacing the
j th column of the identity matrix with a vector
b = (b1, . . . , bn)

T . Use Cramer’s rule to show that

b j = det(Bj ) for j = 1, . . . , n

8. Let A be a nonsingular n × n matrix with n > 1.
Show that

det(adj A) = (det(A))n−1

9. Let A be a 4 × 4 matrix. If

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0 0
0 2 1 0
0 4 3 2
0 −2 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) calculate the value of det(adj A). What should

the value of det(A) be? [Hint: Use the result
from Exercise 8.]

(b) find A.

10. Show that if A is nonsingular, then adj A is nonsin-
gular and

(adj A)−1 = det(A−1)A = adj A−1

11. Show that if A is singular, then adj A is also singu-
lar.

12. Show that if det(A) = 1, then

adj(adj A) = A

13. Suppose that Q is a matrix with the property
Q−1 = QT . Show that

qi j = Qi j

det(Q)

14. In coding a message, a blank space was represented
by 0, an A by 1, a B by 2, a C by 3, and so on. The
message was transformed using the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1 −1 2 0

1 1 −1 0
0 0 −1 1
1 0 0 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
and sent as

− 19, 19, 25, −21, 0, 18, −18, 15, 3, 10,

− 8, 3, −2, 20, −7, 12

What was the message?

15. Let x, y, and z be vectors in R
3. Show each of the

following:
(a) x × x = 0 (b) y × x = −(x × y)

(c) x × (y + z) = (x × y) + (x × z)

(d) zT (x × y) =
∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣
16. Let x and y be vectors in R

3 and define the skew-
symmetric matrix Ax by

Ax =
⎧⎪⎪⎪⎪⎪⎩

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎫⎪⎪⎪⎪⎪⎭
(a) Show that x × y = Ax y.

(b) Show that y × x = AT
x y.

Chapter Two Exercises

MATLAB EXERCISES

The first four exercises that follow involve integer matri-
ces and illustrate some of the properties of determinants
that were covered in this chapter. The last two exercises
illustrate some of the differences that may arise when
we work with determinants in floating-point arithmetic.

In theory, the value of the determinant should tell
us whether the matrix is nonsingular. However, if the
matrix is singular and its determinant is computed using
finite-precision arithmetic, then, because of roundoff er-
rors, the computed value of the determinant may not
equal zero. A computed value near zero does not nec-

essarily mean that the matrix is singular or even close
to being singular. Furthermore, a matrix may be nearly
singular and have a determinant that is not even close
to zero (see Exercise 6).

1. Generate random 5×5 matrices with integer entries
by setting

A = round(10 ∗ rand(5))

and
B = round(20 ∗ rand(5)) − 10
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Use MATLAB to compute each of the pairs of
numbers that follow. In each case, check whether
the first number is equal to the second.
(a) det(A) det(AT )

(b) det(A + B) det(A) + det(B)

(c) det(AB) det(A) det(B)

(d) det(AT BT ) det(AT ) det(BT )

(e) det(A−1) 1/ det(A)

(f) det(AB−1) det(A)/ det(B)

2. Are n × n magic squares nonsingular? Use the
MATLAB command det(magic(n)) to compute
the determinants of the magic squares matrices in
the cases n = 3, 4, . . . , 10. What seems to be hap-
pening? Check the cases n = 24 and 25 to see if
the pattern still holds.

3. Set A = round(10 ∗ rand(6)). In each of the
following, use MATLAB to compute a second ma-
trix as indicated. State how the second matrix is
related to A and compute the determinants of both
matrices. How are the determinants related?
(a) B = A; B(2, :) = A(1, :); B(1, :) = A(2, :)
(b) C = A; C(3, :) = 4 ∗ A(3, :)
(c) D = A; D(5, :) = A(5, :) + 2 ∗ A(4, :)

4. We can generate a random 6 × 6 matrix A whose
entries consist entirely of 0’s and 1’s by setting

A = round(rand(6))

(a) What percentage of these random 0–1 matrices
are singular? You can estimate the percentage
in MATLAB by setting

y = zeros(1, 100);
and then generating 100 test matrices and set-
ting y( j) = 1 if the j th matrix is singular and
0 otherwise. The easy way to do this in MAT-
LAB is to use a for loop. Generate the loop as
follows:

for j = 1 : 100

A = round(rand(6));
y( j) = (det(A) == 0);

end

(Note: A semicolon at the end of a line sup-
presses printout. It is recommended that you
include one at the end of each line of calcula-
tion that occurs inside a for loop.) To deter-
mine how many singular matrices were gen-
erated, use the MATLAB command sum(y).
What percentage of the matrices generated
were singular?

(b) For any positive integer n, we can generate a
random 6 × 6 matrix A whose entries are inte-
gers from 0 to n by setting

A = round(n ∗ rand(6))

What percentage of random integer matrices
generated in this manner will be singular if
n = 3? If n = 6? If n = 10? We can es-
timate the answers to these questions by using
MATLAB. In each case, generate 100 test ma-
trices and determine how many of the matrices
are singular.

5. If a matrix is sensitive to roundoff errors, the com-
puted value of its determinant may differ drastically
from the exact value. For an example of this, set

U = round(100 ∗ rand(10));
U = triu(U, 1) + 0.1 ∗ eye(10)

In theory,

det(U ) = det(U T ) = 10−10

and

det(UU T ) = det(U ) det(U T ) = 10−20

Compute det(U ), det(U ′), and det(U ∗ U ′) with
MATLAB. Do the computed values match the the-
oretical values?

6. Use MATLAB to construct a matrix A by setting

A = vander(1 : 6); A = A − diag(sum(A′))

(a) By construction, the entries in each row of A
should all add up to zero. To check this, set
x = ones(6, 1) and use MATLAB to com-
pute the product Ax. The matrix A should be
singular. Why? Explain. Use the MATLAB
functions det and inv to compute the values
of det(A) and A−1. Which MATLAB function
is a more reliable indicator of singularity?

(b) Use MATLAB to compute det(AT ). Are the
computed values of det(A) and det(AT ) equal?
Another way to check if a matrix is singular is
to compute its reduced row echelon form. Use
MATLAB to compute the reduced row echelon
forms of A and AT .
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(c) To see what is going wrong, it helps to know
how MATLAB computes determinants. The
MATLAB routine for determinants first com-
putes a form of the LU factorization of the ma-
trix. The determinant of the matrix L is ±1,
depending on whether an even or odd number
of row interchanges were used in the compu-
tation. The computed value of the determinant
of A is the product of the diagonal entries of
U and det(L) = ±1. In the special case that
the original matrix has integer entries, the exact
determinant should take on an integer value.
So in this case MATLAB will round its deci-
mal answer to the nearest integer. To see what
is happening with our original matrix, use the

following commands to compute and display
the factor U :

format short e
[ L , U ] = lu(A); U

In exact arithmetic, U should be singu-
lar. Is the computed matrix U singular? If
not, what goes wrong? Use the following com-
mands to see the rest of the computation of
d = det(A):

format short
d = prod(diag(U ))

d = round(d)

CHAPTER TEST A True or False

For each of the statements that follow, answer true if the
statement is always true and false otherwise. In the case
of a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true. Assume that all the
given matrices are n × n.

1. det(AB) = det(B A)

2. det(A + B) = det(A) + det(B)

3. det(cA) = c det(A)

4. det((AB)T ) = det(A) det(B)

5. det(A) = det(B) implies A = B.

6. det(Ak) = det(A)k

7. A triangular matrix is nonsingular if and only if its
diagonal entries are all nonzero.

8. If x is a nonzero vector in R
n and Ax = 0, then

det(A) = 0.

9. If A and B are row equivalent matrices, then their
determinants are equal.

10. If A �= O , but Ak = O (where O denotes the zero
matrix) for some positive integer k, then A must be
singular.

CHAPTER TEST B

1. Let A and B be 3 × 3 matrices with det(A) = 4
and det(B) = 6, and let E be an elementary ma-
trix of type I. Determine the value of each of the
following:
(a) det( 1

2 A) (b) det(B−1 AT ) (c) det(E A2)

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

x 1 1
1 x −1

−1 −1 x

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the value of det(A). (Your answer

should be a function of x .)
(b) For what values of x will the matrix be singu-

lar? Explain.

3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Compute the LU factorization of A.

(b) Use the LU factorization to determine the
value of det(A).

4. If A is a nonsingular n × n matrix, show that AT A
is nonsingular and det(AT A) > 0.

5. Let A be an n × n matrix. Show that if B = S−1 AS
for some nonsingular matrix S, then det(B) =
det(A).

6. Let A and B be n × n matrices and let C = AB.
Use determinants to show that if either A or B is
singular, then C must be singular.

7. Let A be an n × n matrix and let λ be a scalar.
Show that

det(A − λI ) = 0

if and only if

Ax = λx for some x �= 0
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8. Let x and y be vectors in R
n , n > 1. Show that if

A = xyT , then det(A) = 0.

9. Let x and y be distinct vectors in R
n (i.e., x �= y),

and let A be an n × n matrix with the property that

Ax = Ay. Show that det(A) = 0.

10. Let A be a matrix with integer entries. If
| det(A)| = 1, then what can you conclude about
the nature of the entries of A−1? Explain.
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Vector Spaces
The operations of addition and scalar multiplication are used in many diverse contexts
in mathematics. Regardless of the context, however, these operations usually obey the
same set of algebraic rules. Thus, a general theory of mathematical systems involving
addition and scalar multiplication will be applicable to many areas in mathematics.
Mathematical systems of this form are called vector spaces or linear spaces. In this
chapter, the definition of a vector space is given and some of the general theory of
vector spaces is developed.

3.1 Definition and Examples

In this section, we present the formal definition of a vector space. Before doing this,
however, it is instructive to look at a number of examples. We begin with the Euclidean
vector spaces R

n .

Euclidean Vector Spaces
Perhaps the most elementary vector spaces are the Euclidean vector spaces R

n , n =
1, 2, . . .. For simplicity, let us consider first R

2. Nonzero vectors in R
2 can be rep-

resented geometrically by directed line segments. This geometric representation will
help us to visualize how the operations of scalar multiplication and addition work in

R
2. Given a nonzero vector x =

⎧⎪⎩ x1

x2

⎫⎪⎭, we can associate it with the directed line seg-

ment in the plane from (0, 0) to (x1, x2) (see Figure 3.1.1). If we equate line segments
that have the same length and direction (Figure 3.1.2), x can be represented by any line
segment from (a, b) to (a + x1, b + x2).

110
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x1

x2

x (x1, x2)

Figure 3.1.1.

x

x

(x1, x2)

(a + x1, b + x2)

(a, b)

(0, 0)

Figure 3.1.2.

For example, the vector x =
⎧⎪⎩2

1

⎫⎪⎭ in R
2 could just as well be represented by the

directed line segment from (2, 2) to (4, 3) or from (−1, −1) to (1, 0), as shown in
Figure 3.1.3.

x

x

x

Figure 3.1.3.

x1

x2 x2 + x2
1 2

Figure 3.1.4.

We can think of the Euclidean length of a vector x =
⎧⎪⎩ x1

x2

⎫⎪⎭ as the length of any

directed line segment representing x. The length of the line segment from (0, 0) to

(x1, x2) is
√

x2
1 + x2

2 (see Figure 3.1.4). For each vector x =
⎧⎪⎩ x1

x2

⎫⎪⎭ and each scalar α,

the product αx is defined by

α

⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩αx1

αx2

⎫⎪⎭
For example, as shown in Figure 3.1.5, if x =

⎧⎪⎩2
1

⎫⎪⎭, then

−x =
⎧⎪⎩−2

−1

⎫⎪⎭ , 3x =
⎧⎪⎩6

3

⎫⎪⎭ , −2x =
⎧⎪⎩−4

−2

⎫⎪⎭

x

(a)

3x

(c)

–x

(b)

–2x

(d)

Figure 3.1.5.
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The vector 3x is in the same direction as x, but its length is three times that of x.
The vector −x has the same length as x, but it points in the opposite direction. The
vector −2x is twice as long as x and it points in the same direction as −x. The sum of
two vectors

u =
⎧⎪⎩u1

u2

⎫⎪⎭ and v =
⎧⎪⎩v1

v2

⎫⎪⎭
is defined by

u + v =
⎧⎪⎩u1 + v1

u2 + v2

⎫⎪⎭
Note that, if v is placed at the terminal point of u, then u + v is represented by the

directed line segment from the initial point of u to the terminal point of v (Figure 3.1.6).
If both u and v are placed at the origin and a parallelogram is formed as in Figure 3.1.7,
the diagonals of the parallelogram will represent the sum u+v and the difference v−u.
In a similar manner, vectors in R

3 can be represented by directed line segments in 3-
space (see Figure 3.1.8).

u

v

u + v

(u1, u2)

(u1 + v1, u2 + v2)

(0, 0)

Figure 3.1.6.

u + w = v or w = v ñ uu

v

z

w z = u + v

Figure 3.1.7.

x
(x1, x2, x3)

x2

x1

x3

x

x + y y

(a) (b)

Figure 3.1.8.

In general, scalar multiplication and addition in R
n are respectively defined by

αx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
αx1

αx2
...

αxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and x + y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1 + y1

x2 + y2
...

xn + yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for any x, y ∈ R

n and any scalar α.
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The Vector Space R
m×n

We can also view R
n as the set of all n × 1 matrices with real entries. The addition and

scalar multiplication of vectors in R
n is just the usual addition and scalar multiplication

of matrices. More generally, let R
m×n denote the set of all m × n matrices with real

entries. If A = (ai j ) and B = (bi j ), then the sum A + B is defined to be the m × n
matrix C = (ci j ), where ci j = ai j + bi j . Given a scalar α, we can define αA to be
the m × n matrix whose (i, j) entry is αai j . Thus, by defining operations on the set
R

m×n , we have created a mathematical system. The operations of addition and scalar
multiplication of R

m×n obey certain algebraic rules. These rules form the axioms that
are used to define the concept of a vector space.

Vector Space Axioms

Definition Let V be a set on which the operations of addition and scalar multiplication are
defined. By this we mean that, with each pair of elements x and y in V , we can
associate a unique element x+y that is also in V , and with each element x in V and
each scalar α, we can associate a unique element αx in V . The set V , together with
the operations of addition and scalar multiplication, is said to form a vector space
if the following axioms are satisfied:

A1. x + y = y + x for any x and y in V .
A2. (x + y) + z = x + (y + z) for any x, y, and z in V .
A3. There exists an element 0 in V such that x + 0 = x for each x ∈ V .
A4. For each x ∈ V , there exists an element −x in V such that x + (−x) = 0.
A5. α(x + y) = αx + αy for each scalar α and any x and y in V .
A6. (α + β)x = αx + βx for any scalars α and β and any x ∈ V .
A7. (αβ)x = α(βx) for any scalars α and β and any x ∈ V .
A8. 1 · x = x for all x ∈ V .

We will refer to the set V as the universal set for the vector space. Its elements are
called vectors and are usually denoted by boldface letters such as u, v, w, x, y, and z.
The term scalar will generally refer to a real number, although in some cases it will be
used to refer to complex numbers. Scalars will generally be represented by lowercase
italic letters such as a, b, and c or lowercase Greek letters such as α, β, and γ . In
the first five chapters of this book, the term scalars will always refer to real numbers.
Often the term real vector space is used to indicate that the set of scalars is the set of
real numbers. The boldface symbol 0 was used in Axiom 3 in order to distinguish the
zero vector from the scalar 0.

An important component of the definition is the closure properties of the two op-
erations. These properties can be summarized as follows:

C1. If x ∈ V and α is a scalar, then αx ∈ V .
C2. If x, y ∈ V , then x + y ∈ V .
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To illustrate the necessity of the closure properties, consider the following exam-
ple: Let

W = {(a, 1) | a real}
with addition and scalar multiplication defined in the usual way. The elements (3, 1)

and (5, 1) are in W , but the sum

(3, 1) + (5, 1) = (8, 2)

is not an element of W . The operation + is not really an operation on the set W ,
because property C2 fails to hold. Similarly, scalar multiplication is not defined on W ,
because property C1 fails to hold. The set W , together with the operations of addition
and scalar multiplication, is not a vector space.

If, however, we are given a set U on which the operations of addition and scalar
multiplication have been defined and satisfy properties C1 and C2, then we must check
to see if the eight axioms are valid in order to determine whether U is a vector space.
We leave it to the reader to verify that R

n and R
m×n , with the usual addition and scalar

multiplication of matrices, are both vector spaces. There are a number of other impor-
tant examples of vector spaces.

The Vector Space C[a, b]
Let C[a, b] denote the set of all real-valued functions that are defined and continuous
on the closed interval [a, b]. In this case, our universal set is a set of functions. Thus,
our vectors are the functions in C[a, b]. The sum f + g of two functions in C[a, b] is
defined by

( f + g)(x) = f (x) + g(x)

for all x in [a, b]. The new function f + g is an element of C[a, b], since the sum of
two continuous functions is continuous. If f is a function in C[a, b] and α is a real
number, define α f by

(α f )(x) = α f (x)

for all x in [a, b]. Clearly, α f is in C[a, b], since a constant times a continuous function
is always continuous. Thus, we have defined the operations of addition and scalar
multiplication on C[a, b]. To show that the first axiom, f + g = g + f , is satisfied,
we must show that

( f + g)(x) = (g + f )(x) for every x in [a, b]
This follows because

( f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x)

for every x in [a, b]. Axiom 3 is satisfied, since the function

z(x) = 0 for all x in [a, b]
acts as the zero vector; that is,

f + z = f for all f in C[a, b]
We leave it to the reader to verify that the remaining vector space axioms are all satis-
fied.
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The Vector Space Pn

Let Pn denote the set of all polynomials of degree less than n. Define p + q and αp
respectively by

(p + q)(x) = p(x) + q(x)

and
(αp)(x) = αp(x)

for all real numbers x . In this case, the zero vector is the zero polynomial,

z(x) = 0xn−1 + 0xn−2 + · · · + 0x + 0

It is easily verified that all the vector space axioms hold. Thus, Pn , with the standard
addition and scalar multiplication of functions, is a vector space.

Additional Properties of Vector Spaces

We close this section with a theorem that states three more fundamental properties of
vector spaces. Other important properties are given in Exercises 7, 8, and 9 at the end
of this section.

Theorem 3.1.1 If V is a vector space and x is any element of V , then

(i) 0x = 0.

(ii) x + y = 0 implies that y = −x (i.e., the additive inverse of x is unique).

(iii) (−1)x = −x.

Proof It follows from axioms A6 and A8 that

x = 1x = (1 + 0)x = 1x + 0x = x + 0x

Thus,

−x + x = −x + (x + 0x) = (−x + x) + 0x
0 = 0 + 0x = 0x

To prove (ii), suppose that x + y = 0. Then

−x = −x + 0 = −x + (x + y)

Therefore,
−x = (−x + x) + y = 0 + y = y

Finally, to prove (iii), note that

0 = 0x = (1 + (−1))x = 1x + (−1)x

Thus
x + (−1)x = 0

and it follows from part (ii) that

(−1)x = −x
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SECTION 3.1 EXERCISES
1. Consider the vectors x1 = (8, 6)T and

x2 = (4, −1)T in R
2.

(a) Determine the length of each vector.

(b) Let x3 = x1 + x2. Determine the length of x3.
How does this length compare with the sum of
the lengths of x1 and x2?

(c) Draw a graph illustrating how x3 can be con-
structed geometrically using x1 and x2. Use
this graph to give a geometrical interpretation
of your answer to the question in part (b).

2. Repeat Exercise 1 for the vectors x1 = (2, 1)T and
x2 = (6, 3)T .

3. Let C be the set of complex numbers. Define addi-
tion on C by

(a + bi) + (c + di) = (a + c) + (b + d)i

and define scalar multiplication by

α(a + bi) = αa + αbi

for all real numbers α. Show that C is a vector
space with these operations.

4. Show that R
m×n , together with the usual addition

and scalar multiplication of matrices, satisfies the
eight axioms of a vector space.

5. Show that C[a, b], together with the usual scalar
multiplication and addition of functions, satisfies
the eight axioms of a vector space.

6. Let P be the set of all polynomials. Show that P ,
together with the usual addition and scalar multi-
plication of functions, forms a vector space.

7. Show that the element 0 in a vector space is unique.

8. Let x, y, and z be vectors in a vector space V . Prove
that if

x + y = x + z

then y = z.

9. Let V be a vector space and let x ∈ V . Show that
(a) β0 = 0 for each scalar β.

(b) if αx = 0, then either α = 0 or x = 0.

10. Let S be the set of all ordered pairs of real numbers.
Define scalar multiplication and addition on S by

α(x1, x2) = (αx1, αx2)

(x1, x2) ⊕ (y1, y2) = (x1 + y1, 0)

We use the symbol ⊕ to denote the addition opera-
tion for this system in order to avoid confusion with
the usual addition x + y of row vectors. Show that
S, together with the ordinary scalar multiplication
and the addition operation ⊕, is not a vector space.
Which of the eight axioms fail to hold?

11. Let V be the set of all ordered pairs of real numbers
with addition defined by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

and scalar multiplication defined by

α ◦ (x1, x2) = (αx1, x2)

Scalar multiplication for this system is defined in
an unusual way, and consequently we use the sym-
bol ◦ to avoid confusion with the ordinary scalar
multiplication of row vectors. Is V a vector space
with these operations? Justify your answer.

12. Let R
+ denote the set of positive real numbers. De-

fine the operation of scalar multiplication, denoted
◦, by

α ◦ x = xα

for each x ∈ R
+ and for any real number α. Define

the operation of addition, denoted ⊕, by

x ⊕ y = x · y for all x, y ∈ R
+

Thus, for this system, the scalar product of −3
times 1

2 is given by

−3 ◦ 1

2
=
(

1

2

)−3

= 8

and the sum of 2 and 5 is given by

2 ⊕ 5 = 2 · 5 = 10

Is R
+ a vector space with these operations? Prove

your answer.

13. Let R denote the set of real numbers. Define scalar
multiplication by

αx = α · x (the usual multiplication of
real numbers)

and define addition, denoted ⊕, by

x ⊕ y = max(x, y) (the maximum of the two
numbers)

Is R a vector space with these operations? Prove
your answer.
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14. Let Z denote the set of all integers with addition
defined in the usual way, and define scalar multi-
plication, denoted ◦, by

α ◦ k = [[α]] · k for all k ∈ Z

where [[α]] denotes the greatest integer less than or
equal to α. For example,

2.25 ◦ 4 = [[2.25]] · 4 = 2 · 4 = 8

Show that Z , together with these operations, is not
a vector space. Which axioms fail to hold?

15. Let S denote the set of all infinite sequences of real
numbers with scalar multiplication and addition de-
fined by

α{an} = {αan}
{an} + {bn} = {an + bn}

Show that S is a vector space.

16. We can define a one-to-one correspondence be-
tween the elements of Pn and R

n by

p(x) = a1 + a2x + · · · + an xn−1

↔ (a1, . . . , an)
T = a

Show that if p ↔ a and q ↔ b, then
(a) αp ↔ αa for any scalar α.

(b) p + q ↔ a + b.
[In general, two vector spaces are said to be isomor-
phic if their elements can be put into a one-to-one
correspondence that is preserved under scalar mul-
tiplication and addition as in (a) and (b).]

3.2 Subspaces

Given a vector space V , it is often possible to form another vector space by taking a
subset S of V and using the operations of V . Since V is a vector space, the operations
of addition and scalar multiplication always produce another vector in V . For a new
system using a subset S of V as its universal set to be a vector space, the set S must be
closed under the operations of addition and scalar multiplication. That is, the sum of
two elements of S must always be an element of S, and the product of a scalar and an
element of S must always be an element of S.

EXAMPLE 1 Let

S =
{⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x2 = 2x1

}
S is a subset of R

2. If

x =
⎧⎪⎩ c

2c

⎫⎪⎭
is any element of S and α is any scalar, then

αx = α

⎧⎪⎩ c
2c

⎫⎪⎭ =
⎧⎪⎩ αc

2αc

⎫⎪⎭
is also an element of S. If ⎧⎪⎩ a

2a

⎫⎪⎭ and
⎧⎪⎩ b

2b

⎫⎪⎭
are any two elements of S, then their sum⎧⎪⎩ a + b

2a + 2b

⎫⎪⎭ =
⎧⎪⎩ a + b

2(a + b)

⎫⎪⎭
is also an element of S. It is easily seen that the mathematical system consisting of the
set S (instead of R

2), together with the operations from R
2, is itself a vector space.
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Definition If S is a nonempty subset of a vector space V , and S satisfies the conditions

(i) αx ∈ S whenever x ∈ S for any scalar α

(ii) x + y ∈ S whenever x ∈ S and y ∈ S

then S is said to be a subspace of V .

Condition (i) says that S is closed under scalar multiplication. That is, whenever
an element of S is multiplied by a scalar, the result is an element of S. Condition (ii)
says that S is closed under addition. That is, the sum of two elements of S is always
an element of S. Thus, if we use the operations from V and the elements of S to do
arithmetic, then we will always end up with elements of S. A subspace of V , then, is a
subset S that is closed under the operations of V .

Let S be a subspace of a vector space V . Using the operations of addition and
scalar multiplication as defined on V , we can form a new mathematical system with
S as the universal set. It is easily seen that all eight axioms will remain valid for this
new system. Axioms A3 and A4 follow from Theorem 3.1.1 and condition (i) of the
definition of a subspace. The remaining six axioms are valid for any elements of V ,
so, in particular, they are valid for the elements of S. Thus, the mathematical system
with universal set S and the two operations inherited from the vector space V satisfies
all the conditions in the definition of a vector space. Every subspace of a vector space
is a vector space in its own right.

Remarks

1. In a vector space V , it can be readily verified that {0} and V are subspaces of
V . All other subspaces are referred to as proper subspaces. We refer to {0} as
the zero subspace.

2. To show that a subset S of a vector space forms a subspace, we must show that
S is nonempty and that the closure properties (i) and (ii) in the definition are
satisfied. Since every subspace must contain the zero vector, we can verify that
S is nonempty by showing that 0 ∈ S.

EXAMPLE 2 Let S = {(x1, x2, x3)
T | x1 = x2}. The set S is nonempty, since x = (1, 1, 0)T ∈ S. To

show that S is a subspace of R
3, we need to verify that the two closure properties hold:

(i) If x = (a, a, b)T is any vector in S, then

αx = (αa, αa, αb)T ∈ S

(ii) If (a, a, b)T and (c, c, d)T are arbitrary elements of S, then

(a, a, b)T + (c, c, d)T = (a + c, a + c, b + d)T ∈ S

Since S is nonempty and satisfies the two closure conditions, it follows that S is a
subspace of R

3.

EXAMPLE 3 Let

S =
{⎧⎪⎩ x

1

⎫⎪⎭∣∣∣∣ x is a real number

}
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If either of the two conditions in the definition fails to hold, then S will not be a sub-
space. In this case the first condition fails, since

α

⎧⎪⎩ x
1

⎫⎪⎭ =
⎧⎪⎩αx

α

⎫⎪⎭ �∈ S when α �= 1

Therefore, S is not a subspace. Actually, both conditions fail to hold. S is not closed
under addition, since ⎧⎪⎩ x

1

⎫⎪⎭ +
⎧⎪⎩ y

1

⎫⎪⎭ =
⎧⎪⎩ x + y

2

⎫⎪⎭ /∈ S

EXAMPLE 4 Let S = {A ∈ R
2×2 | a12 = −a21}. The set S is nonempty, since O (the zero matrix) is

in S. To show that S is a subspace, we verify that the closure properties are satisfied:

(i) If A ∈ S, then A must be of the form

A =
⎧⎪⎩ a b

−b c

⎫⎪⎭
and hence

αA =
⎧⎪⎩ αa αb

−αb αc

⎫⎪⎭
Since the (2, 1) entry of αA is the negative of the (1, 2) entry, αA ∈ S.

(ii) If A, B ∈ S, then they must be of the form

A =
⎧⎪⎩ a b

−b c

⎫⎪⎭ and B =
⎧⎪⎩ d e

−e f

⎫⎪⎭
It follows that

A + B =
⎧⎪⎩ a + d b + e

−(b + e) c + f

⎫⎪⎭
Hence, A + B ∈ S.

EXAMPLE 5 Let S be the set of all polynomials of degree less than n with the property that p(0) = 0.
The set S is nonempty since it contains the zero polynomial. We claim that S is a
subspace of Pn . This follows because

(i) if p(x) ∈ S and α is a scalar, then

αp(0) = α · 0 = 0

and hence αp ∈ S; and

(ii) if p(x) and q(x) are elements of S, then

(p + q)(0) = p(0) + q(0) = 0 + 0 = 0

and hence p + q ∈ S.

EXAMPLE 6 Let Cn[a, b] be the set of all functions f that have a continuous nth derivative on [a, b].
We leave it to the reader to verify that Cn[a, b] is a subspace of C[a, b].
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EXAMPLE 7 The function f (x) = |x | is in C[−1, 1], but it is not differentiable at x = 0 and hence
it is not in C1[−1, 1]. This shows that C1[−1, 1] is a proper subspace of C[−1, 1]. The
function g(x) = x |x | is in C1[−1, 1], since it is differentiable at every point in [−1, 1]
and g′(x) = 2|x | is continuous on [−1, 1]. However, g �∈ C2[−1, 1], since g′′(x) is
not defined when x = 0. Thus, the vector space C2[−1, 1] is a proper subspace of both
C[−1, 1] and C1[−1, 1].

EXAMPLE 8 Let S be the set of all f in C2[a, b] such that

f ′′(x) + f (x) = 0

for all x in [a, b]. The set S is nonempty, since the zero function is in S. If f ∈ S and
α is any scalar, then, for any x in [a, b],

(α f )′′(x) + (α f )(x) = α f ′′(x) + α f (x)

= α( f ′′(x) + f (x)) = α · 0 = 0

Thus, α f ∈ S. If f and g are both in S, then

( f + g)′′(x) + ( f + g)(x) = f ′′(x) + g′′(x) + f (x) + g(x)

= [ f ′′(x) + f (x)] + [g′′(x) + g(x)]
= 0 + 0 = 0

Hence, the set of all solutions on [a, b] of the differential equation y′′ + y = 0 forms a
subspace of C2[a, b]. Note that f (x) = sin x and g(x) = cos x are both in S. Since S
is a subspace, it follows that any function of the form c1 sin x + c2 cos x must also be
in S. We can easily verify that functions of this form are solutions of y′′ + y = 0.

The Null Space of a Matrix

Let A be an m × n matrix. Let N (A) denote the set of all solutions of the homogeneous
system Ax = 0. Thus,

N (A) = {x ∈ R
n | Ax = 0}

We claim that N (A) is a subspace of R
n . Clearly, 0 ∈ N (A), so N (A) is nonempty. If

x ∈ N (A) and α is a scalar, then

A(αx) = αAx = α0 = 0

and hence αx ∈ N (A). If x and y are elements of N (A), then

A(x + y) = Ax + Ay = 0 + 0 = 0

Therefore, x + y ∈ N (A). It then follows that N (A) is a subspace of R
n . The set of all

solutions of the homogeneous system Ax = 0 forms a subspace of R
n . The subspace

N (A) is called the null space of A.

EXAMPLE 9 Determine N (A) if

A =
⎧⎪⎩1 1 1 0

2 1 0 1

⎫⎪⎭
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Solution
Using Gauss–Jordan reduction to solve Ax = 0, we obtain⎧⎪⎩1 1 1 0 0

2 1 0 1 0

⎫⎪⎭ →
⎧⎪⎩1 1 1 0 0

0 −1 −2 1 0

⎫⎪⎭
→

⎧⎪⎩1 0 −1 1 0
0 −1 −2 1 0

⎫⎪⎭ →
⎧⎪⎩1 0 −1 1 0

0 1 2 −1 0

⎫⎪⎭
The reduced row echelon form involves two free variables, x3 and x4:

x1 = x3 − x4

x2 = −2x3 + x4

Thus, if we set x3 = α and x4 = β, then

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
α − β

−2α + β

α

β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−2
1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
is a solution of Ax = 0. The vector space N (A) consists of all vectors of the form

α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−2
1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
where α and β are scalars.

The Span of a Set of Vectors

Definition Let v1, v2, . . . , vn be vectors in a vector space V . A sum of the form
α1v1 +α2v2 +· · ·+αnvn , where α1, . . . , αn are scalars, is called a linear combina-
tion of v1, v2, . . . , vn . The set of all linear combinations of v1, v2, . . . , vn is called
the span of v1, . . . , vn . The span of v1, . . . , vn will be denoted by Span(v1, . . . , vn).

In Example 9, we saw that the null space of A was the span of the vectors
(1, −2, 1, 0)T and (−1, 1, 0, 1)T .

EXAMPLE 10 In R
3, the span of e1 and e2 is the set of all vectors of the form

αe1 + βe2 =
⎧⎪⎪⎪⎪⎪⎩

α

β

0

⎫⎪⎪⎪⎪⎪⎭
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The reader may verify that Span(e1, e2) is a subspace of R
3. The subspace can be

interpreted geometrically as the set of all vectors in 3-space that lie in the x1x2-plane
(see Figure 3.2.1). The span of e1, e2, e3 is the set of all vectors of the form

α1e1 + α2e2 + α3e3 =
⎧⎪⎪⎪⎪⎪⎩

α1

α2

α3

⎫⎪⎪⎪⎪⎪⎭
Thus, Span(e1, e2, e3) = R

3.

x

x2

x1

e3

e2

e1

x3

Span (e1, e2)

Figure 3.2.1.

Theorem 3.2.1 If v1, v2, . . . , vn are elements of a vector space V , then Span(v1, v2, . . . , vn) is a sub-
space of V .

Proof Let β be a scalar and let v = α1v1 + α2v2 + · · · + αnvn be an arbitrary element of
Span(v1, v2, . . . , vn). Since

βv = (βα1)v1 + (βα2)v2 + · · · + (βαn)vn

it follows that βv ∈ Span(v1, . . . , vn). Next, we must show that any sum of elements
of Span(v1, . . . , vn) is in Span(v1, . . . , vn). Let v = α1v1 + · · · + αnvn and w =
β1v1 + · · · + βnvn . Then

v + w = (α1 + β1)v1 + · · · + (αn + βn)vn ∈ Span(v1, . . . , vn)

Therefore, Span(v1, . . . , vn) is a subspace of V .

A vector x in R
3 is in Span(e1, e2) if and only if it lies in the x1x2-plane in 3-space.

Thus, we can think of the x1x2-plane as the geometrical representation of the subspace
Span(e1, e2) (see Figure 3.2.1). Similarly, given two vectors x and y, if (0, 0, 0),
(x1, x2, x3), and (y1, y2, y3) are not collinear, these points determine a plane. If
z = c1x + c2y, then z is a sum of vectors parallel to x and y and hence must lie on
the plane determined by the two vectors (see Figure 3.2.2). In general, if two vectors
x and y can be used to determine a plane in 3-space, that plane is the geometrical
representation of Span(x, y).
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x

z

c2y

c2y

y

c1x

x2

x1

x3

Figure 3.2.2.

Spanning Set for a Vector Space
Let v1, v2, . . . , vn be vectors in a vector space V . We will refer to Span(v1, . . . , vn) as
the subspace of V spanned by v1, v2, . . . , vn . It may happen that Span(v1, . . . , vn) =
V , in which case we say that the vectors v1, . . . , vn span V , or that {v1, . . . , vn} is a
spanning set for V . Thus, we have the following definition:

Definition The set {v1, . . . , vn} is a spanning set for V if and only if every vector in V can be
written as a linear combination of v1, v2, . . . , vn .

EXAMPLE 11 Which of the following are spanning sets for R
3?

(a) {e1, e2, e3, (1, 2, 3)T }
(b) {(1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T }
(c) {(1, 0, 1)T , (0, 1, 0)T }
(d) {(1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T }

Solution
To determine whether a set spans R

3, we must determine whether an arbitrary vector
(a, b, c)T in R

3 can be written as a linear combination of the vectors in the set. In part
(a), it is easily seen that (a, b, c)T can be written as

(a, b, c)T = ae1 + be2 + ce3 + 0(1, 2, 3)T

For part (b), we must determine whether it is possible to find constants α1, α2, and α3

such that ⎧⎪⎪⎪⎪⎪⎩
a
b
c

⎫⎪⎪⎪⎪⎪⎭ = α1

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ + α2

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ + α3

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭
This leads to the system of equations

α1 + α2 + α3 = a
α1 + α2 = b
α1 = c
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Since the coefficient matrix of the system is nonsingular, the system has a unique
solution. In fact, we find that ⎧⎪⎪⎪⎪⎪⎩

α1

α2

α3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

c
b − c
a − b

⎫⎪⎪⎪⎪⎪⎭
Thus, ⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ = c

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ + (b − c)

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ + (a − b)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭
so the three vectors span R

3.
For part (c), we should note that linear combinations of (1, 0, 1)T and (0, 1, 0)T

produce vectors of the form (α, β, α)T . Thus, any vector (a, b, c)T in R
3, where a �= c,

would not be in the span of these two vectors.
Part (d) can be done in the same manner as part (b). If⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ = α1

⎧⎪⎪⎪⎪⎪⎩
1
2
4

⎫⎪⎪⎪⎪⎪⎭ + α2

⎧⎪⎪⎪⎪⎪⎩
2
1
3

⎫⎪⎪⎪⎪⎪⎭ + α3

⎧⎪⎪⎪⎪⎪⎩
4

−1
1

⎫⎪⎪⎪⎪⎪⎭
then

α1 + 2α2 + 4α3 = a
2α1 + α2 − α3 = b
4α1 + 3α2 + α3 = c

In this case, however, the coefficient matrix is singular. Gaussian elimination will yield
a system of the form

α1 + 2α2 + 4α3 = a

α2 + 3α3 = 2a − b

3
0 = 2a − 3c + 5b

If
2a − 3c + 5b �= 0

then the system is inconsistent. Hence, for most choices of a, b, and c, it is impossible
to express (a, b, c)T as a linear combination of (1, 2, 4)T , (2, 1, 3)T , and (4, −1, 1)T .
The vectors do not span R

3.

EXAMPLE 12 The vectors 1 − x2, x + 2, and x2 span P3. Thus, if ax2 + bx + c is any polynomial in
P3, it is possible to find scalars α1, α2, and α3 such that

ax2 + bx + c = α1(1 − x2) + α2(x + 2) + α3x2

Indeed,

α1(1 − x2) + α2(x + 2) + α3x2 = (α3 − α1)x2 + α2x + (α1 + 2α2)
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Setting
α3 − α1 = a
α2 = b
α1 + 2α2 = c

and solving, we see that α1 = c − 2b, α2 = b, and α3 = a + c − 2b.

In Example 11(a), we saw that the vectors e1, e2, e3, (1, 2, 3)T span R
3. Clearly,

R
3 could be spanned with only the vectors e1, e2, e3. The vector (1, 2, 3)T is really not

necessary. In the next section, we consider the problem of finding minimal spanning
sets for a vector space V (i.e., spanning sets that contain the smallest possible number
of vectors).

SECTION 3.2 EXERCISES
1. Determine whether the following sets form sub-

spaces of R
2:

(a) {(x1, x2)
T | x1 + x2 = 0}

(b) {(x1, x2)
T | x1x2 = 0}

(c) {(x1, x2)
T | x1 = 3x2}

(d) {(x1, x2)
T | |x1| = |x2|}

(e) {(x1, x2)
T | x2

1 = x2
2 }

2. Determine whether the following sets form sub-
spaces of R

3:
(a) {(x1, x2, x3)

T | x1 + x3 = 1}
(b) {(x1, x2, x3)

T | x1 = x2 = x3}
(c) {(x1, x2, x3)

T | x3 = x1 + x2}
(d) {(x1, x2, x3)

T | x3 = x1 or x3 = x2}
3. Determine whether the following are subspaces of

R
2×2:

(a) The set of all 2 × 2 diagonal matrices

(b) The set of all 2 × 2 triangular matrices

(c) The set of all 2 × 2 lower triangular matrices

(d) The set of all 2 × 2 matrices A such that
a12 = 1

(e) The set of all 2 × 2 matrices B such that
b11 = 0

(f) The set of all symmetric 2 × 2 matrices

(g) The set of all singular 2 × 2 matrices

4. Determine the null space of each of the following
matrices:

(a)
⎧⎪⎩2 1

3 2

⎫⎪⎭
(b)

⎧⎪⎩ 1 2 −3 −1
−2 −4 6 3

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 −4
2 −1 −1

−1 −3 4

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
1 1 −1 2
2 2 −3 1

−1 −1 0 −5

⎫⎪⎪⎪⎪⎪⎭
5. Determine whether the following are subspaces of

P4 (be careful!):
(a) The set of polynomials in P4 of even degree

(b) The set of all polynomials of degree 3

(c) The set of all polynomials p(x) in P4 such that
p(0) = 0

(d) The set of all polynomials in P4 having at least
one real root

6. Determine whether the following are subspaces of
C[−1, 1]:
(a) The set of functions f in C[−1, 1] such that

f (−1) = f (1)

(b) The set of odd functions in C[−1, 1]
(c) The set of continuous nondecreasing functions

on [−1, 1]
(d) The set of functions f in C[−1, 1] such that

f (−1) = 0 and f (1) = 0

(e) The set of functions f in C[−1, 1] such that
f (−1) = 0 or f (1) = 0

7. Show that Cn[a, b] is a subspace of C[a, b].
8. Let A be a fixed vector in R

n×n and let S be the set
of all matrices that commute with A; that is,

S = {B | AB = B A}
Show that S is a subspace of R

n×n .
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9. In each of the following, determine the subspace of
R

2×2 consisting of all matrices that commute with
the given matrix:

(a)
⎧⎪⎩1 0

0 −1

⎫⎪⎭ (b)
⎧⎪⎩0 0

1 0

⎫⎪⎭
(c)

⎧⎪⎩1 1
0 1

⎫⎪⎭ (d)
⎧⎪⎩1 1

1 1

⎫⎪⎭
10. Let A be a particular vector in R

2×2. Determine
whether the following are subspaces of R

2×2:
(a) S1 = {B ∈ R

2×2 | B A = O}
(b) S2 = {B ∈ R

2×2 | AB �= B A}
(c) S3 = {B ∈ R

2×2 | AB + B = O}
11. Determine whether the following are spanning sets

for R
2:

(a)
{⎧⎪⎩2

1

⎫⎪⎭ ,

⎧⎪⎩3
2

⎫⎪⎭} (b)
{⎧⎪⎩2

3

⎫⎪⎭ ,

⎧⎪⎩4
6

⎫⎪⎭}

(c)
{⎧⎪⎩−2

1

⎫⎪⎭ ,

⎧⎪⎩1
3

⎫⎪⎭ ,

⎧⎪⎩2
4

⎫⎪⎭}

(d)
{⎧⎪⎩−1

2

⎫⎪⎭ ,

⎧⎪⎩ 1
−2

⎫⎪⎭ ,

⎧⎪⎩ 2
−4

⎫⎪⎭}

(e)
{⎧⎪⎩1

2

⎫⎪⎭ ,

⎧⎪⎩−1
1

⎫⎪⎭}
12. Which of the sets that follow are spanning sets for

R
3? Justify your answers.

(a) {(1, 0, 0)T , (0, 1, 1)T , (1, 0, 1)T }
(b) {(1, 0, 0)T , (0, 1, 1)T , (1, 0, 1)T , (1, 2, 3)T }
(c) {(2, 1,−2)T , (3, 2, −2)T , (2, 2, 0)T }
(d) {(2, 1, −2)T , (−2, −1, 2)T , (4, 2, −4)T }
(e) {(1, 1, 3)T , (0, 2, 1)T }

13. Given

x1 =
⎧⎪⎪⎪⎪⎪⎩

−1
2
3

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

3
4
2

⎫⎪⎪⎪⎪⎪⎭ ,

x =
⎧⎪⎪⎪⎪⎪⎩

2
6
6

⎫⎪⎪⎪⎪⎪⎭ , y =
⎧⎪⎪⎪⎪⎪⎩

−9
−2

5

⎫⎪⎪⎪⎪⎪⎭
(a) Is x ∈ Span(x1, x2)?
(b) Is y ∈ Span(x1, x2)?
Prove your answers.

14. Let {x1, x2, . . . , xk} be a spanning set for a vector
space V .
(a) If we add another vector, xk+1, to the set, will

we still have a spanning set? Explain.
(b) If we delete one of the vectors, say xk , from the

set, will we still have a spanning set? Explain.

15. In R
2×2, let

E11 =
⎧⎪⎩1 0

0 0

⎫⎪⎭ , E12 =
⎧⎪⎩0 1

0 0

⎫⎪⎭
E21 =

⎧⎪⎩0 0
1 0

⎫⎪⎭ , E22 =
⎧⎪⎩0 0

0 1

⎫⎪⎭
Show that E11, E12, E21, E22 span R

2×2.

16. Which of the sets that follow are spanning sets for
P3? Justify your answers.
(a) {1, x2, x2 − 2} (b) {2, x2, x, 2x + 3}
(c) {x + 2, x + 1, x2 − 1} (d) {x + 2, x2 − 1}

17. Let S be the vector space of infinite sequences de-
fined in Exercise 15 of Section 1. Let S0 be the set
of {an} with the property that an → 0 as n → ∞.
Show that S0 is a subspace of S.

18. Prove that if S is a subspace of R
1, then either

S = {0} or S = R
1.

19. Let A be an n × n matrix. Prove that the following
statements are equivalent:
(a) N (A) = {0}. (b) A is nonsingular.
(c) For each b ∈ R

n , the system Ax = b has a
unique solution.

20. Let U and V be subspaces of a vector space W .
Prove that their intersection U ∩ V is also a sub-
space of W .

21. Let S be the subspace of R
2 spanned by e1 and let

T be the subspace of R
2 spanned by e2. Is S ∪ T a

subspace of R
2? Explain.

22. Let U and V be subspaces of a vector space W .
Define

U + V = {z | z = u + v where u ∈ U and v ∈ V }
Show that U + V is a subspace of W .

23. Let S, T , and U be subspaces of a vector space V .
We can form new subspaces by using the operations
of ∩ and + defined in Exercises 20 and 22. When
we do arithmetic with numbers, we know that the
operation of multiplication distributes over the op-
eration of addition in the sense that

a(b + c) = ab + ac

It is natural to ask whether similar distributive laws
hold for the two operations with subspaces.
(a) Does the intersection operation for subspaces

distribute over the addition operation? That is,
does

S ∩ (T + U ) = (S ∩ T ) + (S ∩ U )
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(b) Does the addition operation for subspaces dis-
tribute over the intersection operation? That is,

does

S + (T ∩ U ) = (S + T ) ∩ (S + U )

3.3 Linear Independence

In this section, we look more closely at the structure of vector spaces. To begin with,
we restrict ourselves to vector spaces that can be generated from a finite set of elements.
Each vector in the vector space can be built up from the elements in this generating set
using only the operations of addition and scalar multiplication. The generating set is
usually referred to as a spanning set. In particular, it is desirable to find a minimal
spanning set. By minimal, we mean a spanning set with no unnecessary elements (i.e.,
all the elements in the set are needed in order to span the vector space). To see how to
find a minimal spanning set, it is necessary to consider how the vectors in the collection
depend on each other. Consequently, we introduce the concepts of linear dependence
and linear independence. These simple concepts provide the keys to understanding the
structure of vector spaces.

Consider the following vectors in R
3:

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
−1

2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

−2
3
1

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

−1
3
8

⎫⎪⎪⎪⎪⎪⎭
Let S be the subspace of R

3 spanned by x1, x2, x3. Actually, S can be represented in
terms of the two vectors x1 and x2, since the vector x3 is already in the span of x1 and
x2; that is,

x3 = 3x1 + 2x2 (1)

Any linear combination of x1, x2, and x3 can be reduced to a linear combination of x1

and x2:

α1x1 + α2x2 + α3x3 = α1x1 + α2x2 + α3(3x1 + 2x2)

= (α1 + 3α3)x1 + (α2 + 2α3)x2

Thus,
S = Span(x1, x2, x3) = Span(x1, x2)

Equation (1) can be rewritten in the form

3x1 + 2x2 − 1x3 = 0 (2)

Since the three coefficients in (2) are nonzero, we could solve for any vector in terms
of the other two:

x1 = −2

3
x2 + 1

3
x3, x2 = −3

2
x1 + 1

2
x3, x3 = 3x1 + 2x2

It follows that

Span(x1, x2, x3) = Span(x2, x3) = Span(x1, x3) = Span(x1, x2)
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Because of the dependency relation (2), the subspace S can be represented as the span
of any two of the given vectors.

In contrast, no such dependency relationship exists between x1 and x2. Indeed, if
there were scalars c1 and c2, not both 0, such that

c1x1 + c2x2 = 0 (3)

then we could solve for one of the vectors in terms of the other:

x1 = −c2

c1
x2 (c1 �= 0) or x2 = −c1

c2
x1 (c2 �= 0)

However, neither of the two vectors in question is a multiple of the other. Therefore,
Span(x1) and Span(x2) are both proper subspaces of Span(x1, x2), and the only way
that (3) can hold is if c1 = c2 = 0.

We can generalize this example by making the following observations:

(I) If v1, v2, . . . , vn span a vector space V and one of these vectors can be written
as a linear combination of the other n − 1 vectors, then those n − 1 vectors
span V .

(II) Given n vectors v1, . . . , vn , it is possible to write one of the vectors as a
linear combination of the other n − 1 vectors if and only if there exist scalars
c1, . . . , cn , not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0

Proof of (I) Suppose that vn can be written as a linear combination of the vectors v1, v2, . . . , vn−1;
that is,

vn = β1v1 + β2v2 + · · · + βn−1vn−1

Let v be any element of V . Since

v = α1v1 + α2v2 + · · · + αn−1vn−1 + αnvn

= α1v1 + α2v2 + · · · + αn−1vn−1 + αn(β1v1 + · · · + βn−1vn−1)

= (α1 + αnβ1)v1 + (α2 + αnβ2)v2 + · · · + (αn−1 + αnβn−1)vn−1

Thus, any vector v in V can be written as a linear combination of v1, v2, . . . , vn−1, and
hence these vectors span V .

Proof of (II) Suppose that one of the vectors v1, v2, . . . , vn , say vn , can be written as a linear com-
bination of the others; that is,

vn = α1v1 + α2v2 + · · · + αn−1vn−1

Subtracting vn from both sides of this equation, we get

α1v1 + α2v2 + · · · + αn−1vn−1 − vn = 0

If we set ci = αi for i = 1, . . . , n − 1, and set cn = −1, then

c1v1 + c2v2 + · · · + cnvn = 0



3.3 Linear Independence 129

Conversely, if

c1v1 + c2v2 + · · · + cnvn = 0

and at least one of the ci ’s, say cn , is nonzero, then

vn = −c1

cn
v1 + −c2

cn
v2 + · · · + −cn−1

cn
vn−1

Definition The vectors v1, v2, · · · , vn in a vector space V are said to be linearly independent
if

c1v1 + c2v2 + · · · + cnvn = 0

implies that all the scalars c1, · · · , cn must equal 0.

It follows from (I) and (II) that, if {v1, v2, . . . , vn} is a minimal spanning set, then
v1, v2, . . . , vn are linearly independent. Conversely, if v1, . . . , vn are linearly indepen-
dent and span V , then {v1, . . . , vn} is a minimal spanning set for V (see Exercise 20
at the end of this section). A minimal spanning set is called a basis. The concept of a
basis will be studied in more detail in the next section.

EXAMPLE 1 The vectors
⎧⎪⎩1

1

⎫⎪⎭ and
⎧⎪⎩1

2

⎫⎪⎭ are linearly independent, since, if

c1

⎧⎪⎩1
1

⎫⎪⎭ + c2

⎧⎪⎩1
2

⎫⎪⎭ =
⎧⎪⎩0

0

⎫⎪⎭
then

c1 + c2 = 0
c1 + 2c2 = 0

and the only solution to this system is c1 = 0, c2 = 0.

Definition The vectors v1, v2, . . . , vn in a vector space V are said to be linearly dependent if
there exist scalars c1, c2, · · · , cn , not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0
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EXAMPLE 2 Let x = (1, 2, 3)T . The vectors e1, e2, e3, and x are linearly dependent, since

e1 + 2e2 + 3e3 − x = 0

(In this case c1 = 1, c2 = 2, c3 = 3, c4 = −1.)

Given a set of vectors {v1, v2, . . . , vn} in a vector space V , it is trivial to find scalars
c1, c2, . . . , cn such that

c1v1 + c2v2 + · · · + cnvn = 0

Just take
c1 = c2 = · · · = cn = 0

If there are nontrivial choices of scalars for which the linear combination
c1v1 + · · · + cnvn equals the zero vector, then v1, . . . , vn are linearly dependent.
If the only way the linear combination c1v1 + · · · + cnvn can equal the zero vector
is for all the scalars c1, . . . , cn to be 0, then v1, . . . , vn are linearly independent.

Geometric Interpretation
If x and y are linearly dependent in R

2, then

c1x + c2y = 0

where c1 and c2 are not both 0. If, say, c1 �= 0, we can write

x = −c2

c1
y

If two vectors in R
2 are linearly dependent, one of the vectors can be written as a scalar

multiple of the other. Thus, if both vectors are placed at the origin, they will lie along
the same line (see Figure 3.3.1).

(x1, x2)

(x1, x2)

(y1, y2)

(y1, y2)

(a) x and y linearly dependent (b) x and y linearly independent

x
y

Figure 3.3.1.

If

x =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

y1

y2

y3

⎫⎪⎪⎪⎪⎪⎭



3.3 Linear Independence 131

are linearly independent in R
3, then the two points (x1, x2, x3) and (y1, y2, y3) will not

lie on the same line through the origin in 3-space. Since (0, 0, 0), (x1, x2, x3), and
(y1, y2, y3) are not collinear, they determine a plane. If (z1, z2, z3) lies on this plane,
the vector z = (z1, z2, z3)

T can be written as a linear combination of x and y, and
hence x, y, and z are linearly dependent. If (z1, z2, z3) does not lie on the plane, the
three vectors will be linearly independent (see Figure 3.3.2).

x

zy

x

z

y

(a) (b)

Figure 3.3.2.

Theorems and Examples

EXAMPLE 3 Which of the following collections of vectors are linearly independent in R
3?

(a) (1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T

(b) (1, 0, 1)T , (0, 1, 0)T

(c) (1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T

Solution
(a) These three vectors are linearly independent. To verify this, we must show that the

only way for

c1(1, 1, 1)T + c2(1, 1, 0)T + c3(1, 0, 0)T = (0, 0, 0)T (4)

is if the scalars c1, c2, c3 are all zero. Equation (4) can be written as a linear system
with unknowns c1, c2, c3:

c1 + c2 + c3 = 0
c1 + c2 = 0
c1 = 0

The only solution of this system is c1 = 0, c2 = 0, c3 = 0.
(b) If

c1(1, 0, 1)T + c2(0, 1, 0)T = (0, 0, 0)T

then
(c1, c2, c1)

T = (0, 0, 0)T

so c1 = c2 = 0. Therefore, the two vectors are linearly independent.



132 Chapter 3 Vector Spaces

(c) If
c1(1, 2, 4)T + c2(2, 1, 3)T + c3(4, −1, 1)T = (0, 0, 0)T

then
c1 + 2c2 + 4c3 = 0

2c1 + c2 − c3 = 0
4c1 + 3c2 + c3 = 0

The coefficient matrix of the system is singular and hence the system has nontrivial
solutions. Therefore, the vectors are linearly dependent.

Notice in Example 3, parts (a) and (c), that it was necessary to solve a 3×3 system
to determine whether the three vectors were linearly independent. In part (a), where
the coefficient matrix was nonsingular, the vectors were linearly independent, while in
part (c), where the coefficient matrix was singular, the vectors were linearly dependent.
This illustrates a special case of the following theorem:

Theorem 3.3.1 Let x1, x2, . . . , xn be n vectors in R
n and let X = (x1, . . . , xn). The vectors

x1, x2, . . . , xn will be linearly dependent if and only if X is singular.

Proof The equation
c1x1 + c2x2 + · · · + cnxn = 0

can be rewritten as a matrix equation

Xc = 0

This equation will have a nontrivial solution if and only if X is singular. Thus,
x1, . . . , xn will be linearly dependent if and only if X is singular.

We can use Theorem 3.3.1 to test whether n vectors are linearly independent in
R

n . Simply form a matrix X whose columns are the vectors being tested. To determine
whether X is singular, calculate the value of det(X). If det(X) = 0, the vectors are
linearly dependent. If det(X) �= 0, the vectors are linearly independent.

EXAMPLE 4 Determine whether the vectors (4, 2, 3)T , (2, 3, 1)T , and (2, −5, 3)T are linearly de-
pendent.

Solution
Since ∣∣∣∣∣∣

4 2 2
2 3 −5
3 1 3

∣∣∣∣∣∣ = 0

the vectors are linearly dependent.

To determine whether k vectors x1, x2, . . . , xk in R
n are linearly independent, we

can rewrite the equation

c1x1 + c2x2 + · · · + ckxk = 0
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as a linear system Xc = 0, where X = (x1, x2, . . . , xk). If k �= n, then the matrix X
is not square, so we cannot use determinants to decide whether the vectors are linearly
independent. The system is homogeneous, so it has the trivial solution c = 0. It
will have nontrivial solutions if and only if the row echelon forms of X involve free
variables. If there are nontrivial solutions, then the vectors are linearly dependent. If
there are no free variables, then c = 0 is the only solution, and hence the vectors must
be linearly independent.

EXAMPLE 5 Let

x1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

3
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
0
7
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
To determine whether the vectors are linearly independent, we reduce the system
Xc = 0 to row echelon form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −2 1 0
−1 3 0 0

2 1 7 0
3 −2 7 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 0
0 1 1 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since the echelon form involves a free variable c3, there are nontrivial solutions and
hence the vectors must be linearly dependent.

Next, we consider a very important property of linearly independent vectors: Lin-
ear combinations of linearly independent vectors are unique. More precisely, we have
the following theorem:

Theorem 3.3.2 Let v1, . . . , vn be vectors in a vector space V . A vector v ∈ Span(v1, . . . , vn) can
be written uniquely as a linear combination of v1, . . . , vn if and only if v1, . . . , vn are
linearly independent.

Proof If v ∈ Span(v1, . . . , vn), then v can be written as a linear combination

v = α1v1 + α2v2 + · · · + αnvn (5)

Suppose that v can also be expressed as a linear combination

v = β1v1 + β2v2 + · · · + βnvn (6)

We will show that, if v1, . . . , vn are linearly independent, then βi = αi , i = 1, . . . , n,
and if v1, . . . , vn are linearly dependent, then it is possible to choose the βi ’s different
from the αi ’s.

If v1, . . . , vn are linearly independent, then subtracting (6) from (5) yields

(α1 − β1)v1 + (α2 − β2)v2 + · · · + (αn − βn)vn = 0 (7)

By the linear independence of v1, . . . , vn , the coefficients of (7) must all be 0. Hence,

α1 = β1, α2 = β2, . . . , αn = βn
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Thus, the representation (5) is unique when v1, . . . , vn are linearly independent.
On the other hand, if v1, . . . , vn are linearly dependent, then there exist c1, . . . , cn ,

not all 0, such that
0 = c1v1 + c2v2 + · · · + cnvn (8)

Now if we set

β1 = α1 + c1, β2 = α2 + c2, . . . , βn = αn + cn

then, adding (5) and (8), we get

v = (α1 + c1)v1 + (α2 + c2)v2 + · · · + (αn + cn)vn

= β1v1 + β2v2 + · · · + βnvn

Since the ci ’s are not all 0, βi �= αi for at least one value of i . Thus, if v1, . . . , vn are
linearly dependent, the representation of a vector as a linear combination of v1, . . . , vn

is not unique.

Vector Spaces of Functions

To determine whether a set of vectors is linearly independent in R
n , we must solve a

homogeneous linear system of equations. A similar situation holds for the vector space
Pn .

The Vector Space Pn

To test whether the following polynomials p1, p2, . . . , pk are linearly independent in
Pn , we set

c1 p1 + c2 p2 + · · · + ck pk = z (9)

where z represents the zero polynomial; that is,

z(x) = 0xn−1 + 0xn−2 + · · · + 0x + 0

If the polynomial on the left-hand side of equation (9) is rewritten in the form
a1xn−1 + a2xn−2 + · · · + an−1x + an , then, since two polynomials are equal if and
only if their coefficients are equal, it follows that the coefficients ai must all be 0. But
each of the ai ’s is a linear combination of the c j ’s. This leads to a homogeneous linear
system with unknowns c1, c2, · · · , ck . If the system has only the trivial solution, the
polynomials are linearly independent; otherwise, they are linearly dependent.

EXAMPLE 6 To test whether the vectors

p1(x) = x2 − 2x + 3, p2(x) = 2x2 + x + 8, p3(x) = x2 + 8x + 7

are linearly independent, set

c1 p1(x) + c2 p2(x) + c3 p3(x) = 0x2 + 0x + 0



3.3 Linear Independence 135

Grouping terms by powers of x , we get

(c1 + 2c2 + c3)x2 + (−2c1 + c2 + 8c3)x + (3c1 + 8c2 + 7c3) = 0x2 + 0x + 0

Equating coefficients leads to the system

c1 + 2c2 + c3 = 0
−2c1 + c2 + 8c3 = 0

3c1 + 8c2 + 7c3 = 0

The coefficient matrix for this system is singular and hence there are nontrivial solu-
tions. Therefore, p1, p2, and p3 are linearly dependent.

The Vector Space C(n−1)[a, b]
In Example 4, a determinant was used to test whether three vectors were linearly in-
dependent in R

3. Determinants can also be used to help to decide whether a set of
n vectors is linearly independent in C (n−1)[a, b]. Indeed, let f1, f2, . . . , fn be ele-
ments of C (n−1)[a, b]. If these vectors are linearly dependent, then there exist scalars
c1, c2, . . . , cn , not all zero, such that

c1 f1(x) + c2 f2(x) + · · · + cn fn(x) = 0 (10)

for each x in [a, b]. Taking the derivative with respect to x of both sides of (10) yields

c1 f ′
1(x) + c2 f ′

2(x) + · · · + cn f ′
n(x) = 0

If we continue taking derivatives of both sides, we end up with the system

c1 f1(x) + c2 f2(x) + · · · + cn fn(x) = 0
c1 f ′

1(x) + c2 f ′
2(x) + · · · + cn f ′

n(x) = 0
...

c1 f (n−1)

1 (x) + c2 f (n−1)

2 (x) + · · · + cn f (n−1)
n (x) = 0

For each fixed x in [a, b], the matrix equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...

f (n−1)

1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
α1

α2
...

αn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0

0
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

will have the same nontrivial solution (c1, c2, . . . , cn)
T . Thus, if f1, . . . , fn are linearly

dependent in C (n−1)[a, b], then, for each fixed x in [a, b], the coefficient matrix of
system (11) is singular. If the matrix is singular, its determinant is zero.
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Definition Let f1, f2, . . . , fn be functions in C (n−1)[a, b], and define the function
W [ f1, f2, . . . , fn](x) on [a, b] by

W [ f1, f2, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...

f (n−1)

1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
The function W [ f1, f2, · · · , fn] is called the Wronskian of f1, f2, . . . , fn .

Theorem 3.3.3 Let f1, f2, . . . , fn be elements of C (n−1)[a, b]. If there exists a point x0 in [a, b] such
that W [ f1, f2, . . . , fn](x0) �= 0, then f1, f2, . . . , fn are linearly independent.

Proof If f1, f2, . . . , fn were linearly dependent, then, by the preceding discussion, the
coefficient matrix in (11) would be singular for each x in [a, b] and hence
W [ f1, f2, . . . , fn](x) would be identically zero on [a, b].

If f1, f2, . . . , fn are linearly independent in C (n−1)[a, b], they will also be linearly
independent in C[a, b].

EXAMPLE 7 Show that ex and e−x are linearly independent in C(−∞, ∞).

Solution

W [ex , e−x ] =
∣∣∣∣ex e−x

ex −e−x

∣∣∣∣ = −2

Since W [ex , e−x ] is not identically zero, ex and e−x are linearly independent.

EXAMPLE 8 Consider the functions x2 and x |x | in C[−1, 1]. Both functions are in the subspace
C1[−1, 1] (see Example 7 of Section 2), so we can compute the Wronskian

W [x2, x |x |] =
∣∣∣∣∣ x2 x |x |
2x 2|x |

∣∣∣∣∣ ≡ 0

Since the Wronskian is identically zero, it gives no information as to whether the func-
tions are linearly independent. To answer the question, suppose that

c1x2 + c2x |x | = 0

for all x in [−1, 1]. Then, in particular for x = 1 and x = −1, we have

c1 + c2 = 0
c1 − c2 = 0

and the only solution of this system is c1 = c2 = 0. Thus, the functions x2 and x |x |
are linearly independent in C[−1, 1] even though W [x2, x |x |] ≡ 0.

This example shows that the converse of Theorem 3.3.3 is not valid.
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EXAMPLE 9 Show that the vectors 1, x , x2, and x3 are linearly independent in C((−∞, ∞)).

Solution

W [1, x, x2, x3] =

∣∣∣∣∣∣∣
1 x x2 x3

0 1 2x 3x2

0 0 2 6x
0 0 0 6

∣∣∣∣∣∣∣ = 12

Since W [1, x, x2, x3] �≡ 0, the vectors are linearly independent.

SECTION 3.3 EXERCISES
1. Determine whether the following vectors are lin-

early independent in R
2:

(a)
⎧⎪⎩2

1

⎫⎪⎭ ,

⎧⎪⎩3
2

⎫⎪⎭ (b)
⎧⎪⎩2

3

⎫⎪⎭ ,

⎧⎪⎩4
6

⎫⎪⎭
(c)

⎧⎪⎩−2
1

⎫⎪⎭ ,

⎧⎪⎩1
3

⎫⎪⎭ ,

⎧⎪⎩2
4

⎫⎪⎭
(d)

⎧⎪⎩−1
2

⎫⎪⎭ ,

⎧⎪⎩ 1
−2

⎫⎪⎭ ,

⎧⎪⎩ 2
−4

⎫⎪⎭
(e)

⎧⎪⎩1
2

⎫⎪⎭ ,

⎧⎪⎩−1
1

⎫⎪⎭
2. Determine whether the following vectors are lin-

early independent in R
3:

(a)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
2
3

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2
1

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
3
2

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
2
0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
2
1

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2
−1

2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
4
2

−4

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1
1
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
2
1

⎫⎪⎪⎪⎪⎪⎭
3. For each of the sets of vectors in Exercise 2, de-

scribe geometrically the span of the given vectors.

4. Determine whether the following vectors are lin-
early independent in R

2×2:

(a)
⎧⎪⎩1 0

1 1

⎫⎪⎭ ,

⎧⎪⎩0 1
0 0

⎫⎪⎭

(b)
⎧⎪⎩1 0

0 1

⎫⎪⎭ ,

⎧⎪⎩0 1
0 0

⎫⎪⎭ ,

⎧⎪⎩0 0
1 0

⎫⎪⎭
(c)

⎧⎪⎩1 0
0 1

⎫⎪⎭ ,

⎧⎪⎩0 1
0 0

⎫⎪⎭ ,

⎧⎪⎩2 3
0 2

⎫⎪⎭
5. Let x1, x2, . . . , xk be linearly independent vectors

in a vector space V .
(a) If we add a vector xk+1 to the collection, will

we still have a linearly independent collection
of vectors? Explain.

(b) If we delete a vector, say xk , from the collec-
tion, will we still have a linearly independent
collection of vectors? Explain.

6. Let x1, x2, and x3 be linearly independent vectors
in R

n and let

y1 = x1 + x2, y2 = x2 + x3, y3 = x3 + x1

Are y1, y2, and y3 linearly independent? Prove your
answer.

7. Let x1, x2, and x3 be linearly independent vectors
in R

n and let

y1 = x2 − x1, y2 = x3 − x2, y3 = x3 − x1

Are y1, y2, and y3 linearly independent? Prove your
answer.

8. Determine whether the following vectors are lin-
early independent in P3:
(a) 1, x2, x2 − 2 (b) 2, x2, x , 2x + 3
(c) x + 2, x + 1, x2 − 1 (d) x + 2, x2 − 1

9. For each of the following, show that the given vec-
tors are linearly independent in C[0, 1]:
(a) cos πx , sin πx (b) x3/2, x5/2

(c) 1, ex + e−x , ex − e−x (d) ex , e−x , e2x

10. Determine whether the vectors cos x , 1, sin2(x/2)

are linearly independent in C[−π, π].
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11. Consider the vectors cos(x + α) and sin x in
C[−π, π ]. For what values of α will the two vec-
tors be linearly dependent? Give a graphical inter-
pretation of your answer.

12. Given the functions 2x and |x |, show that
(a) these two vectors are linearly independent in

C[−1, 1].
(b) the vectors are linearly dependent in C[0, 1].

13. Prove that any finite set of vectors that contains the
zero vector must be linearly dependent.

14. Let v1 and v2 be two vectors in a vector space V .
Show that v1 and v2 are linearly dependent if and
only if one of the vectors is a scalar multiple of the
other.

15. Prove that any nonempty subset of a linearly inde-
pendent set of vectors {v1, . . . , vn} is also linearly
independent.

16. Let A be an m × n matrix. Show that if A
has linearly independent column vectors, then
N (A) = {0}.

[Hint: For any x ∈ R
n ,

Ax = x1a1 + x2a2 + · · · + xnan .]

17. Let x1, . . . , xk be linearly independent vectors in
R

n , and let A be a nonsingular n ×n matrix. Define
yi = Axi for i = 1, . . . , k. Show that y1, . . . , yk

are linearly independent.

18. Let A be a 3 × 3 matrix and let x1, x2, and x3 be
vectors in R

3. Show that if the vectors

y1 = Ax1, y2 = Ax2, y3 = Ax3

are linearly independent, then the matrix A must be
nonsingular and the vectors x1, x2, and x3 must be
linearly independent.

19. Let {v1, . . . , vn} be a spanning set for the vector
space V , and let v be any other vector in V . Show
that v, v1, . . . , vn are linearly dependent.

20. Let v1, v2, . . . , vn be linearly independent vectors
in a vector space V . Show that v2, . . . , vn cannot
span V .

3.4 Basis and Dimension

In Section 3, we showed that a spanning set for a vector space is minimal if its ele-
ments are linearly independent. The elements of a minimal spanning set form the basic
building blocks for the whole vector space, and consequently, we say that they form a
basis for the vector space.

Definition The vectors v1, v2, . . . , vn form a basis for a vector space V if and only if

(i) v1, . . . , vn are linearly independent.

(ii) v1, . . . , vn span V .

EXAMPLE 1 The standard basis for R
3 is {e1, e2, e3}; however, there are many bases that we could

choose for R
3. For example,

⎧⎨
⎩
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭ and

⎧⎨
⎩
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭

are both bases for R
3. We will see shortly that any basis for R

3 must have exactly three
elements.
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EXAMPLE 2 In R
2×2, consider the set {E11, E12, E21, E22}, where

E11 =
⎧⎪⎩1 0

0 0

⎫⎪⎭ , E12 =
⎧⎪⎩0 1

0 0

⎫⎪⎭ ,

E21 =
⎧⎪⎩0 0

1 0

⎫⎪⎭ , E22 =
⎧⎪⎩0 0

0 1

⎫⎪⎭
If

c1 E11 + c2 E12 + c3 E21 + c4 E22 = O

then ⎧⎪⎩c1 c2

c3 c4

⎫⎪⎭ =
⎧⎪⎩0 0

0 0

⎫⎪⎭
so c1 = c2 = c3 = c4 = 0. Therefore, E11, E12, E21, and E22 are linearly independent.
If A is in R

2×2, then

A = a11 E11 + a12 E12 + a21 E21 + a22 E22

Thus, E11, E12, E21, E22 span R
2×2 and hence form a basis for R

2×2.

In many applications, it is necessary to find a particular subspace of a vector space
V . This can be done by finding a set of basis elements of the subspace. For example,
to find all solutions of the system

x1 + x2 + x3 = 0
2x1 + x2 + x4 = 0

we must find the null space of the matrix

A =
⎧⎪⎩1 1 1 0

2 1 0 1

⎫⎪⎭
In Example 9 of Section 2, we saw that N (A) is the subspace of R

4 spanned by the
vectors ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
−2

1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since these two vectors are linearly independent, they form a basis for N (A).

Theorem 3.4.1 If {v1, v2, . . . , vn} is a spanning set for a vector space V , then any collection of m
vectors in V , where m > n, is linearly dependent.

Proof Let u1, u2, . . . , um be m vectors in V , where m > n. Then, since v1, v2, . . . , vn span
V , we have

ui = ai1v1 + ai2v2 + · · · + ainvn for i = 1, 2, . . . , m
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A linear combination c1u1 + c2u2 + · · · + cmum can be written in the form

c1

n∑
j=1

a1 j v j + c2

n∑
j=1

a2 j v j + · · · + cm

n∑
j=1

amj v j

Rearranging the terms, we see that

c1u1 + c2u2 + · · · + cmum =
m∑

i=1

[
ci

(
n∑

j=1

ai j v j

)]
=

n∑
j=1

(
m∑

i=1

ai j ci

)
v j

Now consider the system of equations

m∑
i=1

ai j ci = 0 j = 1, 2, . . . , n

This is a homogeneous system with more unknowns than equations. Therefore, by
Theorem 1.2.1, the system must have a nontrivial solution (ĉ1, ĉ2, . . . , ĉm)T . But then

ĉ1u1 + ĉ2u2 + · · · + ĉmum =
n∑

j=1

0v j = 0

Hence, u1, u2, . . . , um are linearly dependent.

Corollary 3.4.2 If both {v1, . . . , vn} and {u1, . . . , um} are bases for a vector space V , then n = m.

Proof Let both {v1, v2, . . . , vn} and {u1, u2, . . . , um} be bases for V . Since v1, v2, . . . , vn

span V and u1, u2, . . . , um are linearly independent, it follows from Theorem 3.4.1
that m ≤ n. By the same reasoning, u1, u2, . . . , um span V and v1, v2, . . . , vn are
linearly independent, so n ≤ m.

In view of Corollary 3.4.2, we can now refer to the number of elements in any
basis for a given vector space. This leads to the following definition:

Definition Let V be a vector space. If V has a basis consisting of n vectors, we say that V has
dimension n. The subspace {0} of V is said to have dimension 0. V is said to be
finite dimensional if there is a finite set of vectors that spans V ; otherwise, we say
that V is infinite dimensional.

If x is a nonzero vector in R
3, then x spans a one-dimensional subspace

Span(x) = {αx | α is a scalar}
A vector (a, b, c)T will be in Span(x) if and only if the point (a, b, c) is on the line
determined by (0, 0, 0) and (x1, x2, x3). Thus, a one-dimensional subspace of R

3 can
be represented geometrically by a line through the origin.

If x and y are linearly independent in R
3, then

Span(x, y) = {αx + βy | α and β are scalars}
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is a two-dimensional subspace of R
3. A vector (a, b, c)T will be in Span(x, y) if and

only if (a, b, c) lies on the plane determined by (0, 0, 0), (x1, x2, x3), and (y1, y2, y3).
Thus, we can think of a two-dimensional subspace of R

3 as a plane through the ori-
gin. If x, y, and z are linearly independent in R

3, they form a basis for R
3 and

Span(x, y, z) = R
3. Hence, any fourth point (a, b, c)T must lie in Span(x, y, z) (see

Figure 3.4.1).

x

y

z

x

y

(a) (b) (c)

Span (x, y, z) = R3

Span (x)
(x1, x2, x3)

Span (x, y)

Figure 3.4.1.

EXAMPLE 3 Let P be the vector space of all polynomials. We claim that P is infinite dimen-
sional. If P were finite dimensional, say, of dimension n, any set of n + 1 vectors
would be linearly dependent. However, 1, x, x2, . . . , xn are linearly independent, since
W [1, x, x2, . . . , xn] > 0. Therefore, P cannot be of dimension n. Since n was arbi-
trary, P must be infinite dimensional. The same argument shows that C[a, b] is infinite
dimensional.

Theorem 3.4.3 If V is a vector space of dimension n > 0, then

(I) any set of n linearly independent vectors spans V ;

(II) any n vectors that span V are linearly independent.

Proof To prove (I), suppose that v1, . . . , vn are linearly independent and v is any other vec-
tor in V . Since V has dimension n, it has a basis consisting of n vectors and these
vectors span V . It follows from Theorem 3.4.1 that v1, v2, . . . , vn , v must be linearly
dependent. Thus, there exist scalars c1, c2, . . . , cn, cn+1, not all zero, such that

c1v1 + c2v2 + · · · + cnvn + cn+1v = 0 (1)

The scalar cn+1 cannot be zero, for then (1) would imply that v1, . . . , vn are linearly
dependent. Hence, (1) can be solved for v:

v = α1v1 + α2v2 + · · · + αnvn

Here, αi = −ci/cn+1 for i = 1, 2, . . . , n. Since v was an arbitrary vector in V , it
follows that v1, v2, . . . , vn span V .

To prove (II), suppose that v1, . . . , vn span V . If v1, . . . , vn are linearly dependent,
then one of the vi ’s, say, vn , can be written as a linear combination of the others. It
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follows that v1, . . . , vn−1 will still span V . If v1, . . . , vn−1 are linearly dependent, we
can eliminate another vector and still have a spanning set. We can continue eliminating
vectors in this way until we arrive at a linearly independent spanning set with k < n
elements. But this contradicts dim V = n. Therefore, v1, . . . , vn must be linearly
independent.

EXAMPLE 4 Show that

⎧⎨
⎩
⎧⎪⎪⎪⎪⎪⎩

1
2
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2

1
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭ is a basis for R

3.

Solution
Since dim R

3 = 3, we need only show that these three vectors are linearly independent.
This follows, since ∣∣∣∣∣∣

1 −2 1
2 1 0
3 0 1

∣∣∣∣∣∣ = 2

Theorem 3.4.4 If V is a vector space of dimension n > 0, then

(i) no set of fewer than n vectors can span V .

(ii) any subset of fewer than n linearly independent vectors can be extended to
form a basis for V .

(iii) any spanning set containing more than n vectors can be pared down to form
a basis for V .

Proof Statement (i) follows by the same reasoning that was used to prove part (I) of Theo-
rem 3.4.3. To prove (ii), suppose that v1, . . . , vk are linearly independent and k < n.
It follows from (i) that Span(v1, . . . , vk) is a proper subspace of V , and hence there
exists a vector vk+1 that is in V but not in Span(v1, . . . , vk). It then follows that
v1, v2, . . . , vk, vk+1 must be linearly independent. If k + 1 < n, then, in the same
manner, {v1, . . . , vk, vk+1} can be extended to a set of k + 2 linearly independent vec-
tors. This extension process may be continued until a set {v1, v2, . . . , vk, vk+1, . . . , vn}
of n linearly independent vectors is obtained.

To prove (iii), suppose that v1, . . . , vm span V and m > n. Then, by Theo-
rem 3.4.1, v1, . . . , vm must be linearly dependent. It follows that one of the vectors,
say, vm , can be written as a linear combination of the others. Hence, if vm is eliminated
from the set, the remaining m − 1 vectors will still span V . If m − 1 > n, we can con-
tinue to eliminate vectors in this manner until we arrive at a spanning set containing n
elements.

Standard Bases

In Example 1, we referred to the set {e1, e2, e3} as the standard basis for R
3. We refer to

this basis as the standard basis because it is the most natural one to use for representing
vectors in R

3. More generally, the standard basis for R
n is the set {e1, e2, . . . , en}.

The most natural way to represent matrices in R
2×2 is in terms of the basis

{E11, E12, E21, E22} given in Example 2. This, then, is the standard basis for R
2×2.
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The standard way to represent a polynomial in Pn is in terms of the functions
1, x , x2, . . . , xn−1, and consequently, the standard basis for Pn is {1, x, x2, . . . , xn−1}.

Although these standard bases appear to be the simplest and most natural to use,
they are not the most appropriate bases for many applied problems. (See, for example,
the least squares problems in Chapter 5 or the eigenvalue applications in Chapter 6.)
Indeed, the key to solving many applied problems is to switch from one of the standard
bases to a basis that is in some sense natural for the particular application. Once the
application is solved in terms of the new basis, it is a simple matter to switch back and
represent the solution in terms of the standard basis. In the next section, we will learn
how to switch from one basis to another.

SECTION 3.4 EXERCISES
1. In Exercise 1 of Section 3, indicate whether the

given vectors form a basis for R
2.

2. In Exercise 2 of Section 3, indicate whether the
given vectors form a basis for R

3.

3. Consider the vectors

x1 =
⎧⎪⎩2

1

⎫⎪⎭ , x2 =
⎧⎪⎩4

3

⎫⎪⎭ , x3 =
⎧⎪⎩ 7

−3

⎫⎪⎭
(a) Show that x1 and x2 form a basis for R

2.
(b) Why must x1, x2, and x3 be linearly dependent?
(c) What is the dimension of Span(x1, x2, x3)?

4. Given the vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

3
−2

4

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

−3
2

−4

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

−6
4

−8

⎫⎪⎪⎪⎪⎪⎭
what is the dimension of Span(x1, x2, x3)?

5. Let

x1 =
⎧⎪⎪⎪⎪⎪⎩

2
1
3

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

3
−1

4

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

2
6
4

⎫⎪⎪⎪⎪⎪⎭
(a) Show that x1, x2, and x3 are linearly dependent.
(b) Show that x1 and x2 are linearly independent.
(c) What is the dimension of Span(x1, x2, x3)?
(d) Give a geometric description of

Span(x1, x2, x3).

6. In Exercise 2 of Section 2, some of the sets formed
subspaces of R

3. In each of these cases, find a basis
for the subspace and determine its dimension.

7. Find a basis for the subspace S of R
4 consisting of

all vectors of the form (a + b, a − b + 2c, b, c)T ,
where a, b, and c are all real numbers. What is the
dimension of S?

8. Given x1 = (1, 1, 1)T and x2 = (3, −1, 4)T :
(a) Do x1 and x2 span R

3? Explain.

(b) Let x3 be a third vector in R
3 and set X =

( x1 x2 x3 ). What condition(s) would X have
to satisfy in order for x1, x2, and x3 to form a
basis for R

3?

(c) Find a third vector x3 that will extend the set
{x1, x2} to a basis for R

3.

9. Let a1 and a2 be linearly independent vectors in R
3,

and let x be a vector in R
2.

(a) Describe geometrically Span(a1, a2).

(b) If A = (a1, a2) and b = Ax, then what is the
dimension of Span(a1, a2, b)? Explain.

10. The vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
2
2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

2
5
4

⎫⎪⎪⎪⎪⎪⎭ ,

x3 =
⎧⎪⎪⎪⎪⎪⎩

1
3
2

⎫⎪⎪⎪⎪⎪⎭ , x4 =
⎧⎪⎪⎪⎪⎪⎩

2
7
4

⎫⎪⎪⎪⎪⎪⎭ , x5 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭
span R

3. Pare down the set {x1, x2, x3, x4, x5} to
form a basis for R

3.

11. Let S be the subspace of P3 consisting of all poly-
nomials of the form ax2 + bx + 2a + 3b. Find a
basis for S.

12. In Exercise 3 of Section 2, some of the sets formed
subspaces of R

2×2. In each of these cases, find a
basis for the subspace and determine its dimension.

13. In C[−π, π], find the dimension of the subspace
spanned by 1, cos 2x , and cos2 x .

14. In each of the following, find the dimension of the
subspace of P3 spanned by the given vectors:
(a) x , x − 1, x2 + 1
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(b) x , x − 1, x2 + 1, x2 − 1

(c) x2, x2 − x − 1, x + 1 (d) 2x , x − 2

15. Let S be the subspace of P3 consisting of all poly-
nomials p(x) such that p(0) = 0, and let T be the
subspace of all polynomials q(x) such that q(1) =
0. Find bases for
(a) S (b) T (c) S ∩ T

16. In R
4, let U be the subspace of all vectors of the

form (u1, u2, 0, 0)T , and let V be the subspace of
all vectors of the form (0, v2, v3, 0)T . What are the
dimensions of U , V , U ∩ V , U + V ? Find a basis

for each of these four subspaces. (See Exercises 20
and 22 of Section 2.)

17. Is it possible to find a pair of two-dimensional sub-
spaces U and V of R

3 such that U ∩ V = {0}?
Prove your answer. Give a geometrical interpre-
tation of your conclusion. [Hint: Let {u1, u2} and
{v1, v2} be bases for U and V , respectively. Show
that u1, u2, v1, v2 are linearly dependent.]

18. Show that if U and V are subspaces of R
n and

U ∩ V = {0}, then

dim (U + V ) = dim U + dim V

3.5 Change of Basis

Many applied problems can be simplified by changing from one coordinate system
to another. Changing coordinate systems in a vector space is essentially the same as
changing from one basis to another. For example, in describing the motion of a particle
in the plane at a particular time, it is often convenient to use a basis for R

2 consisting of
a unit tangent vector T and a unit normal vector N instead of the standard basis {e1, e2}.
(See Application 2 in Section 3 of Chapter 2.)

In this section, we discuss the problem of switching from one coordinate system to
another. We will show that this can be accomplished by multiplying a given coordinate
vector x by a nonsingular matrix S. The product y = Sx will be the coordinate vector
for the new coordinate system.

Changing Coordinates in R
2

The standard basis for R
2 is {e1, e2}. Any vector x in R

2 can be expressed as a linear
combination

x = x1e1 + x2e2

The scalars x1 and x2 can be thought of as the coordinates of x with respect to the
standard basis. Actually, for any basis {y, z} for R

2, it follows from Theorem 3.3.2 that
a given vector x can be represented uniquely as a linear combination

x = αy + βz

The scalars α and β are the coordinates of x with respect to the basis {y, z}. Let us order
the basis elements so that y is considered the first basis vector and z is considered the
second, and denote the ordered basis by [y, z]. We can then refer to the vector (α, β)T

as the coordinate vector of x with respect to [y, z]. Note that, if we reverse the order
of the basis vectors and take [z, y], then we must also reorder the coordinate vector.
The coordinate vector of x with respect to [z, y] will be (β, α)T . When we refer to a
basis using subscripts, such as {u1, u2}, the subscripts assign an ordering to the basis
vectors.

EXAMPLE 1 Let y = (2, 1)T and z = (1, 4)T . The vectors y and z are linearly independent and
hence they form a basis for R

2. The vector x = (7, 7)T can be written as a linear
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combination
x = 3y + z

Thus, the coordinate vector of x with respect to [y, z] is (3, 1)T . Geometrically, the
coordinate vector specifies how to get from the origin to the point (7, 7) by moving
first in the direction of y and then in the direction of z. If, instead, we treat z as our first
basis vector and y as the second basis vector, then

x = z + 3y

The coordinate vector of x with respect to the ordered basis [z, y] is (1, 3)T . Geomet-
rically, this vector tells us how to get from the origin to (7, 7) by moving first in the
direction of z and then in the direction of y (see Figure 3.5.1).

2 4 6 7

4

7

y

3y

z

x

3y

z

Figure 3.5.1.

As an example of a problem for which it is helpful to change coordinates, consider
the following application:

APPLICATION 1 Population Migration

Suppose that the total population of a large metropolitan area remains relatively fixed;
however, each year 6% of the people living in the city move to the suburbs and 2% of
the people living in the suburbs move to the city. If, initially, 30% of the population
lives in the city and 70% lives in the suburbs, what will these percentages be in 10
years? 30 years? 50 years? What are the long-term implications?

The changes in population can be determined by matrix multiplications. If we set

A =
⎧⎪⎩0.94 0.02

0.06 0.98

⎫⎪⎭ and x0 =
⎧⎪⎩0.30

0.70

⎫⎪⎭
then the percentages of people living in the city and suburbs after 1 year can be calcu-
lated by setting x1 = Ax0. The percentages after 2 years can be calculated by setting
x2 = Ax1 = A2x0. In general, the percentages after n years will be given by xn = Anx.
If we calculate these percentages for n = 10, 30, and 50 years and round to the nearest
percent, we get

x10 =
⎧⎪⎩0.27

0.73

⎫⎪⎭ x30 =
⎧⎪⎩0.25

0.75

⎫⎪⎭ x50 =
⎧⎪⎩0.25

0.75

⎫⎪⎭
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In fact, as n increases, the sequence of vectors xn = Anx0 converges to a limit
x = (0.25, 0.75)T . The limit vector x is called a steady-state vector for the process.

To understand why the process approaches a steady state, it is helpful to switch
to a different coordinate system. For the new coordinate system, we will pick vectors
u1 and u2, for which it is easy to see the effect of multiplication by the matrix A. In
particular, if we pick u1 to be any multiple of the steady-state vector x, then Au1 will
equal u1. Let us choose u1 = (1 3)T and u2 = (−1 1)T . The second vector was
chosen because the effect of multiplying by A is just to scale the vector by a factor of
0.92. Thus, our new basis vectors satisfy

Au1 =
⎧⎪⎩0.94 0.02

0.06 0.98

⎫⎪⎭⎧⎪⎩1
3

⎫⎪⎭ =
⎧⎪⎩1

3

⎫⎪⎭ = u1

Au2 =
⎧⎪⎩0.94 0.02

0.06 0.98

⎫⎪⎭⎧⎪⎩−1
1

⎫⎪⎭ =
⎧⎪⎩−0.92

0.92

⎫⎪⎭ = 0.92u2

The initial vector x0 can be written as a linear combination of the new basis vectors:

x0 =
⎧⎪⎩0.30

0.70

⎫⎪⎭ = 0.25
⎧⎪⎩1

3

⎫⎪⎭ − 0.05
⎧⎪⎩−1

1

⎫⎪⎭ = 0.25u1 − 0.05u2

It follows that

xn = Anx0 = 0.25u1 − 0.05(0.92)nu2

The entries of the second component approach 0 as n gets large. In fact, for n > 27,
the entries will be small enough so that the rounded values of xn are all equal to

0.25u1 =
⎧⎪⎩0.25

0.75

⎫⎪⎭
This application is an example of a type of mathematical model called a Markov

process. The sequence of vectors x1, x2, . . . is called a Markov chain. The matrix A
has a special structure in that its entries are nonnegative and its columns all add up
to 1. Such matrices are called stochastic matrices. More precise definitions will be
given later when we study these types of applications in Chapter 6. What we want to
stress here is that the key to understanding such processes is to switch to a basis for
which the effect of the matrix is quite simple. In particular, if A is n × n, then we will
want to choose basis vectors so that the effect of the matrix A on each basis vector u j

is simply to scale it by some factor λ j ; that is,

Au j = λ j u j j = 1, 2, . . . , n (1)

In many applied problems involving an n × n matrix A, the key to solving the problem
often is to find basis vectors u1, . . . , un and scalars λ1, . . . , λn such that (1) is satisfied.
The new basis vectors can be thought of as a natural coordinate system to use with the
matrix A, and the scalars can be thought of as natural frequencies for the basis vectors.
We will study these types of applications in more detail in Chapter 6.
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Changing Coordinates

Once we have decided to work with a new basis, we have the problem of finding the
coordinates with respect to that basis. Suppose, for example, that instead of using the
standard basis [e1, e2] for R

2, we wish to use a different basis, say,

u1 =
⎧⎪⎩3

2

⎫⎪⎭ , u2 =
⎧⎪⎩1

1

⎫⎪⎭
Indeed, we may want to switch back and forth between the two coordinate systems.
Let us consider the following two problems:

I. Given a vector x = (x1, x2)
T , find its coordinates with respect to u1 and u2.

II. Given a vector c1u1 + c2u2, find its coordinates with respect to e1 and e2.

We will solve II first, since it turns out to be the easier problem. To switch bases from
{u1, u2} to {e1, e2}, we must express the old basis elements u1 and u2 in terms of the
new basis elements e1 and e2. Thus, we have

u1 = 3e1 + 2e2

u2 = e1 + e2

It then follows that

c1u1 + c2u2 = (3c1e1 + 2c1e2) + (c2e1 + c2e2)

= (3c1 + c2)e1 + (2c1 + c2)e2

Thus, the coordinate vector of c1u1 + c2u2 with respect to {e1, e2} is

x =
⎧⎪⎩3c1 + c2

2c1 + c2

⎫⎪⎭ =
⎧⎪⎩3 1

2 1

⎫⎪⎭⎧⎪⎩c1

c2

⎫⎪⎭
If we set

U = (u1, u2) =
⎧⎪⎩3 1

2 1

⎫⎪⎭
then, given any coordinate vector c with respect to {u1, u2}, to find the corresponding
coordinate vector x with respect to {e1, e2}, we simply multiply U times c:

x = Uc (2)

The matrix U is called the transition matrix from the ordered basis {u1, u2} to the basis
{e1, e2}.

To solve problem I, we must find the transition matrix from {e1, e2} to {u1, u2}.
The matrix U in (2) is nonsingular, since its column vectors, u1 and u2, are linearly
independent. It follows from (2) that

c = U−1x

Thus, given a vector
x = (x1, x2)

T = x1e1 + x2e2

we need only multiply by U−1 to find its coordinate vector with respect to {u1, u2}.
U−1 is the transition matrix from {e1, e2} to {u1, u2}.
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EXAMPLE 2 Let u1 = (3, 2)T , u2 = (1, 1)T , and x = (7, 4)T . Find the coordinates of x with respect
to u1 and u2.

Solution
By the preceding discussion, the transition matrix from {e1, e2} to {u1, u2} is the inverse
of

U = (u1, u2) =
⎧⎪⎩3 1

2 1

⎫⎪⎭
Thus,

c = U−1x =
⎧⎪⎩ 1 −1

−2 3

⎫⎪⎭⎧⎪⎩7
4

⎫⎪⎭ =
⎧⎪⎩ 3

−2

⎫⎪⎭
is the desired coordinate vector and

x = 3u1 − 2u2

EXAMPLE 3 Let b1 = (1, −1)T and b2 = (−2, 3)T . Find the transition matrix from {e1, e2} to
{b1, b2} and the coordinates of x = (1, 2)T with respect to {b1, b2}.

Solution
The transition matrix from {b1, b2} to {e1, e2} is

B = (b1, b2) =
⎧⎪⎩ 1 −2

−1 3

⎫⎪⎭
and hence the transition matrix from {e1, e2} to {b1, b2} is

B−1 =
⎧⎪⎩3 2

1 1

⎫⎪⎭
The coordinate vector of x with respect to {b1, b2} is

c = B−1x =
⎧⎪⎩3 2

1 1

⎫⎪⎭⎧⎪⎩1
2

⎫⎪⎭ =
⎧⎪⎩7

3

⎫⎪⎭
and hence

x = 7b1 + 3b2

Now let us consider the general problem of changing from one basis [v1, v2] of
R

2 to another basis {u1, u2}. In this case, we assume that, for a given vector x, its
coordinates with respect to {v1, v2} are known:

x = c1v1 + c2v2

Now we wish to represent x as a sum d1u1 + d2u2. Thus, we must find scalars d1 and
d2 so that

c1v1 + c2v2 = d1u1 + d2u2 (3)

If we set V = (v1, v2) and U = (u1, u2), then equation (3) can be written in matrix
form:

V c = Ud
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It follows that

d = U−1V c

Thus, given a vector x in R
2 and its coordinate vector c with respect to the ordered

basis {v1, v2}, to find the coordinate vector of x with respect to the new basis {u1, u2},
we simply multiply c by the transition matrix S = U−1V .

EXAMPLE 4 Find the transition matrix corresponding to the change of basis from {v1, v2} to
{u1, u2}, where

v1 =
⎧⎪⎩5

2

⎫⎪⎭ , v2 =
⎧⎪⎩7

3

⎫⎪⎭ and u1 =
⎧⎪⎩3

2

⎫⎪⎭ , u2 =
⎧⎪⎩1

1

⎫⎪⎭
Solution
The transition matrix from {v1, v2} to {u1, u2} is given by

S = U−1V =
⎧⎪⎩ 1 −1

−2 3

⎫⎪⎭⎧⎪⎩5 7
2 3

⎫⎪⎭ =
⎧⎪⎩ 3 4

−4 −5

⎫⎪⎭
The change of basis from {v1, v2} to {u1, u2} can also be viewed as a two-step

process. First we change from {v1, v2} to the standard basis, {e1, e2}, and then we
change from the standard basis to {u1, u2}. Given a vector x in R

2, if c is the coordinate
vector of x with respect to {v1, v2} and d is the coordinate vector of x with respect to
{u1, u2}, then

c1v1 + c2v2 = x1e1 + x2e2 = d1u1 + d2u2

Since V is the transition matrix from {v1, v2} to {e1, e2} and U−1 is the transition matrix
from {e1, e2} to {u1, u2}, it follows that

V c = x and U−1x = d

and hence

U−1V c = U−1x = d

As before, we see that the transition matrix from {v1, v2} to {u1, u2} is U−1V (see
Figure 3.5.2).

[v1, v2] [e1, e2]

[u1, u2]

U–1V
U–1

V

Figure 3.5.2.



150 Chapter 3 Vector Spaces

Change of Basis for a General Vector Space

Everything we have done so far can easily be generalized to apply to any finite-
dimensional vector space. We begin by defining coordinate vectors for an n-dimen-
sional vector space.

Definition Let V be a vector space and let E = {v1, v2, . . . , vn} be an ordered basis for V . If
v is any element of V , then v can be written in the form

v = c1v1 + c2v2 + · · · + cnvn

where c1, c2, . . . , cn are scalars. Thus, we can associate with each vector v a unique
vector c = (c1, c2, . . . , cn)

T in R
n . The vector c defined in this way is called the

coordinate vector of v with respect to the ordered basis E and is denoted [v]E . The
ci ’s are called the coordinates of v relative to E .

The examples considered so far have all dealt with changing coordinates in R
2.

Similar techniques could be used for R
n . In the case of R

n , the transition matrices will
be n × n.

EXAMPLE 5 Let
E = [v1, v2, v3] = [(1, 1, 1)T , (2, 3, 2)T , (1, 5, 4)T ]
F = [u1, u2, u3] = [(1, 1, 0)T , (1, 2, 0)T , (1, 2, 1)T ]

Find the transition matrix from E to F . If

x = 3v1 + 2v2 − v3 and y = v1 − 3v2 + 2v3

find the coordinates of x and y with respect to the ordered basis F .

Solution
As in Example 4, the transition matrix is given by

U−1V =
⎧⎪⎪⎪⎪⎪⎩

2 −1 0
−1 1 −1

0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 1
1 3 5
1 2 4

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
The coordinate vectors of x and y with respect to the ordered basis F are given by

[x]F =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3
2

−1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

8
−5

3

⎫⎪⎪⎪⎪⎪⎭
and

[y]F =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1
−3

2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−8
2
3

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that

8u1 − 5u2 + 3u3 = 3v1 + 2v2 − v3

−8u1 + 2u2 + 3u3 = v1 − 3v2 + 2v3
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If V is any n-dimensional vector space, it is possible to change from one basis to
another by means of an n × n transition matrix. We will show that such a transition
matrix is necessarily nonsingular. To see how this is done, let E = {w1, . . . , wn} and
F = {v1, . . . , vn} be two ordered bases for V . The key step is to express each basis
vector w j as a linear combination of the vi ’s:

w1 = s11v1 + s21v2 + · · · + sn1vn

w2 = s12v1 + s22v2 + · · · + sn2vn

... (4)

wn = s1nv1 + s2nv2 + · · · + snnvn

Let v ∈ V . If x = [v]E , it follows from (4) that

v = x1w1 + x2w2 + · · · + xnwn

=
(

n∑
j=1

s1 j x j

)
v1 +

(
n∑

j=1

s2 j x j

)
v2 + · · · +

(
n∑

j=1

snj x j

)
vn

Thus, if y = [v]F , then

yi =
n∑

j=1

si j x j i = 1, . . . , n

and hence
y = Sx

The matrix S defined by (4) is referred to as the transition matrix. Once S has been
determined, it is a simple matter to change coordinate systems. To find the coordinates
of v = x1w1 +· · ·+ xnwn with respect to {v1, . . . , vn}, we need only calculate y = Sx.

The transition matrix S corresponding to the change of basis from {w1, . . . , wn} to
{v1, . . . , vn} can be characterized by the condition

Sx = y if and only if x1w1 + · · · + xnwn = y1v1 + · · · + ynvn (5)

Taking y = 0 in (5), we see that Sx = 0 implies that

x1w1 + · · · + xnwn = 0

Since the wi ’s are linearly independent, it follows that x = 0. Thus, the equation
Sx = 0 has only the trivial solution and hence the matrix S is nonsingular. The inverse
matrix is characterized by the condition

S−1y = x if and only if y1v1 + · · · + ynvn = x1w1 + · · · + xnwn

Accordingly, S−1 is the transition matrix used to change basis from {v1, . . . , vn} to
{w1, . . . , wn}.

EXAMPLE 6 Suppose that in P3 we want to change from the ordered basis [1, x, x2] to the ordered
basis [1, 2x, 4x2 − 2]. Since [1, x, x2] is the standard basis for P3, it is easier to find
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the transition matrix from [1, 2x, 4x2 − 2] to [1, x, x2]. Since

1 = 1 · 1 + 0x + 0x2

2x = 0 · 1 + 2x + 0x2

4x2 − 2 = −2 · 1 + 0x + 4x2

the transition matrix is

S =
⎧⎪⎪⎪⎪⎪⎩

1 0 −2
0 2 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭
The inverse of S will be the transition matrix from [1, x, x2] to [1, 2x, 4x2 − 2]:

S−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Given any p(x) = a + bx + cx2 in P3, to find the coordinates of p(x) with respect to
[1, 2x, 4x2 − 2], we simply multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c

1
2 b
1
4 c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus,

p(x) = (a + 1
2 c) · 1 + ( 1

2 b) · 2x + 1
4 c · (4x2 − 2)

We have seen that each transition matrix is nonsingular. Actually, any nonsingular
matrix can be thought of as a transition matrix. If S is an n × n nonsingular matrix and
{v1, . . . , vn} is an ordered basis for V , then define {w1, w2, . . . , wn} by (4). To see that
the w j ’s are linearly independent, suppose that

n∑
j=1

x j w j = 0

It follows from (4) that
n∑

i=1

(
n∑

j=1

si j x j

)
v j = 0

By the linear independence of the vi ’s, it follows that

n∑
j=1

si j x j = 0 i = 1, . . . , n

or, equivalently,
Sx = 0
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Since S is nonsingular, x must equal 0. Therefore, w1, . . . , wn are linearly independent
and hence they form a basis for V . The matrix S is the transition matrix corresponding
to the change from the ordered basis {w1, . . . , wn} to {v1, . . . , vn}.

In many applied problems, it is important to use the right type of basis for the par-
ticular application. In Chapter 5, we will see that the key to solving least squares prob-
lems is to switch to a special type of basis called an orthonormal basis. In Chapter 6,
we will consider a number of applications involving the eigenvalues and eigenvectors
associated with an n × n matrix A. The key to solving these types of problems is to
switch to a basis for R

n consisting of eigenvectors of A.

SECTION 3.5 EXERCISES
1. For each of the following, find the transition matrix

corresponding to the change of basis from {u1, u2}
to {e1, e2}:
(a) u1 = (1, 1)T , u2 = (−1, 1)T

(b) u1 = (1, 2)T , u2 = (2, 5)T

(c) u1 = (0, 1)T , u2 = (1, 0)T

2. For each of the ordered bases {u1, u2} in Exer-
cise 1, find the transition matrix corresponding to
the change of basis from {e1, e2} to {u1, u2}.

3. Let v1 = (3, 2)T and v2 = (4, 3)T . For each or-
dered basis {u1, u2} given in Exercise 1, find the
transition matrix from {v1, v2} to {u1, u2}.

4. Let E = [(5, 3)T , (3, 2)T ] and let x = (1, 1)T ,
y = (1, −1)T , and z = (10, 7)T . Determine the
values of [x]E , [y]E , and [z]E .

5. Let u1 = (1, 1, 1)T , u2 = (1, 2, 2)T ,
u3 = (2, 3, 4)T .
(a) Find the transition matrix corresponding to the

change of basis from {e1, e2, e3} to {u1, u2, u3}.
(b) Find the coordinates of each of the following

vectors with respect to {u1, u2, u3}:
(i) (3, 2, 5)T (ii) (1, 1, 2)T

(iii) (2, 3, 2)T

6. Let v1 = (4, 6, 7)T , v2 = (0, 1, 1)T ,
v3 = (0, 1, 2)T , and let u1, u2, and u3 be the vectors
given in Exercise 5.
(a) Find the transition matrix from {v1, v2, v3} to

{u1, u2, u3}.
(b) If x = 2v1 + 3v2 − 4v3, determine the coordi-

nates of x with respect to {u1, u2, u3}.

7. Given

v1 =
⎧⎪⎩1

2

⎫⎪⎭ , v2 =
⎧⎪⎩2

3

⎫⎪⎭ , S =
⎧⎪⎩3 5

1 −2

⎫⎪⎭
find vectors w1 and w2 so that S will be the transi-
tion matrix from {w1, w2} to {v1, v2}.

8. Given

v1 =
⎧⎪⎩2

6

⎫⎪⎭ , v2 =
⎧⎪⎩1

4

⎫⎪⎭ , S =
⎧⎪⎩4 1

2 1

⎫⎪⎭
find vectors u1 and u2 so that S will be the transi-
tion matrix from {v1, v2} to {u1, u2}.

9. Let [x, 1] and [2x − 1, 2x + 1] be ordered bases for
P2.
(a) Find the transition matrix representing the

change in coordinates from [2x − 1, 2x + 1]
to [x, 1].

(b) Find the transition matrix representing
the change in coordinates from [x, 1] to
[2x − 1, 2x + 1].

10. Find the transition matrix representing the change
of coordinates on P3 from the ordered basis
[1, x, x2] to the ordered basis

[1, 1 + x, 1 + x + x2]
11. Let E = {u1, . . . , un} and F = {v1, . . . , vn} be two

ordered bases for R
n , and set

U = (u1, . . . , un), V = (v1, . . . , vn)

Show that the transition matrix from E to F can be
determined by calculating the reduced row echelon
form of (V |U ).
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3.6 Row Space and Column Space

If A is an m × n matrix, each row of A is an n-tuple of real numbers and hence can be
considered as a vector in R

1×n . The m vectors corresponding to the rows of A will be
referred to as the row vectors of A. Similarly, each column of A can be considered as
a vector in R

m , and we can associate n column vectors with the matrix A.

Definition If A is an m × n matrix, the subspace of R
1×n spanned by the row vectors of A is

called the row space of A. The subspace of R
m spanned by the column vectors of

A is called the column space of A.

EXAMPLE 1 Let

A =
⎧⎪⎩1 0 0

0 1 0

⎫⎪⎭

The row space of A is the set of all 3-tuples of the form

α(1, 0, 0) + β(0, 1, 0) = (α, β, 0)

The column space of A is the set of all vectors of the form

α

⎧⎪⎩1
0

⎫⎪⎭ + β

⎧⎪⎩0
1

⎫⎪⎭ + γ

⎧⎪⎩0
0

⎫⎪⎭ =
⎧⎪⎩α

β

⎫⎪⎭

Thus the row space of A is a two-dimensional subspace of R
1×3, and the column space

of A is R
2.

Theorem 3.6.1 Two row-equivalent matrices have the same row space.

Proof If B is row equivalent to A, then B can be formed from A by a finite sequence of
row operations. Thus, the row vectors of B must be linear combinations of the row
vectors of A. Consequently, the row space of B must be a subspace of the row space
of A. Since A is row equivalent to B, by the same reasoning, the row space of A is a
subspace of the row space of B.

Definition The rank of a matrix A, denoted rank(A), is the dimension of the row space of A.
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To determine the rank of a matrix, we can reduce the matrix to row echelon form.
The nonzero rows of the row echelon matrix will form a basis for the row space.

EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 −2 3
2 −5 1
1 −4 −7

⎫⎪⎪⎪⎪⎪⎭
Reducing A to row echelon form, we obtain the matrix

U =
⎧⎪⎪⎪⎪⎪⎩

1 −2 3
0 1 5
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Clearly, (1, −2, 3) and (0, 1, 5) form a basis for the row space of U . Since U and A
are row equivalent, they have the same row space, and hence the rank of A is 2.

Linear Systems
The concepts of row space and column space are useful in the study of linear systems.
A system Ax = b can be written in the form

x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11

a21
...

am1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + x2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a12

a22
...

am2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + · · · + xn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1n

a2n
...

amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2
...

bm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

In Chapter 1, we used this representation to characterize when a linear system will
be consistent. The result, Theorem 1.3.1, can now be restated in terms of the column
space of the matrix.

Theorem 3.6.2 Consistency Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b is in the column space of A.

If b is replaced by the zero vector, then (1) becomes

x1a1 + x2a2 · · · + xnan = 0 (2)

It follows from (2) that the system Ax = 0 will have only the trivial solution x = 0 if
and only if the column vectors of A are linearly independent.

Theorem 3.6.3 Let A be an m × n matrix. The linear system Ax = b is consistent for every b ∈ R
m

if and only if the column vectors of A span R
m . The system Ax = b has at most

one solution for every b ∈ R
m if and only if the column vectors of A are linearly

independent.

Proof We have seen that the system Ax = b is consistent if and only if b is in the column
space of A. It follows that Ax = b will be consistent for every b ∈ R

m if and only if the
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column vectors of A span R
m . To prove the second statement, note that, if Ax = b has

at most one solution for every b, then, in particular, the system Ax = 0 can have only
the trivial solution, and hence the column vectors of A must be linearly independent.
Conversely, if the column vectors of A are linearly independent, Ax = 0 has only the
trivial solution. Now, if x1 and x2 were both solutions of Ax = b, then x1 − x2 would
be a solution of Ax = 0,

A(x1 − x2) = Ax1 − Ax2 = b − b = 0

It follows that x1 − x2 = 0, and hence x1 must equal x2.

Let A be an m × n matrix. If the column vectors of A span R
m , then n must be

greater than or equal to m, since no set of fewer than m vectors could span R
m . If the

columns of A are linearly independent, then n must be less than or equal to m, since
every set of more than m vectors in R

m is linearly dependent. Thus, if the column
vectors of A form a basis for R

m , then n must equal m.

Corollary 3.6.4 An n × n matrix A is nonsingular if and only if the column vectors of A form a basis
for R

n .

In general, the rank and the dimension of the null space always add up to the
number of columns of the matrix. The dimension of the null space of a matrix is called
the nullity of the matrix.

Theorem 3.6.5 The Rank–Nullity Theorem
If A is an m × n matrix, then the rank of A plus the nullity of A equals n.

Proof Let U be the reduced row echelon form of A. The system Ax = 0 is equivalent to the
system Ux = 0. If A has rank r , then U will have r nonzero rows, and consequently
the system Ux = 0 will involve r lead variables and n−r free variables. The dimension
of N (A) will equal the number of free variables.

EXAMPLE 3 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 −1 1
2 4 −3 0
1 2 1 5

⎫⎪⎪⎪⎪⎪⎭
Find a basis for the row space of A and a basis for N (A). Verify that dim N (A) = n−r .

Solution
The reduced row echelon form of A is given by

U =
⎧⎪⎪⎪⎪⎪⎩

1 2 0 3
0 0 1 2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
Thus, {(1, 2, 0, 3), (0, 0, 1, 2)} is a basis for the row space of A, and A has rank 2.
Since the systems Ax = 0 and Ux = 0 are equivalent, it follows that x is in N (A) if
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and only if
x1 + 2x2 + 3x4 = 0

x3 + 2x4 = 0

The lead variables x1 and x3 can be solved for in terms of the free variables x2 and x4:

x1 = −2x2 − 3x4

x3 = −2x4

Let x2 = α and x4 = β. It follows that N (A) consists of all vectors of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2

x3

x4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2α − 3β

α

−2β

β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3

0
−2

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The vectors (−2, 1, 0, 0)T and (−3, 0, −2, 1)T form a basis for N (A). Note that

n − r = 4 − 2 = 2 = dim N (A)

The Column Space

The matrices A and U in Example 3 have different column spaces; however, their
column vectors satisfy the same dependency relations. For the matrix U , the column
vectors u1 and u3 are linearly independent, while

u2 = 2u1

u4 = 3u1 + 2u3

The same relations hold for the columns of A: The vectors a1 and a3 are linearly
independent, while

a2 = 2a1

a4 = 3a1 + 2a3

In general, if A is an m × n matrix and U is the row echelon form of A, then,
since Ax = 0 if and only if Ux = 0, their column vectors satisfy the same dependency
relations. We will use this property to prove that the dimension of the column space of
A is equal to the dimension of the row space of A.

Theorem 3.6.6 If A is an m × n matrix, the dimension of the row space of A equals the dimension of
the column space of A.

Proof If A is an m × n matrix of rank r , the row echelon form U of A will have r leading 1’s.
The columns of U corresponding to the lead 1’s will be linearly independent. They do
not, however, form a basis for the column space of A, since, in general, A and U will
have different column spaces. Let UL denote the matrix obtained from U by deleting
all the columns corresponding to the free variables. Delete the same columns from A
and denote the new matrix by AL . The matrices AL and UL are row equivalent. Thus,
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if x is a solution of ALx = 0, then x must also be a solution of ULx = 0. Since the
columns of UL are linearly independent, x must equal 0. It follows from the remarks
preceding Theorem 3.6.3 that the columns of AL are linearly independent. Since AL

has r columns, the dimension of the column space of A is at least r .
We have proved that, for any matrix, the dimension of the column space is greater

than or equal to the dimension of the row space. Applying this result to the matrix AT ,
we see that

dim(row space of A) = dim(column space of AT )

≥ dim(row space of AT )

= dim(column space of A)

Thus, for any matrix A, the dimension of the row space must equal the dimension of
the column space.

We can use the row echelon form U of A to find a basis for the column space of
A. We need only determine the columns of U that correspond to the leading 1’s. These
same columns of A will be linearly independent and form a basis for the column space
of A.

Note

The row echelon form U tells us only which columns of A to use to form a basis.
We cannot use the column vectors from U , since, in general, U and A have different
column spaces.

EXAMPLE 4 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 1 2

−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The row echelon form of A is given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 1 2
0 1 1 3 0
0 0 0 0 1
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The leading 1’s occur in the first, second, and fifth columns. Thus,

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

3
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−2
4
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
form a basis for the column space of A.
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EXAMPLE 5 Find the dimension of the subspace of R
4 spanned by

x1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2

−1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
5

−3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
4

−2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
8

−5
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solution
The subspace Span(x1, x2, x3, x4) is the same as the column space of the matrix

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 2 3
2 5 4 8

−1 −3 −2 −5
0 2 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The row echelon form of X is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 2 3
0 1 0 2
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The first two columns x1 and x2 of X will form a basis for the column space of X .
Thus, dim Span(x1, x2, x3, x4) = 2.

SECTION 3.6 EXERCISES
1. For each of the following matrices, find a basis for

the row space, a basis for the column space, and a
basis for the null space:

(a)

⎧⎪⎪⎪⎪⎪⎩
1 3 2
2 1 4
4 7 8

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
−3 1 3 4

1 2 −1 −2
−3 8 4 2

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 −2 1
2 1 3 2
3 4 5 6

⎫⎪⎪⎪⎪⎪⎭
2. In each of the following, determine the dimension

of the subspace of R
3 spanned by the given vectors:

(a)

⎧⎪⎪⎪⎪⎪⎩
1

−2
2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2

−2
4

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−3

3
6

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
2
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
3
1

⎫⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1

−1
2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2

2
−4

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
3

−2
5

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2

−1
3

⎫⎪⎪⎪⎪⎪⎭
3. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 2 3 1 4
2 4 5 5 4 9
3 6 7 8 5 9

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the reduced row echelon form U of

A. Which column vectors of U correspond to
the free variables? Write each of these vectors
as a linear combination of the column vectors
corresponding to the lead variables.

(b) Which column vectors of A correspond to the
lead variables of U? These column vectors
form a basis for the column space of A. Write
each of the remaining column vectors of A as
a linear combination of these basis vectors.

4. For each of the following choices of A and b, de-
termine whether b is in the column space of A and
state whether the system Ax = b is consistent:
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(a) A =
⎧⎪⎩1 2

2 4

⎫⎪⎭ , b =
⎧⎪⎩4

8

⎫⎪⎭
(b) A =

⎧⎪⎩3 6
1 2

⎫⎪⎭ , b =
⎧⎪⎩1

1

⎫⎪⎭
(c) A =

⎧⎪⎩2 1
3 4

⎫⎪⎭ , b =
⎧⎪⎩4

6

⎫⎪⎭
(d) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 2
1 1 2
1 1 2

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

1
2
3

⎫⎪⎪⎪⎪⎪⎭
(e) A =

⎧⎪⎪⎪⎪⎪⎩
0 1
1 0
0 1

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

2
5
2

⎫⎪⎪⎪⎪⎪⎭
(f) A =

⎧⎪⎪⎪⎪⎪⎩
1 2
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

5
10

5

⎫⎪⎪⎪⎪⎪⎭
5. For each consistent system in Exercise 4, determine

whether there will be one or infinitely many solu-
tions by examining the column vectors of the coef-
ficient matrix A.

6. How many solutions will the linear system Ax = b
have if b is in the column space of A and the col-
umn vectors of A are linearly dependent? Explain.

7. Let A be an 6 × n matrix of rank r and let b be a
vector in R

6. For each pair of values of r and n that
follow, indicate the possibilities as to the number
of solutions one could have for the linear system
Ax = b. Explain your answers.
(a) n = 7, r = 5 (b) n = 7, r = 6
(c) n = 5, r = 5 (d) n = 5, r = 4

8. Let A be an m × n matrix with m > n. Let b ∈ R
m

and suppose that N (A) = {0}.
(a) What can you conclude about the column vec-

tors of A? Are they linearly independent? Do
they span R

m? Explain.
(b) How many solutions will the system Ax = b

have if b is not in the column space of A? How
many solutions will there be if b is in the col-
umn space of A? Explain.

9. Let A and B be 6 × 5 matrices. If dim N (A) = 2,
what is the rank of A? If the rank of B is 4, what is
the dimension of N (B)?

10. Let A be an m × n matrix whose rank is equal to n.
If Ac = Ad, does this imply that c must be equal
to d? What if the rank of A is less than n? Explain
your answers.

11. Let A be an m × n matrix. Prove that

rank(A) ≤ min(m, n)

12. Let A and B be row-equivalent matrices.
(a) Show that the dimension of the column space

of A equals the dimension of the column space
of B.

(b) Are the column spaces of the two matrices nec-
essarily the same? Justify your answer.

13. Let A be a 4 × 3 matrix and suppose that the vec-
tors

z1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
2

⎫⎪⎪⎪⎪⎪⎭ , z2 =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭
form a basis for N (A). If b = a1 + 2a2 + a3, find
all solutions of the system Ax = b.

14. Let A be a 4 × 4 matrix with reduced row echelon
form given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 2 1
0 1 1 4
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3

5
2
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4

−3
7

−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
find a3 and a4.

15. Let A be a 4 × 5 matrix and let U be the reduced
row echelon form of A. If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
1

−3
−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

2
3
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 2 0 −1
0 1 3 0 −2
0 0 0 1 5
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) find a basis for N (A).
(b) given that x0 is a solution of Ax = b, where

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
5
3
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and x0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
0
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(i) find all solutions to the system.

(ii) determine the remaining column vectors
of A.

16. Let A be a 5 × 8 matrix with rank equal to 5 and
let b be any vector in R

5. Explain why the system
Ax = b must have infinitely many solutions.
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17. Let A be a 4 × 5 matrix. If a1, a2, and a4 are lin-
early independent and

a3 = a1 + 2a2, a5 = 2a1 − a2 + 3a4

determine the reduced row echelon form of A.

18. Let A be a 5 × 3 matrix of rank 3 and let {x1, x2, x3}
be a basis for R

3.
(a) Show that N (A) = {0}.
(b) Show that if y1 = Ax1, y2 = Ax2, y3 = Ax3,

then y1, y2, and y3 are linearly independent.
(c) Do the vectors y1, y2, y3 from part (b) form a

basis for R
5? Explain.

19. Let A be an m × n matrix with rank equal to n.
Show that if x �= 0 and y = Ax, then y �= 0.

20. Prove that a linear system Ax = b is consistent if
and only if the rank of (A | b) equals the rank of A.

21. Let A and B be m × n matrices. Show that

rank(A + B) ≤ rank(A) + rank(B)

22. Let A be an m × n matrix.
(a) Show that if B is a nonsingular m × m matrix,

then B A and A have the same null space and
hence the same rank.

(b) Show that if C is a nonsingular n × n matrix,
then AC and A have the same rank.

23. Prove Corollary 3.6.4.

24. Show that if A and B are n × n matrices and
N (A − B) = R

n , then A = B.

25. Let A and B be n × n matrices.
(a) Show that AB = O if and only if the column

space of B is a subspace of the null space of A.
(b) Show that if AB = O , then the sum of the

ranks of A and B cannot exceed n.

26. Let A ∈ R
m×n and b ∈ R

m , and let x0 be a par-
ticular solution of the system Ax = b. Prove the
following:
(a) A vector y in R

n will be a solution of Ax = b
if and only if y = x0 + z, where z ∈ N (A).

(b) If N (A) = {0}, then the solution x0 is unique.

27. Let x and y be nonzero vectors in R
m and R

n , re-
spectively, and let A = xyT .
(a) Show that {x} is a basis for the column space

of A and that {yT } is a basis for the row space
of A.

(b) What is the dimension of N (A)?

28. Let A ∈ R
m×n , B ∈ R

n×r , and C = AB. Show that
(a) the column space of C is a subspace of the col-

umn space of A.

(b) the row space of C is a subspace of the row
space of B.

(c) rank(C) ≤ min{rank(A), rank(B)}.
29. Let A ∈ R

m×n , B ∈ R
n×r , and C = AB. Show that

(a) if A and B both have linearly independent col-
umn vectors, then the column vectors of C will
also be linearly independent.

(b) if A and B both have linearly independent row
vectors, then the row vectors of C will also be
linearly independent.

[Hint: Apply part (a) to CT .]

30. Let A ∈ R
m×n , B ∈ R

n×r , and C = AB. Show that
(a) if the column vectors of B are linearly depen-

dent, then the column vectors of C must be lin-
early dependent.

(b) if the row vectors of A are linearly dependent,
then the row vectors of C are linearly depen-
dent.

[Hint: Apply part (a) to CT .]

31. An m × n matrix A is said to have a right inverse if
there exists an n × m matrix C such that AC = Im .
A is said to have a left inverse if there exists an
n × m matrix D such that D A = In .
(a) Show that if A has a right inverse, then the col-

umn vectors of A span R
m .

(b) Is it possible for an m×n matrix to have a right
inverse if n < m? n ≥ m? Explain.

32. Prove: If A is an m × n matrix and the column
vectors of A span R

m , then A has a right inverse.
[Hint: Let e j denote the j th column of Im , and solve
Ax = e j for j = 1, . . . , m.]

33. Show that a matrix B has a left inverse if and only
if BT has a right inverse.

34. Let B be an n × m matrix whose columns are lin-
early independent. Show that B has a left inverse.

35. Prove that if a matrix B has a left inverse, then the
columns of B are linearly independent.

36. Show that if a matrix U is in row echelon form,
then the nonzero row vectors of U form a basis for
the row space of U .
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Chapter Three Exercises

MATLAB EXERCISES

1. Change of Basis Set

U = round(20 ∗ rand(4)) − 10,

V = round(10 ∗ rand(4))

and set b = ones(4, 1).
(a) We can use the MATLAB function rank to

determine whether the column vectors of a ma-
trix are linearly independent. What should the
rank be if the column vectors of U are linearly
independent? Compute the rank of U , and ver-
ify that its column vectors are linearly indepen-
dent and hence form a basis for R

4. Compute
the rank of V , and verify that its column vec-
tors also form a basis for R

4.
(b) Use MATLAB to compute the transition ma-

trix from the standard basis for R
4 to the or-

dered basis E = {u1, u2, u3, u4}. [Note that in
MATLAB the notation for the jth column vec-
tor u j is U (: , j).] Use this transition matrix
to compute the coordinate vector c of b with
respect to E . Verify that

b = c1u1 + c2u2 + c3u3 + c4u4 = Uc

(c) Use MATLAB to compute the transition ma-
trix from the standard basis to the basis F =
{v1, v2, v3, v4}, and use this transition matrix to
find the coordinate vector d of b with respect
to F . Verify that

b = d1v1 + d2v2 + d3v3 + d4v4 = V d

(d) Use MATLAB to compute the transition ma-
trix S from E to F and the transition matrix T
from F to E . How are S and T related? Verify
that Sc = d and T d = c.

2. Rank-Deficient Matrices In this exercise we con-
sider how to use MATLAB to generate matrices
with specified ranks.
(a) In general, if A is an m × n matrix with rank

r , then r ≤ min(m, n). Why? Explain. If the
entries of A are random numbers, we would
expect that r = min(m, n). Why? Explain.
Check this out by generating random 6 × 6,
8 × 6, and 5 × 8 matrices and using the MAT-
LAB command rank to compute their ranks.
Whenever the rank of an m × n matrix equals
min(m, n), we say that the matrix has full rank.

Otherwise, we say that the matrix is rank defi-
cient.

(b) MATLAB’s rand and round commands can
be used to generate random m × n matrices
with integer entries in a given range [a, b].
This can be done with a command of the form

A = round((b − a) ∗ rand(m, n)) + a

For example, the command

A = round(4 ∗ rand(6, 8)) + 3

will generate a 6 × 8 matrix whose entries are
random integers in the range from 3 to 7. Using
the range [1, 10], create random integer 10×7,
8 × 12, and 10 × 15 matrices and in each case
check the rank of the matrix. Do these integer
matrices all have full rank?

(c) Suppose that we want to use MATLAB to gen-
erate matrices with less than full rank. It is
easy to generate matrices of rank 1. If x and
y are nonzero vectors in R

m and R
n , respec-

tively, then A = xyT will be an m × n matrix
with rank 1. Why? Explain. Verify this in
MATLAB by setting

x = round(9 ∗ rand(8, 1)) + 1,

y = round(9 ∗ rand(6, 1)) + 1

and using these vectors to construct an 8 × 6
matrix A. Check the rank of A with the MAT-
LAB command rank.

(d) In general,

rank(AB) ≤ min(rank(A), rank(B)) (1)

(See Exercise 28 in Section 6.) If A and B are
noninteger random matrices, the relation (1)
should be an equality. Generate an 8×6 matrix
A by setting

X = rand(8, 2), Y = rand(6, 2),

A = X ∗ Y ′

What would you expect the rank of A to be?
Explain. Test the rank of A with MATLAB.
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(e) Use MATLAB to generate matrices A, B, and
C such that

(i) A is 8 × 8 with rank 3.
(ii) B is 6 × 9 with rank 4.

(iii) C is 10 × 7 with rank 5.

3. Column Space and Reduced Row Echelon Form
Set

B = round(10 ∗ rand(8, 4)),

X = round(10 ∗ rand(4, 3)),

C = B ∗ X
and

A = [ B C ]
(a) How are the column spaces of B and C re-

lated? (See Exercise 28 in Section 6.) What
would you expect the rank of A to be? Explain.
Use MATLAB to check your answer.

(b) Which column vectors of A should form a ba-
sis for its column space? Explain. If U is the
reduced row echelon form of A, what would
you expect its first four columns to be? Ex-
plain. What would you expect its last four rows
to be? Explain. Use MATLAB to verify your
answers by computing U .

(c) Use MATLAB to construct another matrix
D = ( E EY ), where E is a random 6 × 4
matrix and Y is a random 4 × 2 matrix. What
would you expect the reduced row echelon
form of D to be? Compute it with MATLAB.
Show that, in general, if B is an m × n ma-
trix of rank n and X is an n × k matrix, the
reduced row echelon form of ( B B X ) will
have block structure

(I X) if m = n or
⎧⎪⎩ I X

O O

⎫⎪⎭ if m > n

4. Rank-1 Updates of Linear Systems

(a) Set

A = round(10 ∗ rand(8)),

b = round(10 ∗ rand(8, 1)),

and M = inv(A). Use the matrix M to solve
the system Ay = b for y.

(b) Consider now a new system Cx = b, where C
is constructed as follows:

u = round(10 ∗ rand(8, 1)),

v = round(10 ∗ rand(8, 1))

E = u ∗ v ′,
C = A + E

The matrices C and A differ by the rank 1 ma-
trix E . Use MATLAB to verify that the rank
of E is 1. Use MATLAB’s “\” operation to
solve the system Cx = b, and then compute
the residual vector r = b − Ax.

(c) Let us now solve Cx = b by a new method
that takes advantage of the fact that A and C
differ by a rank-1 matrix. This new procedure
is called a rank-1 update method. Set

z = M ∗ u, c = v ′ ∗ y,

d = v ′ ∗ z, e = c/(1 + d)

and then compute the solution x by

x = y − e ∗ z

Compute the residual vector b − Cx and com-
pare it with the residual vector in part (b). This
new method may seem more complicated, but
it actually is much more computationally effi-
cient.

(d) To see why the rank-1 update method works,
use MATLAB to compute and compare

Cy and b + cu

Prove that if all computations had been car-
ried out in exact arithmetic, these two vectors
would be equal. Also, compute

Cz and (1 + d)u

Prove that if all computations had been car-
ried out in exact arithmetic, these two vectors
would be equal. Use these identities to prove
that Cx = b. Assuming that A is nonsingular,
will the rank-1 update method always work?
Under what conditions could it fail? Explain.
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CHAPTER TEST A True or False

Answer each of the statements that follow as true or
false. In each case, explain or prove your answer.

1. If S is a subspace of a vector space V , then S is a
vector space.

2. R
2 is a subspace of R

3.

3. It is possible to find a pair of two-dimensional sub-
spaces S and T of R

3 such that S ∩ T = {0}.
4. If S and T are subspaces of a vector space V , then

S ∪ T is a subspace of V .

5. If S and T are subspaces of a vector space V , then
S ∩ T is a subspace of V .

6. If x1, x2, . . . , xn span R
n , then they are linearly in-

dependent.

7. If x1, x2, . . . , xn span a vector space V , then they
are linearly independent.

8. If x1, x2, . . . , xk are vectors in a vector space V and

Span(x1, x2, . . . , xk) = Span(x1, x2, . . . , xk−1)

then x1, x2, . . . , xk are linearly dependent.

9. If A is an m × n matrix, then A and AT have the
same rank.

10. If A is an m × n matrix, then A and AT have the
same nullity.

11. If U is the reduced row echelon form of A, then A
and U have the same row space.

12. If U is the reduced row echelon form of A, then A
and U have the same column space.

13. Let x1, x2, . . . , xk be linearly independent vectors
in R

n . If k < n and xk+1 is a vector that is not in
Span(x1, x2, . . . , xk), then the vectors x1, x2, . . . ,
xk , xk+1 are linearly independent.

14. Let {u1, u2}, {v1, v2}, and {w1, w2}, be bases for
R

2. If X is the transition matrix corresponding to
a change of basis from {u1, u2} to {v1, v2} and Y is
the transition matrix corresponding to a change of
basis from {v1, v2} to {w1, w2}, then Z = XY is
the transition matrix corresponding to the change
of basis from {u1, u2} to {w1, w2}.

15. If A and B are n × n matrices that have the same
rank, then the rank of A2 must equal the rank of B2.

CHAPTER TEST B

1. In R
3, let x1 and x2 be linearly independent vectors

and let x3 = 0 (the zero vector). Are x1, x2, and x3

linearly independent? Prove your answer.

2. For each set that follows, determine whether it is a
subspace of R

2. Prove your answers.

(a) S1 =
{

x =
⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x1 + x2 = 0

}

(b) S2 =
{

x =
⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x1x2 = 0

}
3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 3 1 3 4
0 0 1 1 1
0 0 2 2 2
0 0 3 3 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find a basis for N (A) (the null space of A).

What is the dimension of N (A)?

(b) Find a basis for the column space of A. What
is the rank of A?

4. How do the dimensions of the null space and col-
umn space of a matrix relate to the number of lead
and free variables in the reduced row echelon form
of the matrix? Explain.

5. Answer the following questions and, in each case,
give geometric explanations of your answers:
(a) Is it possible to have a pair of one-dimensional

subspaces U1 and U2 of R
3 such that

U1 ∩ U2 = {0}?
(b) Is it possible to have a pair of two-dimensional

subspaces V1 and V2 of R
3 such that

V1 ∩ V2 = {0}?
6. Let S be the set of all symmetric 2 × 2 matrices

with real entries.
(a) Show that S is a subspace of R

2×2.

(b) Find a basis for S.

7. Let A be a 6 × 4 matrix of rank 4.
(a) What is the dimension of N (A)? What is the

dimension of the column space of A?

(b) Do the column vectors of A span R
6? Are the

column vectors of A linearly independent? Ex-
plain your answers.

(c) How many solutions will the linear system
Ax = b have if b is in the column space of
A? Explain.
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8. Given the vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
2
2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

1
3
3

⎫⎪⎪⎪⎪⎪⎭ ,

x3 =
⎧⎪⎪⎪⎪⎪⎩

1
5
5

⎫⎪⎪⎪⎪⎪⎭ , x4 =
⎧⎪⎪⎪⎪⎪⎩

1
2
3

⎫⎪⎪⎪⎪⎪⎭
(a) Are x1, x2, x3, and x4 linearly independent in

R
3? Explain.

(b) Do x1, x2 span R
3? Explain.

(c) Do x1, x2, x3 span R
3? Are they linearly in-

dependent? Do they form a basis for R
3? Ex-

plain.

(d) Do x1, x2, x4 span R
3? Are they linearly inde-

pendent? Do they form a basis for R
3? Explain

or prove your answers.

9. Let x1, x2, and x3 be linearly independent vectors in
R

4 and let A be a nonsingular 4 × 4 matrix. Prove
that if

y1 = Ax1, y2 = Ax2, y3 = Ax3

then y1, y2, and y3 are linearly independent.

10. Let A be a 6 × 5 matrix with linearly independent
column vectors a1, a2, and a3 and whose remaining
column vectors satisfy

a4 = a1 + 3a2 + a3, a5 = 2a1 − a3

(a) What is the dimension of N (A)? Explain.
(b) Determine the reduced row echelon form of A.

11. Let {u1, u2} and {v1, v2} be ordered bases for R
2,

where

u1 =
⎧⎪⎩1

3

⎫⎪⎭ , u2 =
⎧⎪⎩2

7

⎫⎪⎭
and

v1 =
⎧⎪⎩5

2

⎫⎪⎭ , v2 =
⎧⎪⎩4

9

⎫⎪⎭
(a) Determine the transition matrix corresponding

to a change of basis from the standard ba-
sis {e1, e2} to the ordered basis {u1, u2}. Use
this transition matrix to find the coordinates of
x = (1, 1)T with respect to {u1, u2}.

(b) Determine the transition matrix corresponding
to a change of basis from the basis {v1, v2} to
the ordered basis {u1, u2}. Use this transition
matrix to find the coordinates of z = 2v1 + 3v2

with respect to {u1, u2}.
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Linear Transformations
Linear mappings from one vector space to another play an important role in mathe-
matics. This chapter provides an introduction to the theory of such mappings. In
Section 1, the definition of a linear transformation is given and a number of examples
are presented. In Section 2, it is shown that each linear transformation L mapping an n-
dimensional vector space V into an m-dimensional vector space W can be represented
by an m × n matrix A. Thus, we can work with the matrix A in place of the mapping
L . In the case that the linear transformation L maps V into itself, the matrix represent-
ing L will depend on the ordered basis chosen for V . Hence, L may be represented
by a matrix A with respect to one ordered basis and by another matrix B with respect
to another ordered basis. In Section 3, we consider the relationship between different
matrices that represent the same linear transformation. In many applications, it is desir-
able to choose the basis for V so that the matrix representing the linear transformation
is either diagonal or in some other simple form.

4.1 Definition and Examples

In the study of vector spaces, the most important types of mappings are linear transfor-
mations.

Definition A mapping L from a vector space V into a vector space W is said to be a linear
transformation if

L(αv1 + βv2) = αL(v1) + βL(v2) (1)

for all v1, v2 ∈ V and for all scalars α and β.

166
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If L is a linear transformation mapping a vector space V into a vector space W ,
then it follows from (1) that

L(v1 + v2) = L(v1) + L(v2) (α = β = 1) (2)

and

L(αv) = αL(v) (v = v1, β = 0) (3)

Conversely, if L satisfies (2) and (3), then

L(αv1 + βv2) = L(αv1) + L(βv2)

= αL(v1) + βL(v2)

Thus, L is a linear transformation if and only if L satisfies (2) and (3).

Notation

A mapping L from a vector space V into a vector space W will be denoted

L : V → W

When the arrow notation is used, it will be assumed that V and W represent vector
spaces.

In the case that the vector spaces V and W are the same, we will refer to a linear
transformation L : V → V as a linear operator on V . Thus, a linear operator is a
linear transformation that maps a vector space V into itself.

Let us now consider some examples of linear transformations. We begin with
linear operators on R

2. In this case, it is easier to see the geometric effect of the
operator.

Linear Operators on R
2

EXAMPLE 1 Let L be the operator defined by

L(x) = 3x

for each x ∈ R
2. Since

L(αx) = 3(αx) = α(3x) = αL(x)

and

L(x + y) = 3(x + y) = (3x) + (3y) = L(x) + L(y)

it follows that L is a linear operator. We can think of L as a stretching by a factor of 3
(see Figure 4.1.1). In general, if α is a positive scalar, the linear operator F(x) = αx
can be thought of as a stretching or shrinking by a factor of α.
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L(x) = 3x

x

Figure 4.1.1.

EXAMPLE 2 Consider the mapping L defined by

L(x) = x1e1

for each x ∈ R
2. Thus, if x = (x1, x2)

T , then L(x) = (x1, 0)T . If y = (y1, y2)
T , then

αx + βy =
⎧⎪⎩αx1 + βy1

αx2 + βy2

⎫⎪⎭
and it follows that

L(αx + βy) = (αx1 + βy1)e1 = α(x1e1) + β(y1e1) = αL(x) + βL(y)

Hence, L is a linear operator. We can think of L as a projection onto the x1-axis (see
Figure 4.1.2).

x

x1 axis
x1

x2 axis

L(x) = x1e1

Figure 4.1.2.

EXAMPLE 3 Let L be the operator defined by

L(x) = (x1, −x2)
T

for each x = (x1, x2)
T in R

2. Since

L(αx + βy) =
⎧⎪⎩ αx1 + βy1

−(αx2 + βy2)

⎫⎪⎭
= α

⎧⎪⎩ x1

−x2

⎫⎪⎭ + β

⎧⎪⎩ y1

−y2

⎫⎪⎭
= αL(x) + βL(y)

it follows that L is a linear operator. The operator L has the effect of reflecting vectors
about the x1-axis (see Figure 4.1.3).
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x1 axis

x = (x1, x2)T

L(x) = (x1, –x2)T

Figure 4.1.3.

EXAMPLE 4 The operator L defined by

L(x) = (−x2, x1)
T

is linear, since

L(αx + βy) =
⎧⎪⎩−(αx2 + βy2)

αx1 + βy1

⎫⎪⎭
= α

⎧⎪⎩−x2

x1

⎫⎪⎭ + β

⎧⎪⎩−y2

y1

⎫⎪⎭
= αL(x) + βL(y)

The operator L has the effect of rotating each vector in R
2 by 90◦ in the counterclock-

wise direction (see Figure 4.1.4).

x = (x1, x2)T

L(x) = (–x2, x1)T

90�

Figure 4.1.4.
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Linear Transformations from R
n to R

m

EXAMPLE 5 The mapping L : R
2 → R

1 defined by

L(x) = x1 + x2

is a linear transformation, since

L(αx + βy) = (αx1 + βy1) + (αx2 + βy2)

= α(x1 + x2) + β(y1 + y2)

= αL(x) + βL(y)

EXAMPLE 6 Consider the mapping M defined by

M(x) = (x2
1 + x2

2)
1/2

Since
M(αx) = (α2x2

1 + α2x2
2)

1/2 = |α|M(x)

it follows that
αM(x) �= M(αx)

whenever α < 0 and x �= 0. Therefore, M is not a linear operator.

EXAMPLE 7 The mapping L from R
2 to R

3 defined by

L(x) = (x2, x1, x1 + x2)
T

is linear, since
L(αx) = (αx2, αx1, αx1 + αx2)

T = αL(x)

and

L(x + y) = (x2 + y2, x1 + y1, x1 + y1 + x2 + y2)
T

= (x2, x1, x1 + x2)
T + (y2, y1, y1 + y2)

T

= L(x) + L(y)

Note that if we define the matrix A by

A =
⎧⎪⎪⎪⎪⎪⎩

0 1
1 0
1 1

⎫⎪⎪⎪⎪⎪⎭
then

L(x) =
⎧⎪⎪⎪⎪⎪⎩

x2

x1

x1 + x2

⎫⎪⎪⎪⎪⎪⎭ = Ax

for each x ∈ R
2.
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In general, if A is any m ×n matrix, we can define a linear transformation L A from
R

n to R
m by

L A(x) = Ax

for each x ∈ R
n . The transformation L A is linear, since

L A(αx + βy) = A(αx + βy)

= αAx + β Ay
= αL A(x) + βL A(y)

Thus, we can think of each m × n matrix A as defining a linear transformation from
R

n to R
m .

In Example 7, we saw that the linear transformation L could have been defined
in terms of a matrix A. In the next section, we will see that this is true for all linear
transformations from R

n to R
m .

Linear Transformations from V to W

If L is a linear transformation mapping a vector space V into a vector space W , then

(i) L(0V ) = 0W (where 0V and 0W are the zero vectors in V and W , respec-
tively).

(ii) if v1, . . . , vn are elements of V and α1, . . . , αn are scalars, then

L(α1v1 + α2v2 + · · · + αnvn) = α1L(v1) + α2L(v2) + · · · + αn L(vn)

(iii) L(−v) = −L(v) for all v ∈ V .

Statement (i) follows from the condition L(αv) = αL(v) with α = 0. Statement (ii)
can easily be proved by mathematical induction. We leave this to the reader as an
exercise. To prove (iii), note that

0W = L(0V ) = L(v + (−v)) = L(v) + L(−v)

Therefore, L(−v) is the additive inverse of L(v); that is,

L(−v) = −L(v)

EXAMPLE 8 If V is any vector space, then the identity operator I is defined by

I(v) = v

for all v ∈ V . Clearly, I is a linear transformation that maps V into itself:

I(αv1 + βv2) = αv1 + βv2 = αI(v1) + βI(v2)

EXAMPLE 9 Let L be the mapping from C[a, b] to R
1 defined by

L( f ) =
∫ b

a
f (x) dx
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If f and g are any vectors in C[a, b], then

L(α f + βg) =
∫ b

a
(α f + βg)(x) dx

= α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

= αL( f ) + βL(g)

Therefore, L is a linear transformation.

EXAMPLE 10 Let D be the linear transformation mapping C1[a, b] into C[a, b] and defined by

D( f ) = f ′ (the derivative of f )

D is a linear transformation, since

D(α f + βg) = α f ′ + βg′ = αD( f ) + β D(g)

The Image and Kernel

Let L : V → W be a linear transformation. We close this section by considering the
effect that L has on subspaces of V . Of particular importance is the set of vectors in V
that get mapped into the zero vector of W .

Definition Let L : V → W be a linear transformation. The kernel of L , denoted ker(L), is
defined by

ker(L) = {v ∈ V | L(v) = 0W }

Definition Let L : V → W be a linear transformation and let S be a subspace of V . The image
of S, denoted L(S), is defined by

L(S) = {w ∈ W | w = L(v) for some v ∈ S}
The image of the entire vector space, L(V ), is called the range of L .

Let L : V → W be a linear transformation. It is easily seen that ker(L) is a
subspace of V , and if S is any subspace of V , then L(S) is a subspace of W . In
particular, L(V ) is a subspace of W . Indeed, we have the following theorem:

Theorem 4.1.1 If L: V → W is a linear transformation and S is a subspace of V , then

(i) ker(L) is a subspace of V .

(ii) L(S) is a subspace of W .

Proof It is obvious that ker(L) is nonempty since 0V , the zero vector of V , is in ker(L). To
prove (i), we must show that ker(L) is closed under scalar multiplication and addition
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of vectors. For closure under scalar multiplication let v ∈ ker(L) and let α be a scalar.
Then

L(αv) = αL(v) = α0W = 0W

Therefore, αv ∈ ker(L).
For closure under addition, let v1, v2 ∈ ker(L). Then

L(v1 + v2) = L(v1) + L(v2) = 0W + 0W = 0W

Therefore, v1 + v2 ∈ ker(L) and hence ker(L) is a subspace of V .
The proof of (ii) is similar. L(S) is nonempty, since 0W = L(0V ) ∈ L(S). If

w ∈ L(S), then w = L(v) for some v ∈ S. For any scalar α,

αw = αL(v) = L(αv)

Since αv ∈ S, it follows that αw ∈ L(S), and hence L(S) is closed under scalar
multiplication. If w1, w2 ∈ L(S), then there exist v1, v2 ∈ S such that L(v1) = w1 and
L(v2) = w2. Thus,

w1 + w2 = L(v1) + L(v2) = L(v1 + v2)

and hence L(S) is closed under addition. It follows that L(S) is a subspace of W .

EXAMPLE 11 Let L be the linear operator on R
2 defined by

L(x) =
⎧⎪⎩ x1

0

⎫⎪⎭
A vector x is in ker(L) if and only if x1 = 0. Thus, ker(L) is the one-dimensional
subspace of R

2 spanned by e2. A vector y is in the range of L if and only if y is a
multiple of e1. Hence, L(R2) is the one-dimensional subspace of R

2 spanned by e1.

EXAMPLE 12 Let L : R
3 → R

2 be the linear transformation defined by

L(x) = (x1 + x2, x2 + x3)
T

and let S be the subspace of R
3 spanned by e1 and e3.

If x ∈ ker(L), then

x1 + x2 = 0 and x2 + x3 = 0

Setting the free variable x3 = a, we get

x2 = −a, x1 = a

and hence ker(L) is the one-dimensional subspace of R
3 consisting of all vectors of

the form a(1, −1, 1)T .
If x ∈ S, then x must be of the form (a, 0, b)T , and hence L(x) = (a, b)T . Clearly,

L(S) = R
2. Since the image of the subspace S is all of R

2, it follows that the entire
range of L must be R

2 [i.e., L(R3) = R
2].
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EXAMPLE 13 Let D : P3 → P3 be the differentiation operator, defined by

D(p(x)) = p′(x)

The kernel of D consists of all polynomials of degree 0. Thus ker(D) = P1. The
derivative of any polynomial in P3 will be a polynomial of degree 1 or less. Conversely,
any polynomial in P2 will have antiderivatives in P3, so each polynomial in P2 will be
the image of polynomials in P3 under the operator D. It then follows that D(P3) = P2.

SECTION 4.1 EXERCISES
1. Show that each of the following are linear opera-

tors on R
2. Describe geometrically what each lin-

ear transformation accomplishes.
(a) L(x) = (−x1, x2)

T (b) L(x) = −x
(c) L(x) = (x2, x1)

T (d) L(x) = 1
2 x

(e) L(x) = x2e2

2. Let L be the linear operator on R
2 defined by

L(x) = (x1 cos α − x2 sin α, x1 sin α + x2 cos α)T

Express x1, x2, and L(x) in terms of polar coor-
dinates. Describe geometrically the effect of the
linear transformation.

3. Let a be a fixed nonzero vector in R
2. A mapping

of the form
L(x) = x + a

is called a translation. Show that a translation is not
a linear operator. Illustrate geometrically the effect
of a translation.

4. Let L : R
2 → R

2 be a linear operator. If

L((1, 2)T ) = (−2, 3)T

and

L((1, −1)T ) = (5, 2)T

find the value of L((7, 5)T ).

5. Determine whether the following are linear trans-
formations from R

3 into R
2:

(a) L(x) = (x2, x3)
T (b) L(x) = (0, 0)T

(c) L(x) = (1 + x1, x2)
T

(d) L(x) = (x3, x1 + x2)
T

6. Determine whether the following are linear trans-
formations from R

2 into R
3:

(a) L(x) = (x1, x2, 1)T

(b) L(x) = (x1, x2, x1 + 2x2)
T

(c) L(x) = (x1, 0, 0)T

(d) L(x) = (x1, x2, x2
1 + x2

2 )
T

7. Determine whether the following are linear opera-
tors on R

n×n:
(a) L(A) = 2A (b) L(A) = AT

(c) L(A) = A + I (d) L(A) = A − AT

8. Let C be a fixed n × n matrix. Determine whether
the following are linear operators on R

n×n:
(a) L(A) = C A + AC (b) L(A) = C2 A

(c) L(A) = A2C

9. Determine whether the following are linear trans-
formations from P2 to P3:
(a) L(p(x)) = xp(x)

(b) L(p(x)) = x2 + p(x)

(c) L(p(x)) = p(x) + xp(x) + x2 p′(x)

10. For each f ∈ C[0, 1], define L( f ) = F , where

F(x) =
∫ x

0
f (t) dt 0 ≤ x ≤ 1

Show that L is a linear operator on C[0, 1] and then
find L(ex ) and L(x2).

11. Determine whether the following are linear trans-
formations from C[0, 1] into R

1:
(a) L( f ) = f (0) (b) L( f ) = | f (0)|
(c) L( f ) = [ f (0) + f (1)]/2

(d) L( f ) =
{∫ 1

0 [ f (x)]2 dx
}1/2

12. Use mathematical induction to prove that if L is a
linear transformation from V to W , then

L(α1v1 + α2v2 + · · · + αnvn)

= α1 L(v1) + α2 L(v2) + · · · + αn L(vn)
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13. Let {v1, . . . , vn} be a basis for a vector space V , and
let L1 and L2 be two linear transformations map-
ping V into a vector space W . Show that if

L1(vi ) = L2(vi )

for each i = 1, . . . , n, then L1 = L2 [i.e., show
that L1(v) = L2(v) for all v ∈ V ].

14. Let L be a linear operator on R
1 and let a = L(1).

Show that L(x) = ax for all x ∈ R
1.

15. Let L be a linear operator on a vector space V . De-
fine Ln , n ≥ 1, recursively by

L1 = L

Lk+1(v) = L(Lk(v)) for all v ∈ V

Show that Ln is a linear operator on V for each
n ≥ 1.

16. Let L1 : U → V and L2 : V → W be linear trans-
formations, and let L = L2 ◦ L1 be the mapping
defined by

L(u) = L2(L1(u))

for each u ∈ U . Show that L is a linear transfor-
mation mapping U into W .

17. Determine the kernel and range of each of the fol-
lowing linear operators on R

3:
(a) L(x) = (x3, x2, x1)

T

(b) L(x) = (x1, x2, 0)T

(c) L(x) = (x1, x1, x1)
T

18. Let S be the subspace of R
3 spanned by e1 and

e2. For each linear operator L in Exercise 17, find
L(S).

19. Find the kernel and range of each of the following
linear operators on P3:
(a) L(p(x)) = xp′(x)

(b) L(p(x)) = p(x) − p′(x)

(c) L(p(x)) = p(0)x + p(1)

20. Let L : V → W be a linear transformation, and let
T be a subspace of W . The inverse image of T ,
denoted L−1(T ), is defined by

L−1(T ) = {v ∈ V | L(v) ∈ T }
Show that L−1(T ) is a subspace of V .

21. A linear transformation L : V → W is said to be
one-to-one if L(v1) = L(v2) implies that v1 = v2

(i.e., no two distinct vectors v1, v2 in V get mapped
into the same vector w ∈ W ). Show that L is one-
to-one if and only if ker(L) = {0V }.

22. A linear transformation L : V → W is said to map
V onto W if L(V ) = W . Show that the linear trans-
formation L defined by

L(x) = (x1, x1 + x2, x1 + x2 + x3)
T

maps R
3 onto R

3.

23. Which of the operators defined in Exercise 17 are
one-to-one? Which map R

3 onto R
3?

24. Let A be a 2 × 2 matrix, and let L A be the linear
operator defined by

L A(x) = Ax

Show that
(a) L A maps R

2 onto the column space of A.
(b) if A is nonsingular, then L A maps R

2 onto R
2.

25. Let D be the differentiation operator on P3, and let

S = {p ∈ P3 | p(0) = 0}
Show that
(a) D maps P3 onto the subspace P2, but

D : P3 → P2 is not one-to-one.
(b) D : S → P3 is one-to-one but not onto.

4.2 Matrix Representations of Linear Transformations

In Section 1, it was shown that each m ×n matrix A defines a linear transformation L A

from R
n to R

m , where
L A(x) = Ax

for each x ∈ R
n . In this section, we will see that, for each linear transformation L

mapping R
n into R

m , there is an m × n matrix A such that

L(x) = Ax
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We will also see how any linear transformation between finite-dimensional spaces can
be represented by a matrix.

Theorem 4.2.1 If L is a linear transformation mapping R
n into R

m , then there is an m × n matrix A
such that

L(x) = Ax

for each x ∈ R
n . In fact, the j th column vector of A is given by

a j = L(e j ) j = 1, 2, . . . , n

Proof For j = 1, . . . , n, define
a j = L(e j )

and let
A = (ai j ) = (a1, a2, . . . , an)

If
x = x1e1 + x2e2 + · · · + xnen

is an arbitrary element of R
n , then

L(x) = x1L(e1) + x2L(e2) + · · · + xn L(en)

= x1a1 + x2a2 + · · · + xnan

= (a1, a2, . . . , an)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= Ax

We have established that each linear transformation from R
n into R

m can be repre-
sented in terms of an m × n matrix. Theorem 4.2.1 tells us how to construct the matrix
A corresponding to a particular linear transformation L . To get the first column of A,
see what L does to the first basis element e1 of R

n . Set a1 = L(e1). To get the second
column of A, determine the effect of L on e2 and set a2 = L(e2), and so on. Since
the standard basis elements e1, e2, . . . , en (the column vectors of the n × n identity
matrix) are used for R

n , and the column vectors of the m × m identity matrix are being
used as a basis for R

m , we refer to A as the standard matrix representation of L . Later
(Theorem 4.2.3) we will see how to represent linear transformations with respect to
other bases.

EXAMPLE 1 Define the linear transformation L : R
3 → R

2 by

L(x) = (x1 + x2, x2 + x3)
T

for each x = (x1, x2, x3)
T in R

3. It is easily verified that L is a linear operator. We
wish to find a matrix A such that L(x) = Ax for each x ∈ R

3. To do this, we must
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calculate L(e1), L(e2), and L(e3):

L(e1) = L((1, 0, 0)T ) =
⎧⎪⎩1

0

⎫⎪⎭
L(e2) = L((0, 1, 0)T ) =

⎧⎪⎩1
1

⎫⎪⎭
L(e3) = L((0, 0, 1)T ) =

⎧⎪⎩0
1

⎫⎪⎭

We choose these vectors to be the columns of the matrix

A =
⎧⎪⎩1 1 0

0 1 1

⎫⎪⎭
To check the result, we compute Ax:

Ax =
⎧⎪⎩1 1 0

0 1 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ x1 + x2

x2 + x3

⎫⎪⎭
EXAMPLE 2 Let L be the linear operator on R

2 that rotates each vector by an angle θ in the
counterclockwise direction. We can see from Figure 4.2.1(a) that e1 is mapped into
(cos θ, sin θ)T and the image of e2 is (− sin θ, cos θ)T . The matrix A representing the
transformation will have (cos θ, sin θ)T as its first column and (− sin θ, cos θ)T as its
second column:

A =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
If x is any vector in R

2, then, to rotate x counterclockwise by an angle θ , we simply
multiply by A [see Figure 4.2.1(b)].

(–sin   , cos   )θ θ

(cos   , sin   )θ θ

θ
θ

θ

(0, 1)

(1, 0)

Ax

x

(a) (b)

Figure 4.2.1.

Now that we have seen how matrices are used to represent linear transformations
from R

n to R
m , we may ask whether it is possible to find a similar representation for

linear transformations from V into W , where V and W are vector spaces of dimension
n and m, respectively. To see how this is done, let E = {v1, v2, . . . , vn} be an ordered
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basis for V and F = {w1, w2, . . . , wm} be an ordered basis for W . Let L be a linear
transformation mapping V into W . If v is any vector in V , then we can express v in
terms of the basis E :

v = x1v1 + x2v2 + · · · + xnvn

We will show that there exists an m ×n matrix A representing the linear transformation
L , in the sense that

Ax = y if and only if L(v) = y1w1 + y2w2 + · · · + ymwm

The matrix A characterizes the effect of the linear transformation L . If x is the coor-
dinate vector of v with respect to E , then the coordinate vector of L(v) with respect to
F is given by

[L(v)]F = Ax

The procedure for determining the matrix representation A is essentially the same as
before. For j = 1, . . . , n, let a j = (a1 j , a2 j , . . . , amj )

T be the coordinate vector of
L(v j ) with respect to {w1, w2, . . . , wm}; that is,

L(v j ) = a1 j w1 + a2 j w2 + · · · + amj wm 1 ≤ j ≤ n

Let A = (ai j ) = (a1, . . . , an). If

v = x1v1 + x2v2 + · · · + xnvn

then

L(v) = L

(
n∑

j=1

x j v j

)

=
n∑

j=1

x j L(v j )

=
n∑

j=1

x j

(
m∑

i=1

ai j wi

)

=
m∑

i=1

(
n∑

j=1

ai j x j

)
wi

For i = 1, . . . , m, let

yi =
n∑

j=1

ai j x j

Thus,
y = (y1, y2, . . . , ym)T = Ax

is the coordinate vector of L(v) with respect to {w1, w2, . . . , wm}. We have established
the following theorem:
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Theorem 4.2.2 Matrix Representation Theorem
If E = {v1, v2, . . . , vn} and F = {w1, w2, . . . , wm} are ordered bases for vector spaces
V and W , respectively, then corresponding to each linear transformation L : V → W ,
there is an m × n matrix A such that

[L(v)]F = A[v]E for each v ∈ V

A is the matrix representing L relative to the ordered bases E and F . In fact,

a j = [
L(v j )

]
F

j = 1, 2, . . . , n

Theorem 4.2.2 is illustrated in Figure 4.2.2. If A is the matrix representing L with
respect to the bases E and F , and if

x = [v]E (the coordinate vector of v with respect to E)

y = [w]F (the coordinate vector of w with respect to F)

then L maps v into w if and only if A maps x into y.

v ∈ V

x = [v]E ∈ Rn

w = L(v) ∈ W

Ax = [w]F ∈ Rm

L = LA

A

Figure 4.2.2.

EXAMPLE 3 Let L be the linear transformation mapping R
3 into R

2 defined by

L(x) = x1b1 + (x2 + x3)b2

for each x ∈ R
3, where

b1 =
⎧⎪⎩1

1

⎫⎪⎭ and b2 =
⎧⎪⎩−1

1

⎫⎪⎭
Find the matrix A representing L with respect to the ordered bases {e1, e2, e3} and
{b1, b2}.

Solution

L(e1) = 1b1 + 0b2

L(e2) = 0b1 + 1b2

L(e3) = 0b1 + 1b2

The i th column of A is determined by the coordinates of L(ei ) with respect to {b1, b2}
for i = 1, 2, 3. Thus,

A =
⎧⎪⎩1 0 0

0 1 1

⎫⎪⎭
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EXAMPLE 4 Let L be a linear transformation mapping R
2 into itself and defined by

L(αb1 + βb2) = (α + β)b1 + 2βb2

where {b1, b2} is the ordered basis defined in Example 3. Find the matrix A represent-
ing L with respect to {b1, b2}.

Solution
L(b1) = 1b1 + 0b2

L(b2) = 1b1 + 2b2

Thus,

A =
⎧⎪⎩1 1

0 2

⎫⎪⎭
EXAMPLE 5 The linear transformation D defined by D(p) = p′ maps P3 into P2. Given the ordered

bases [x2, x, 1] and [x, 1] for P3 and P2, respectively, we wish to determine a matrix
representation for D. To do this, we apply D to each of the basis elements of P3:

D(x2) = 2x + 0 · 1

D(x) = 0x + 1 · 1

D(1) = 0x + 0 · 1

In P2, the coordinate vectors for D(x2), D(x), and D(1) are (2, 0)T , (0, 1)T , and
(0, 0)T , respectively. The matrix A is formed with these vectors as its columns.

A =
⎧⎪⎩2 0 0

0 1 0

⎫⎪⎭
If p(x) = ax2 + bx + c, then the coordinate vector of p with respect to the ordered
basis of P3 is (a, b, c)T . To find the coordinate vector of D(p) with respect to the
ordered basis of P2, we simply multiply

⎧⎪⎩2 0 0
0 1 0

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩2a

b

⎫⎪⎭
Thus,

D(ax2 + bx + c) = 2ax + b

To find the matrix representation A for a linear transformation L : R
n → R

m with
respect to the ordered bases E = {u1, . . . , un} and F = {b1, . . . , bm}, we must repre-
sent each vector L(u j ) as a linear combination of b1, . . . , bm . The following theorem
shows that determining this representation of L(u j ) is equivalent to solving the linear
system Bx = L(u j ).
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Theorem 4.2.3 Let E = {u1, . . . , un} and F = {b1, . . . , bm} be ordered bases for R
n and R

m , respec-
tively. If L : R

n → R
m is a linear transformation and A is the matrix representing L

with respect to E and F , then

a j = B−1L(u j ) for j = 1, . . . , n

where B = (b1, . . . , bm).

Proof If A is representing L with respect to E and F , then, for j = 1, . . . , n,

L(u j ) = a1 j b1 + a2 j b2 + · · · + amj bm

= Ba j

The matrix B is nonsingular, since its column vectors form a basis for R
m . Hence,

a j = B−1L(u j ) j = 1, . . . , n

One consequence of this theorem is that we can determine the matrix representa-
tion of the transformation by computing the reduced row echelon form of an augmented
matrix. The following corollary shows how this is done:

Corollary 4.2.4 If A is the matrix representing the linear transformation L : R
n → R

m with respect to
the bases

E = {u1, . . . , un} and F = {b1, . . . , bm}
then the reduced row echelon form of (b1, . . . , bm | L(u1), . . . , L(un)) is (I | A).

Proof Let B = (b1, . . . , bm). The matrix (B | L(u1), . . . , L(un)) is row equivalent to

B−1(B | L(u1), . . . , L(un)) = (I | B−1L(u1), . . . , B−1L(un))

= (I | a1, . . . , an)

= (I | A)

EXAMPLE 6 Let L : R
2 → R

3 be the linear transformation defined by

L(x) = (x2, x1 + x2, x1 − x2)
T

Find the matrix representations of L with respect to the ordered bases {u1, u2} and
{b1, b2, b3}, where

u1 = (1, 2)T , u2 = (3, 1)T

and
b1 = (1, 0, 0)T , b2 = (1, 1, 0)T , b3 = (1, 1, 1)T

Solution
We must compute L(u1) and L(u2) and then transform the matrix (b1, b2, b3 | L(u1),
L(u2)) to reduced row echelon form:

L(u1) = (2, 3, −1)T and L(u2) = (1, 4, 2)T

⎧⎪⎪⎪⎪⎪⎩
1 1 1 2 1
0 1 1 3 4
0 0 1 −1 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 0 −1 −3
0 1 0 4 2
0 0 1 −1 2

⎫⎪⎪⎪⎪⎪⎭
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The matrix representing L with respect to the given ordered bases is

A =
⎧⎪⎪⎪⎪⎪⎩

−1 −3
4 2

−1 2

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that

L(u1) = −b1 + 4b2 − b3

L(u2) = −3b1 + 2b2 + 2b3

APPLICATION 1 Computer Graphics and Animation

A picture in the plane can be stored in the computer as a set of vertices. The vertices can
then be plotted and connected by lines to produce the picture. If there are n vertices,
they are stored in a 2 × n matrix. The x-coordinates of the vertices are stored in the first
row and the y-coordinates in the second. Each successive pair of points is connected
by a straight line.

For example, to generate a triangle with vertices (0, 0), (1, 1), and (1, −1), we
store the pairs as columns of a matrix:

T =
⎧⎪⎩0 1 1 0

0 1 −1 0

⎫⎪⎭
An additional copy of the vertex (0, 0) is stored in the last column of T so that the
previous point (1, −1) will be connected back to (0, 0) [see Figure 4.2.3(a)].

We can transform a figure by changing the positions of the vertices and then re-
drawing the figure. If the transformation is linear, it can be carried out as a matrix
multiplication. Viewing a succession of such drawings will produce the effect of ani-
mation.

The four primary geometric transformations that are used in computer graphics are
as follows:

1. Dilations and contractions. A linear operator of the form

L(x) = cx

is a dilation if c > 1 and a contraction if 0 < c < 1. The operator L is
represented by the matrix cI , where I is the 2 × 2 identity matrix. A dilation
increases the size of the figure by a factor c > 1, and a contraction shrinks the
figure by a factor c < 1. Figure 4.2.3(b) shows a dilation by a factor of 1.5 of
the triangle stored in the matrix T .

2. Reflections about an axis. If Lx is a transformation that reflects a vector x
about the x-axis, then Lx is a linear operator and hence it can be represented by
a 2 × 2 matrix A. Since

Lx(e1) = e1 and Lx(e2) = −e2

it follows that

A =
⎧⎪⎩1 0

0 −1

⎫⎪⎭
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(a) Triangle defined by T (b) Dilation by factor of 1.5

(c) Reflection about y axis (d) Rotation by 60�

Figure 4.2.3.

Similarly, if L y is the linear operator that reflects a vector about the y-axis, then
L y is represented by the matrix ⎧⎪⎩−1 0

0 1

⎫⎪⎭
Figure 4.2.3(c) shows the image of the triangle T after a reflection about the
y-axis. In Chapter 7, we will learn a simple method for constructing reflection
matrices that have the effect of reflecting a vector about any line through the
origin.

3. Rotations. Let L be a transformation that rotates a vector about the origin by
an angle θ in the counterclockwise direction. We saw in Example 2 that L is a
linear operator and that L(x) = Ax, where

A =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
Figure 4.2.3(d) shows the result of rotating the triangle T by 60◦ in the coun-
terclockwise direction.

4. Translations. A translation by a vector a is a transformation of the form

L(x) = x + a

If a �= 0, then L is not a linear transformation and hence L cannot be repre-
sented by a 2 × 2 matrix. However, in computer graphics, it is desirable to do
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all transformations as matrix multiplications. The way around the problem is to
introduce a new system of coordinates called homogeneous coordinates. This
new system will allow us to perform translations as linear transformations.

Homogeneous Coordinates

The homogeneous coordinate system is formed by equating each vector in R
2 with a

vector in R
3 having the same first two coordinates and having 1 as its third coordinate:

⎧⎪⎩ x1

x2

⎫⎪⎭ ↔
⎧⎪⎪⎪⎪⎪⎩

x1

x2

1

⎫⎪⎪⎪⎪⎪⎭
When we want to plot a point represented by the homogeneous coordinate vector
(x1, x2, 1)T , we simply ignore the third coordinate and plot the ordered pair (x1, x2).

The linear transformations discussed earlier must now be represented by 3 × 3 ma-
trices. To do this, we take the 2 × 2 matrix representation and augment it by attaching
the third row and third column of the 3 × 3 identity matrix. For example, in place of
the 2 × 2 dilation matrix ⎧⎪⎩3 0

0 3

⎫⎪⎭
we have the 3 × 3 matrix ⎧⎪⎪⎪⎪⎪⎩

3 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
Note that ⎧⎪⎪⎪⎪⎪⎩

3 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3x1

3x2

1

⎫⎪⎪⎪⎪⎪⎭
If L is a translation by a vector a in R

2, we can find a matrix representation for L
with respect to the homogeneous coordinate system. We simply take the 3 × 3 identity
matrix and replace the first two entries of its third column with the entries of a. To
see that this works, consider, for example, a translation corresponding to the vector
a = (6, 2)T . In homogeneous coordinates, this transformation is accomplished by the
matrix multiplication

Ax =
⎧⎪⎪⎪⎪⎪⎩

1 0 6
0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

x1 + 6
x2 + 2

1

⎫⎪⎪⎪⎪⎪⎭
Figure 4.2.4(a) shows a stick figure generated from a 3 × 81 matrix S. If we

multiply S by the translation matrix A, the graph of AS is the translated image given
in Figure 4.2.4(b).
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(b) Graph of translated figure AS

Figure 4.2.4.

APPLICATION 2 The Yaw, Pitch, and Roll of an Airplane

The terms yaw, pitch, and roll are commonly used in the aerospace industry to describe
the maneuvering of an aircraft. Figure 4.2.5(a) shows the initial position of a model
airplane. In describing yaw, pitch, and roll, the current coordinate system is given in
terms of the position of the vehicle. It is always assumed that the craft is situated on the
xy-plane with its nose pointing in the direction of the positive x-axis and the left wing
pointing in the direction of the positive y-axis. Furthermore, when the plane moves,
the three coordinate axes move with the vehicle (see Figure 4.2.5).

A yaw is a rotation in the xy-plane. Figure 4.2.5(b) illustrates a yaw of 45◦. In
this case, the craft has been rotated 45◦ to the right (clockwise). Viewed as a linear
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Figure 4.2.5.
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transformation in 3-space, a yaw is simply a rotation about the z-axis. Note that if the
initial coordinates of the nose of the model plane are represented by the vector (1, 0, 0),
then its xyz-coordinates after the yaw transformation will still be (1, 0, 0), since the
coordinate axis rotated with the craft. In the initial position of the airplane, the x , y,
and z axes are in the same directions as the front-back, left-right, and top-bottom axes
shown in the figure. We will refer to this initial front, left, top axis system as the FLT
axis system. After the 45◦ yaw, the position of the nose of the craft with respect to the

FLT axis system is
(

1√
2
, − 1√

2
, 0
)

.

If we view a yaw transformation L in terms of the FLT axis system, it is easy to
find a matrix representation. If L corresponds to yaw by an angle u, then L will rotate
the points (1, 0, 0) and (0, 1, 0) to the positions (cos u, − sin u, 0) and (sin u, cos u, 0),
respectively. The point (0, 0, 1) will remain unchanged by the yaw, since it is on the
axis of rotation. In terms of column vectors, if y1, y2, and y3 are the images of the
standard basis vectors for R

3 under L , then

y1 = L(e1) =
⎧⎪⎪⎪⎪⎪⎩

cos u
− sin u

0

⎫⎪⎪⎪⎪⎪⎭ , y2 = L(e2) =
⎧⎪⎪⎪⎪⎪⎩

sin u
cos u

0

⎫⎪⎪⎪⎪⎪⎭ , y3 = L(e3) =
⎧⎪⎪⎪⎪⎪⎩

0
0
1

⎫⎪⎪⎪⎪⎪⎭
Therefore, the matrix representation of the yaw transformation is

Y =
⎧⎪⎪⎪⎪⎪⎩

cos u sin u 0
− sin u cos u 0

0 0 1

⎫⎪⎪⎪⎪⎪⎭ (1)

A pitch is a rotation of the aircraft in the xz-plane. Figure 4.2.5(c) illustrates a pitch
of −30◦. Since the angle is negative, the nose of the craft is rotated 30◦ downward,
toward the bottom axis of the figure. Viewed as a linear transformation in 3-space, a
pitch is simply a rotation about the y-axis. As with the yaw, we can find the matrix for a
pitch transformation with respect to the FLT axis system. If L is a pitch transformation
with angle of rotation v, the matrix representation of L is given by

P =
⎧⎪⎪⎪⎪⎪⎩

cos v 0 − sin v

0 1 0
sin v 0 cos v

⎫⎪⎪⎪⎪⎪⎭ (2)

A roll is a rotation of the aircraft in the yz-plane. Figure 4.2.5(d) illustrates a roll
of 30◦. In this case, the left wing is rotated up 30◦, toward the top axis in the figure,
and the right wing is rotated 30◦ downward, toward the bottom axis. Viewed as a linear
transformation in 3-space, a roll is simply a rotation about the x-axis. As with the yaw
and pitch, we can find the matrix representation for a roll transformation with respect
to the FLT axis system: If L is a roll transformation with angle of rotation w, the matrix
representation of L is given by

R =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 cos w − sin w

0 sin w cos w

⎫⎪⎪⎪⎪⎪⎭ (3)

If we perform a yaw by an angle u and then a pitch by an angle v, the composite
transformation is linear; however, its matrix representation is not equal to the product
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PY . The effect of the yaw on the standard basis vectors e1, e2, and e3 is to rotate them
to the new directions y1, y2, and y3. So the vectors y1, y2, and y3 will define the direc-
tions of the x , y, and z axes when we do the pitch. The desired pitch transformation
is then a rotation about the new y-axis (i.e., the axis in the direction of the vector y2).
The vectors y1 and y3 form a plane, and when the pitch is applied, they are both rotated
by an angle v in that plane. The vector y2 will remain unaffected by the pitch, since
it lies on the axis of rotation. Thus, the composite transformation L has the following
effect on the standard basis vectors:

e1
yaw→ y1

pitch→ cos v y1 + sin v y3

e2
yaw→ y2

pitch→ y2

e3
yaw→ y3

pitch→ − sin v y1 + cos v y3

The images of the standard basis vectors form the columns of the matrix representing
the composite transformation:

(cos v y1 + sin v y3, y2, − sin v y1 + cos v y3) = (y1, y2, y3)

⎧⎪⎪⎪⎪⎪⎩
cos v 0 − sin v

0 1 0
sin v 0 cos v

⎫⎪⎪⎪⎪⎪⎭
= Y P

It follows that matrix representation of the composite is a product of the two individual
matrices representing the yaw and the pitch, but the product must be taken in the reverse
order, with the yaw matrix Y on the left and the pitch matrix P on the right. Similarly,
for a composite transformation of a yaw with angle u, followed by a pitch with angle v,
and then a roll with angle w, the matrix representation of the composite transformation
would be the product Y P R.

SECTION 4.2 EXERCISES
1. Refer to Exercise 1 of Section 1. For each linear

transformation L , find the standard matrix repre-
sentation of L .

2. For each of the following linear transformations
L mapping R

3 into R
2, find a matrix A such that

L(x) = Ax for every x in R
3:

(a) L((x1, x2, x3)
T ) = (x1 + x2, 0)T

(b) L((x1, x2, x3)
T ) = (x1, x2)

T

(c) L((x1, x2, x3)
T ) = (x2 − x1, x3 − x2)

T

3. For each of the following linear operators L on R
3,

find a matrix A such that L(x) = Ax for every x in
R

3:
(a) L((x1, x2, x3)

T ) = (x3, x2, x1)
T

(b) L((x1, x2, x3)
T ) = (x1, x1 + x2, x1 + x2 + x3)

T

(c) L((x1, x2, x3)
T ) = (2x3, x2 + 3x1, 2x1 − x3)

T

4. Let L be the linear operator on R
3 defined by

L(x) =
⎧⎪⎪⎪⎪⎪⎩

2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎫⎪⎪⎪⎪⎪⎭
Determine the standard matrix representation A of
L , and use A to find L(x) for each of the following
vectors x:
(a) x = (1, 1, 1)T (b) x = (2, 1, 1)T

(c) x = (−5, 3, 2)T

5. Find the standard matrix representation for each of
the following linear operators:
(a) L is the linear operator that rotates each x in

R
2 by 45◦ in the clockwise direction.
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(b) L is the linear operator that reflects each vector
x in R

2 about the x1-axis and then rotates it 90◦
in the counterclockwise direction.

(c) L doubles the length of x and then rotates it
30◦ in the counterclockwise direction.

(d) L reflects each vector x about the line x2 = x1

and then projects it onto the x1-axis.

6. Let

b1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭ , b2 =
⎧⎪⎪⎪⎪⎪⎩

1
0
1

⎫⎪⎪⎪⎪⎪⎭ , b3 =
⎧⎪⎪⎪⎪⎪⎩

0
1
1

⎫⎪⎪⎪⎪⎪⎭
and let L be the linear transformation from R

2 into
R

3 defined by

L(x) = x1b1 + x2b2 + (x1 + x2)b3

Find the matrix A representing L with respect to
the bases {e1, e2} and {b1, b2, b3}.

7. Let

y1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭ , y2 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭ , y3 =
⎧⎪⎪⎪⎪⎪⎩

1
0
0

⎫⎪⎪⎪⎪⎪⎭
and let I be the identity operator on R

3.
(a) Find the coordinates of I(e1), I(e2), and I(e3)

with respect to {y1, y2, y3}.
(b) Find a matrix A such that Ax is the coordinate

vector of x with respect to {y1, y2, y3}.
8. Let y1, y2, and y3 be defined as in Exercise 7, and

let L be the linear operator on R
3 defined by

L(c1y1 + c2y2 + c3y3)

= (c1 + c2 + c3)y1 + (2c1 + c3)y2 − (2c2 + c3)y3

(a) Find a matrix representing L with respect to
the ordered basis {y1, y2, y3}.

(b) For each of the following, write the vector x as
a linear combination of y1, y2, and y3 and use
the matrix from part (a) to determine L(x):

(i) x = (7, 5, 2)T (ii) x = (3, 2, 1)T

(iii) x = (1, 2, 3)T

9. Let

R =
⎧⎪⎪⎪⎪⎪⎩

0 0 1 1 0
0 1 1 0 0
1 1 1 1 1

⎫⎪⎪⎪⎪⎪⎭
The column vectors of R represent the homoge-
neous coordinates of points in the plane.
(a) Draw the figure whose vertices correspond to

the column vectors of R. What type of figure
is it?

(b) For each of the following choices of A, sketch
the graph of the figure represented by AR and
describe geometrically the effect of the linear
transformation:

(i) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2 0 0

0 1
2 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(ii) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(iii) A =

⎧⎪⎪⎪⎪⎪⎩
1 0 2
0 1 −3
0 0 1

⎫⎪⎪⎪⎪⎪⎭
10. For each of the following linear operators on R

2,
find the matrix representation of the transformation
with respect to the homogeneous coordinate sys-
tem:
(a) The transformation L that rotates each vector

by 120◦ in the counterclockwise direction
(b) The transformation L that translates each point

3 units to the left and 5 units up
(c) The transformation L that contracts each vec-

tor by a factor of one-third
(d) The transformation that reflects a vector about

the y-axis and then translates it up 2 units

11. Determine the matrix representation of each of the
following composite transformations:
(a) A yaw of 90◦, followed by a pitch of 90◦

(b) A pitch of 90◦, followed by a yaw of 90◦

(c) A pitch of 45◦, followed by a roll of −90◦

(d) A roll of −90◦, followed by a pitch of 45◦

(e) A yaw of 45◦, followed by a pitch of −90◦ and
then a roll of −45◦

(f) A roll of −45◦, followed by a pitch of −90◦
and then a yaw of 45◦

12. Let Y , P , and R be the yaw, pitch, and roll ma-
trices given in equations (1), (2), and (3), and let
Q = Y P R.
(a) Show that Y , P , and R all have determinants

equal to 1.
(b) The matrix Y represents a yaw with angle u.

The inverse transformation should be a yaw
with angle −u. Show that the matrix represen-
tation of the inverse transformation is Y T and
that Y T = Y −1.

(c) Show that Q is nonsingular, and express Q−1

in terms of the transposes of Y , P , and R.
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13. Let L be the linear transformation mapping P2 into
R

2 defined by

L(p(x)) =
⎧⎪⎪⎪⎪⎪⎩
∫ 1

0
p(x) dx

p(0)

⎫⎪⎪⎪⎪⎪⎭
Find a matrix A such that

L(α + βx) = A
⎧⎪⎩α

β

⎫⎪⎭
14. The linear transformation L defined by

L(p(x)) = p′(x) + p(0)

maps P3 into P2. Find the matrix representation of
L with respect to the ordered bases [x2, x, 1] and
[2, 1 − x]. For each of the following vectors p(x)

in P3, find the coordinates of L(p(x)) with respect
to the ordered basis [2, 1 − x]:
(a) x2 + 2x − 3 (b) x2 + 1

(c) 3x (d) 4x2 + 2x

15. Let S be the subspace of C[a, b] spanned by ex ,
xex , and x2ex . Let D be the differentiation operator
of S. Find the matrix representing D with respect
to [ex , xex , x2ex ].

16. Let L be a linear operator on R
n . Suppose that

L(x) = 0 for some x �= 0. Let A be the matrix
representing L with respect to the standard basis
{e1, e2, . . . , en}. Show that A is singular.

17. Let L be a linear operator on a vector space V .
Let A be the matrix representing L with respect
to the ordered basis {v1, . . . , vn} of V , that is,

L(v j ) = ∑n
i=1 ai j vi , j = 1, . . . , n. Show that

Am is the matrix representing Lm with respect to
{v1, . . . , vn}.

18. Let E = {u1, u2, u3} and F = {b1, b2}, where

u1 =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭ , u2 =
⎧⎪⎪⎪⎪⎪⎩

1
2
1

⎫⎪⎪⎪⎪⎪⎭ , u3 =
⎧⎪⎪⎪⎪⎪⎩

−1
1
1

⎫⎪⎪⎪⎪⎪⎭
and

b1 = (1, −1)T , b2 = (2, −1)T

For each of the following linear transformations L
from R

3 into R
2, find the matrix representing L

with respect to the ordered bases E and F :
(a) L(x) = (x3, x1)

T

(b) L(x) = (x1 + x2, x1 − x3)
T

(c) L(x) = (2x2, −x1)
T

19. Suppose that L1 : V → W and L2 : W → Z are
linear transformations and E , F , and G are ordered
bases for V , W , and Z , respectively. Show that, if
A represents L1 relative to E and F and B rep-
resents L2 relative to F and G, then the matrix
C = BA represents L2 ◦ L1 : V → Z relative to E
and G. [Hint: Show that BA[v]E = [(L2 ◦ L1)(v)]G

for all v ∈ V .]

20. Let V and W be vector spaces with ordered bases
E and F , respectively. If L : V → W is a linear
transformation and A is the matrix representing L
relative to E and F , show that
(a) v ∈ ker(L) if and only if [v]E ∈ N (A).
(b) w ∈ L(V ) if and only if [w]F is in the column

space of A.

4.3 Similarity

If L is a linear operator on an n-dimensional vector space V , the matrix representation
of L will depend on the ordered basis chosen for V . By using different bases, it is
possible to represent L by different n×n matrices. In this section, we consider different
matrix representations of linear operators and characterize the relationship between
matrices representing the same linear operator.

Let us begin by considering an example in R
2. Let L be the linear operator map-

ping R
2 into itself defined by

L(x) = (2x1, x1 + x2)
T

Since

L(e1) =
⎧⎪⎩2

1

⎫⎪⎭ and L(e2) =
⎧⎪⎩0

1

⎫⎪⎭
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it follows that the matrix representing L with respect to {e1, e2} is

A =
⎧⎪⎩2 0

1 1

⎫⎪⎭
If we use a different basis for R

2, the matrix representation of L will change. If, for
example, we use

u1 =
⎧⎪⎩1

1

⎫⎪⎭ and u2 =
⎧⎪⎩−1

1

⎫⎪⎭
for a basis, then, to determine the matrix representation of L with respect to {u1, u2}
we must determine L(u1) and L(u2) and express these vectors as linear combinations
of u1 and u2. We can use the matrix A to determine L(u1) and L(u2):

L(u1) = Au1 =
⎧⎪⎩2 0

1 1

⎫⎪⎭⎧⎪⎩1
1

⎫⎪⎭ =
⎧⎪⎩2

2

⎫⎪⎭
L(u2) = Au2 =

⎧⎪⎩2 0
1 1

⎫⎪⎭⎧⎪⎩−1
1

⎫⎪⎭ =
⎧⎪⎩−2

0

⎫⎪⎭
To express these vectors in terms of u1 and u2, we use a transition matrix to change

from the ordered basis {e1, e2} to {u1, u2}. Let us first compute the transition matrix
from {u1, u2} to {e1, e2}. This is simply

U = (u1, u2) =
⎧⎪⎩1 −1

1 1

⎫⎪⎭
The transition matrix from {e1, e2} to {u1, u2} will then be

U−1 =
⎧⎪⎪⎪⎪⎪⎩

1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
To determine the coordinates of L(u1) and L(u2) with respect to {u1, u2}, we multiply
the vectors by U−1:

U−1L(u1) = U−1 Au1 =
⎧⎪⎪⎪⎪⎪⎩

1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩2

2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩2

0

⎫⎪⎪⎪⎪⎪⎭
U−1L(u2) = U−1 Au2 =

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩−2

0

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩−1

1

⎫⎪⎪⎪⎪⎪⎭
Thus,

L(u1) = 2u1 + 0u2

L(u2) = −1u1 + 1u2

and the matrix representing L with respect to {u1, u2} is

B =
⎧⎪⎩2 −1

0 1

⎫⎪⎭
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How are A and B related? Note that the columns of B are⎧⎪⎩2
0

⎫⎪⎭ = U−1 Au1 and
⎧⎪⎩−1

1

⎫⎪⎭ = U−1 Au2

Hence,
B = (U−1 Au1, U−1 Au2) = U−1 A(u1, u2) = U−1 AU

Thus, if

(i) B is the matrix representing L with respect to {u1, u2}
(ii) A is the matrix representing L with respect to {e1, e2}

(iii) U is the transition matrix corresponding to the change of basis from {u1, u2}
to {e1, e2}

then
B = U−1 AU (1)

The results that we have established for this particular linear operator on R
2 are

typical of what happens in a much more general setting. We will show next that the
same sort of relationship as that given in (1) will hold for any two matrix representa-
tions of a linear operator that maps an n-dimensional vector space into itself.

Theorem 4.3.1 Let E = {v1, . . . , vn} and F = {w1, . . . , wn} be two ordered bases for a vector space
V , and let L be a linear operator on V . Let S be the transition matrix representing the
change from F to E . If A is the matrix representing L with respect to E , and B is the
matrix representing L with respect to F , then B = S−1 AS.

Proof Let x be any vector in R
n and let

v = x1w1 + x2w2 + · · · + xnwn

Let
y = Sx, t = Ay, z = Bx (2)

It follows from the definition of S that y = [v]E and hence

v = y1v1 + · · · + ynvn

Since A represents L with respect to E , and B represents L with respect to F , we have

t = [L(v)]E and z = [L(v)]F

The transition matrix from E to F is S−1. Therefore,

S−1t = z (3)

It follows from (2) and (3) that

S−1 ASx = S−1 Ay = S−1t = z = Bx

(see Figure 4.3.1). Thus,

y

x

t

z

A

B

S S–1

Figure 4.3.1

S−1 ASx = Bx

for every x ∈ R
n , and hence S−1 AS = B.
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Another way of viewing Theorem 4.3.1 is to consider S as the matrix representing
the identity transformation I with respect to the ordered bases

F = {w1, . . . , wn} and E = {v1, . . . , vn}
If

S represents I relative to F and E ,
A represents L relative to E ,
S−1 represents I relative to E and F

then L can be expressed as a composite operator I◦L◦I, and the matrix representation
of the composite will be the product of the matrix representations of the components.
Thus, the matrix representation of I ◦ L ◦ I relative to F is S−1 AS. If B is the matrix
representing L relative to F , then B must equal S−1 AS (see Figure 4.3.2).

Basis E: V

Basis F: V

V

V

L

A

B

L

I IS S–1

Figure 4.3.2.

Definition Let A and B be n × n matrices. B is said to be similar to A if there exists a
nonsingular matrix S such that B = S−1 AS.

Note that if B is similar to A, then A = (S−1)−1 BS−1 is similar to B. Thus, we
may simply say that A and B are similar matrices.

It follows from Theorem 4.3.1 that, if A and B are n × n matrices representing the
same operator L , then A and B are similar. Conversely, suppose that A represents L
with respect to the ordered basis {v1, . . . , vn} and B = S−1 AS for some nonsingular
matrix S. If w1, . . . , wn are defined by

w1 = s11v1 + s21v2 + · · · + sn1vn

w2 = s12v1 + s22v2 + · · · + sn2vn
...

wn = s1nv1 + s2nv2 + · · · + snnvn

then {w1, . . . , wn} is an ordered basis for V , and B is the matrix representing L with
respect to {w1, . . . , wn}.

EXAMPLE 1 Let D be the differentiation operator on P3. Find the matrix B representing D with
respect to [1, x, x2] and the matrix A representing D with respect to [1, 2x, 4x2 − 2].
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Solution
D(1) = 0 · 1 + 0 · x + 0 · x2

D(x) = 1 · 1 + 0 · x + 0 · x2

D(x2) = 0 · 1 + 2 · x + 0 · x2

The matrix B is then given by

B =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 2
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Applying D to 1, 2x , and 4x2 − 2, we obtain

D(1) = 0 · 1 + 0 · 2x + 0 · (4x2 − 2)

D(2x) = 2 · 1 + 0 · 2x + 0 · (4x2 − 2)

D(4x2 − 2) = 0 · 1 + 4 · 2x + 0 · (4x2 − 2)

Thus,

A =
⎧⎪⎪⎪⎪⎪⎩

0 2 0
0 0 4
0 0 0

⎫⎪⎪⎪⎪⎪⎭
The transition matrix S corresponding to the change of basis from [1, 2x, 4x2 − 2] to
[1, x, x2] and its inverse are given by

S =
⎧⎪⎪⎪⎪⎪⎩

1 0 −2
0 2 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭ and S−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(See Example 6 from Chapter 3, Section 5.) The reader may verify that A = S−1 BS.

EXAMPLE 2 Let L be the linear operator mapping R
3 into R

3 defined by L(x) = Ax, where

A =
⎧⎪⎪⎪⎪⎪⎩

2 2 0
1 1 2
1 1 2

⎫⎪⎪⎪⎪⎪⎭
Thus, the matrix A represents L with respect to {e1, e2, e3}. Find the matrix represent-
ing L with respect to {y1, y2, y3}, where

y1 =
⎧⎪⎪⎪⎪⎪⎩

1
−1

0

⎫⎪⎪⎪⎪⎪⎭ , y2 =
⎧⎪⎪⎪⎪⎪⎩

−2
1
1

⎫⎪⎪⎪⎪⎪⎭ , y3 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
Solution

L(y1) = Ay1 = 0 = 0y1 + 0y2 + 0y3

L(y2) = Ay2 = y2 = 0y1 + 1y2 + 0y3

L(y3) = Ay3 = 4y3 = 0y1 + 0y2 + 4y3
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Thus, the matrix representing L with respect to {y1, y2, y3} is

D =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭
We could have found D by using the transition matrix Y = (y1, y2, y3) and computing

D = Y −1 AY

This was unnecessary due to the simplicity of the action of L on the basis {y1, y2, y3}.

In Example 2, the linear operator L is represented by a diagonal matrix D with
respect to the basis {y1, y2, y3}. It is much simpler to work with D than with A. For
example, it is easier to compute Dx and Dnx than Ax and Anx. Generally, it is desir-
able to find as simple a representation as possible for a linear operator. In particular,
if the operator can be represented by a diagonal matrix, this is usually the preferred
representation. The problem of finding a diagonal representation for a linear operator
will be studied in Chapter 6.

SECTION 4.3 EXERCISES
1. For each of the following linear operators L on

R
2, determine the matrix A representing L with

respect to {e1, e2} (see Exercise 1 of Section 2)
and the matrix B representing L with respect to
{u1 = (1, 1)T , u2 = (−1, 1)T }.:
(a) L(x) = (−x1, x2)

T (b) L(x) = −x
(c) L(x) = (x2, x1)

T (d) L(x) = 1
2 x

(e) L(x) = x2e2

2. Let {u1, u2} and {v1, v2} be ordered bases for R
2,

where

u1 =
⎧⎪⎩1

1

⎫⎪⎭ , u2 =
⎧⎪⎩−1

1

⎫⎪⎭
and

v1 =
⎧⎪⎩2

1

⎫⎪⎭ , v2 =
⎧⎪⎩1

0

⎫⎪⎭
Let L be the linear transformation defined by

L(x) = (−x1, x2)
T

and let B be the matrix representing L with respect
to {u1, u2} [from Exercise 1(a)].
(a) Find the transition matrix S corresponding to

the change of basis from {u1, u2} to {v1, v2}.
(b) Find the matrix A representing L with respect

to {v1, v2} by computing SBS−1.

(c) Verify that

L(v1) = a11v1 + a21v2

L(v2) = a12v1 + a22v2

3. Let L be the linear transformation on R
3 defined by

L(x) =
⎧⎪⎪⎪⎪⎪⎩

2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎫⎪⎪⎪⎪⎪⎭
and let A be the standard matrix representation
of L (see Exercise 4 of Section 2). If u1 =
(1, 1, 0)T , u2 = (1, 0, 1)T , and u3 = (0, 1, 1)T ,
then {u1, u2, u3} is an ordered basis for R

3 and U =
(u1, u2, u3) is the transition matrix corresponding
to a change of basis from {u1, u2, u3} to the stan-
dard basis {e1, e2, e3}. Determine the matrix B rep-
resenting L with respect to the basis {u1, u2, u3} by
calculating U−1 AU .

4. Let L be the linear operator mapping R
3 into R

3

defined by L(x) = Ax, where

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
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and let

v1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭ , v2 =
⎧⎪⎪⎪⎪⎪⎩

1
2
0

⎫⎪⎪⎪⎪⎪⎭ , v3 =
⎧⎪⎪⎪⎪⎪⎩

0
−2

1

⎫⎪⎪⎪⎪⎪⎭
Find the transition matrix V corresponding to a
change of basis from {v1, v2, v3} to {e1, e2, e3}, and
use it to determine the matrix B representing L
with respect to {v1, v2, v3}.

5. Let L be the operator on P3 defined by

L(p(x)) = xp′(x) + p′′(x)

(a) Find the matrix A representing L with respect
to [1, x, x2].

(b) Find the matrix B representing L with respect
to [1, x, 1 + x2].

(c) Find the matrix S such that B = S−1 AS.
(d) If p(x) = a0 + a1x + a2(1 + x2), calculate

Ln(p(x)).

6. Let V be the subspace of C[a, b] spanned by
1, ex , e−x , and let D be the differentiation operator
on V .
(a) Find the transition matrix S representing

the change of coordinates from the or-
dered basis [1, ex , e−x ] to the ordered basis
[1, cosh x, sinh x]. [cosh x = 1

2 (ex + e−x ),
sinh x = 1

2 (ex − e−x ).]
(b) Find the matrix A representing D with respect

to the ordered basis [1, cosh x, sinh x].
(c) Find the matrix B representing D with respect

to [1, ex , e−x ].
(d) Verify that B = S−1 AS.

7. Prove that if A is similar to B and B is similar to
C , then A is similar to C .

8. Suppose that A = S�S−1, where � is a diagonal
matrix with diagonal elements λ1, λ2, . . . , λn .

(a) Show that Asi = λi si , i = 1, . . . , n.

(b) Show that if x = α1s1 +α2s2 +· · ·+αnsn , then

Akx = α1λ
k
1s1 + α2λ

k
2s2 + · · · + αnλ

k
nsn

(c) Suppose that |λi | < 1 for i = 1, . . . , n. What
happens to Akx as k → ∞? Explain.

9. Suppose that A = ST , where S is nonsingular. Let
B = T S. Show that B is similar to A.

10. Let A and B be n × n matrices. Show that if A is
similar to B, then there exist n × n matrices S and
T , with S nonsingular, such that

A = ST and B = T S

11. Show that if A and B are similar matrices, then
det(A) = det(B).

12. Let A and B be similar matrices. Show that
(a) AT and BT are similar.

(b) Ak and Bk are similar for each positive integer
k.

13. Show that if A is similar to B and A is nonsingular,
then B must also be nonsingular and A−1 and B−1

are similar.

14. Let A and B be similar matrices and let λ be any
scalar. Show that
(a) A − λI and B − λI are similar.

(b) det(A − λI ) = det(B − λI ).

15. The trace of an n × n matrix A, denoted tr(A), is
the sum of its diagonal entries; that is,

tr(A) = a11 + a22 + · · · + ann

Show that
(a) tr(AB) = tr(BA)

(b) if A is similar to B, then tr(A) = tr(B).

Chapter Four Exercises

MATLAB EXERCISES

1. Use MATLAB to generate a matrix W and a vector
x by setting

W = triu(ones(5)) and x = [1 : 5]′

The columns of W can be used to form an ordered
basis

F = {w1, w2, w3, w4, w5}

Let L : R
5 → R

5 be a linear operator such that

L(w1) = w2, L(w2) = w3, L(w3) = w4

and

L(w4) = 4w1 + 3w2 + 2w3 + w4

L(w5) = w1 + w2 + w3 + 3w4 + w5
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(a) Determine the matrix A representing L with
respect to F , and enter it in MATLAB.

(b) Use MATLAB to compute the coordinate vec-
tor y = W −1x of x with respect to F .

(c) Use A to compute the coordinate vector z of
L(x) with respect to F .

(d) W is the transition matrix from F to the stan-
dard basis for R

5. Use W to compute the coor-
dinate vector of L(x) with respect to the stan-
dard basis.

2. Set A = triu(ones(5)) ∗ tril(ones(5)). If L
denotes the linear operator defined by L(x) = Ax
for all x in R

n , then A is the matrix representing L
with respect to the standard basis for R

5. Construct
a 5 × 5 matrix U by setting

U = hankel(ones(5, 1), 1 : 5)

Use the MATLAB function rank to verify that
the column vectors of U are linearly independent.
Thus, E = {u1, u2, u3, u4, u5} is an ordered basis
for R

5. The matrix U is the transition matrix from
E to the standard basis.
(a) Use MATLAB to compute the matrix B rep-

resenting L with respect to E . (The ma-
trix B should be computed in terms of A, U ,
and U−1.)

(b) Generate another matrix by setting

V = toeplitz([1, 0, 1, 1, 1])
Use MATLAB to check that V is nonsingular.
It follows that the column vectors of V are lin-
early independent and hence form an ordered

basis F for R
5. Use MATLAB to compute the

matrix C , which represents L with respect to
F . (The matrix C should be computed in terms
of A, V , and V −1.)

(c) The matrices B and C from parts (a) and (b)
should be similar. Why? Explain. Use MAT-
LAB to compute the transition matrix S from
F to E . Compute the matrix C in terms of B,
S, and S−1. Compare your result with the re-
sult from part (b).

3. Let

A = toeplitz(1 : 7),

S = compan(ones(8, 1))

and set B = S−1 ∗ A ∗ S. The matrices A and B are
similar. Use MATLAB to verify that the following
properties hold for these two matrices:
(a) det(B) = det(A)

(b) BT = ST AT (ST )−1

(c) B−1 = S−1 A−1S

(d) B9 = S−1 A9S

(e) B − 3I = S−1(A − 3I )S

(f) det(B − 3I ) = det(A − 3I )

(g) tr(B) = tr(A) (Note that the trace of a matrix
A can be computed with the MATLAB com-
mand trace.)

These properties will hold in general for any pair of
similar matrices (see Exercises 11–15 of Section 3).

CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of
a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. Let L : R
n → R

n be a linear operator. If L(x1) =
L(x2), then the vectors x1 and x2 must be equal.

2. If L1 and L2 are both linear operators on a vector
space V , then L1 + L2 is also a linear operator on
V , where L1 + L2 is the mapping defined by

(L1 + L2)(v) = L1(v) + L2(v) for all v ∈ V

3. If L : V → V is a linear operator and x ∈ ker(L),
then L(v + x) = L(v) for all v ∈ V .

4. If L1 rotates each vector x in R
2 by 60◦ and then

reflects the resulting vector about the x-axis, and if
L2 is a transformation that does the same two op-
erations, but in the reverse order, then L1 = L2.

5. The set of all vectors x used in the homogeneous
coordinate system (see the application on computer
graphics and animation in Section 2 ) forms a sub-
space of R

3.
6. Let L : R

2 → R
2 be a linear operator, and let A

be the standard matrix representation of L . If L2 is
defined by

L2(x) = L(L(x)) for all x ∈ R
2

then L2 is a linear operator and its standard matrix
representation is A2.
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7. Let E = {x1, x2, . . . , xn} be an ordered basis for
R

n . If L1 : R
n → R

n and L2 : R
n → R

n have the
same matrix representation with respect to E , then
L1 = L2.

8. Let L : R
n → R

n be a linear operator. If A is the
standard matrix representation of L , then an n × n
matrix B will also be a matrix representation of L

if and only if B is similar to A.

9. Let A, B, and C be n × n matrices. If A is similar
to B and B is similar to C , then A is similar to C .

10. Any two matrices with the same trace are similar.
[This statement is the converse of part (b) of Exer-
cise 15 in Section 3.]

CHAPTER TEST B

1. Determine whether the following are linear opera-
tors on R

2:
(a) L is the operator defined by

L(x) = (x1 + x2, x1)
T

(b) L is the operator defined by

L(x) = (x1x2, x1)
T

2. Let L be a linear operator on R
2 and let

v1 =
⎧⎪⎩1

1

⎫⎪⎭ , v2 =
⎧⎪⎩−1

2

⎫⎪⎭ , v3 =
⎧⎪⎩1

7

⎫⎪⎭
If

L(v1) =
⎧⎪⎩2

5

⎫⎪⎭ and L(v2) =
⎧⎪⎩−3

1

⎫⎪⎭
find the value of L(v3).

3. Let L be the linear operator on R
3 defined by

L(x) =
⎧⎪⎪⎪⎪⎪⎩

x2 − x1

x3 − x2

x3 − x1

⎫⎪⎪⎪⎪⎪⎭
and let S = Span((1, 0, 1)T ).
(a) Determine the kernel of L .
(b) Determine L(S).

4. Let L be the linear operator on R
3 defined by

L(x) =
⎧⎪⎪⎪⎪⎪⎩

x2

x1

x1 + x2

⎫⎪⎪⎪⎪⎪⎭
Determine the range of L .

5. Let L : R
2 → R

3 be defined by

L(x) =
⎧⎪⎪⎪⎪⎪⎩

x1 + x2

x1 − x2

3x1 + 2x2

⎫⎪⎪⎪⎪⎪⎭
Find a matrix A such that L(x) = Ax for each x in
R

2.

6. Let L be the linear operator on R
2 that rotates a

vector by 30◦ in the counterclockwise direction and
then reflects the resulting vector about the y-axis.
Find the standard matrix representation of L .

7. Let L be the translation operator on R
2 defined by

L(x) = x + a, where a =
⎧⎪⎩2

5

⎫⎪⎭
Find the matrix representation of L with respect to
the homogeneous coordinate system.

8. Let

u1 =
⎧⎪⎩3

1

⎫⎪⎭ , u2 =
⎧⎪⎩5

2

⎫⎪⎭
and let L be the linear operator that rotates vec-
tors in R

2 by 45◦ in the counterclockwise direction.
Find the matrix representation of L with respect to
the ordered basis {u1, u2}.

9. Let

u1 =
⎧⎪⎩3

1

⎫⎪⎭ , u2 =
⎧⎪⎩5

2

⎫⎪⎭
and

v1 =
⎧⎪⎩ 1

−2

⎫⎪⎭ , v2 =
⎧⎪⎩ 1

−1

⎫⎪⎭
and let L be a linear operator on R

2 whose ma-
trix representation with respect to the ordered basis
{u1, u2} is

A =
⎧⎪⎩2 1

3 2

⎫⎪⎭
(a) Determine the transition matrix from the basis

{v1, v2} to the basis {u1, u2}.
(b) Find the matrix representation of L with re-

spect to {v1, v2}.
10. Let A and B be similar matrices.

(a) Show that det(A) = det(B).

(b) Show that if λ is any scalar, then det(A−λI ) =
det(B − λI ).
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Orthogonality
We can add to the structure of a vector space by defining a scalar or inner product.
Such a product is not a true vector multiplication, since to every pair of vectors it
associates a scalar rather than a third vector. For example, in R

2, we can define the
scalar product of two vectors x and y to be xT y. We can think of vectors in R

2 as
directed line segments beginning at the origin. It is not difficult to show that the angle
between two line segments will be a right angle if and only if the scalar product of the
corresponding vectors is zero. In general, if V is a vector space with a scalar product,
then two vectors in V are said to be orthogonal if their scalar product is zero.

We can think of orthogonality as a generalization of the concept of perpendicular-
ity to any vector space with an inner product. To see the significance of this, consider
the following problem: Let l be a line passing through the origin, and let Q be a point
not on l. Find the point P on l that is closest to Q. The solution P to this problem is
characterized by the condition that Q P is perpendicular to O P (see Figure 5.0.1). If
we think of the line l as corresponding to a subspace of R

2 and v = O Q as a vector
in R

2, then the problem is to find a vector in the subspace that is “closest” to v. The
solution p will then be characterized by the property that p is orthogonal to v − p (see
Figure 5.0.1). In the setting of a vector space with an inner product, we are able to
consider general least squares problems. In these problems, we are given a vector v

v – p

p

O

P

Q

v

Figure 5.0.1.198
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in V and a subspace W . We wish to find a vector in W that is “closest” to v. A so-
lution p must be orthogonal to v − p. This orthogonality condition provides the key
to solving the least squares problem. Least squares problems occur in many statistical
applications involving data fitting.

5.1 The Scalar Product in R
n

Two vectors x and y in R
n may be regarded as n × 1 matrices. We can then form the

matrix product xT y. This product is a 1 × 1 matrix that may be regarded as a vector in
R

1 or, more simply, as a real number. The product xT y is called the scalar product of
x and y. In particular, if x = (x1, . . . , xn)

T and y = (y1, . . . , yn)
T , then

xT y = x1 y1 + x2 y2 + · · · + xn yn

EXAMPLE 1 If

x =
⎧⎪⎪⎪⎪⎪⎩

3
−2

1

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

4
3
2

⎫⎪⎪⎪⎪⎪⎭
then

xT y =
⎧⎩3 −2 1

⎫⎭
⎧⎪⎪⎪⎪⎪⎩

4
3
2

⎫⎪⎪⎪⎪⎪⎭ = 3 · 4 − 2 · 3 + 1 · 2 = 8

The Scalar Product in R
2 and R

3

In order to see the geometric significance of the scalar product, let us begin by restrict-
ing our attention to R

2 and R
3. Vectors in R

2 and R
3 can be represented by directed

line segments. Given a vector x in either R
2 or R

3, its Euclidean length can be defined
in terms of the scalar product:

‖x‖ = (xT x)1/2 =

⎧⎪⎨
⎪⎩
√

x2
1 + x2

2 if x ∈ R
2√

x2
1 + x2

2 + x2
3 if x ∈ R

3

Given two nonzero vectors x and y, we can think of them as directed line segments
starting at the same point. The angle between the two vectors is then defined as the
angle θ between the line segments. We can measure the distance between the vectors
by measuring the length of the vector joining the terminal point of x to the terminal
point of y (see Figure 5.1.1). Thus we have the following definition.

Definition Let x and y be vectors in either R
2 or R

3. The distance between x and y is defined
to be the number ‖x − y‖.
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EXAMPLE 2 If x = (3, 4)T and y = (−1, 7)T , then the distance between x and y is given by

‖y − x‖ =
√

(−1 − 3)2 + (7 − 4)2 = 5

The angle between two vectors can be computed using the following theorem:

Theorem 5.1.1 If x and y are two nonzero vectors in either R
2 or R

3 and θ is the angle between them,
then

xT y = ‖x‖‖y‖ cos θ (1)

x

y

y – x

(x1, x2)

(y1, y2)

θ

Figure 5.1.1.

Proof The vectors x, y, and y − x may be used to form a triangle as in Figure 5.1.1. By the
law of cosines, we have

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos θ

and hence it follows that

‖x‖ ‖y‖ cos θ = 1
2 (‖x‖2 + ‖y‖2 − ‖y − x‖2)

= 1
2 (‖x‖2 + ‖y‖2 − (y − x)T (y − x))

= 1
2 (‖x‖2 + ‖y‖2 − (yT y − yT x − xT y + xT x))

= xT y

If x and y are nonzero vectors, then we can specify their directions by forming unit
vectors

u = 1

‖x‖x and v = 1

‖y‖y

If θ is the angle between x and y, then

cos θ = xT y
‖x‖‖y‖ = uT v

The cosine of the angle between the vectors x and y is simply the scalar product of the
corresponding direction vectors u and v.
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EXAMPLE 3 Let x and y be the vectors in Example 2. The directions of these vectors are given by
the unit vectors

u = 1

‖x‖x =
⎧⎪⎪⎪⎪⎪⎪⎩

3
5

4
5

⎫⎪⎪⎪⎪⎪⎪⎭ and v = 1

‖y‖y =
⎧⎪⎪⎪⎪⎪⎪⎩− 1

5
√

2

7
5
√

2

⎫⎪⎪⎪⎪⎪⎪⎭
The cosine of the angle θ between the two vectors is

cos θ = uT v = 1√
2

and hence θ = π
4 .

Corollary 5.1.2 Cauchy–Schwarz Inequality
If x and y are vectors in either R

2 or R
3, then

|xT y| ≤ ‖x‖‖y‖ (2)

with equality holding if and only if one of the vectors is 0 or one vector is a multiple
of the other.

Proof The inequality follows from (1). If one of the vectors is 0, then both sides of (2) are 0.
If both vectors are nonzero, it follows from (1) that equality can hold in (2) if and only
if cos θ = ±1. But this would imply that the vectors are either in the same or opposite
directions and hence that one vector must be a multiple of the other.

If xT y = 0, it follows from Theorem 5.1.1 that either one of the vectors is the zero
vector or cos θ = 0. If cos θ = 0, the angle between the vectors is a right angle.

Definition The vectors x and y in R
2 (or R

3) are said to be orthogonal if xT y = 0.

EXAMPLE 4 (a) The vector 0 is orthogonal to every vector in R
2.

(b) The vectors
⎧⎪⎩3

2

⎫⎪⎭ and
⎧⎪⎩−4

6

⎫⎪⎭ are orthogonal in R
2.

(c) The vectors

⎧⎪⎪⎪⎪⎪⎩
2

−3
1

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ are orthogonal in R
3.

Scalar and Vector Projections

The scalar product can be used to find the component of one vector in the direction of
another. Let x and y be nonzero vectors in either R

2 or R
3. We would like to write x as

a sum of the form p + z, where p is in the direction of y and z is orthogonal to p (see
Figure 5.1.2). To do this, let u = (1/‖y‖)y. Thus, u is a unit vector (length 1) in the
direction of y. We wish to find α such that p = αu is orthogonal to z = x − αu. For p
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z = x – p

u

y

p = αu

x

θ
α

Figure 5.1.2.

and z to be orthogonal, the scalar α must satisfy

α = ‖x‖ cos θ

= ‖x‖ ‖y‖ cos θ

‖y‖
= xT y

‖y‖
The scalar α is called the scalar projection of x onto y, and the vector p is called the
vector projection of x onto y.

Scalar projection of x onto y:

α = xT y
‖y‖

Vector projection of x onto y:

p = αu = α
1

‖y‖ y = xT y
yT y

y

EXAMPLE 5 The point Q in Figure 5.1.3 is the point on the line y = 1
3 x that is closest to the point

(1, 4). Determine the coordinates of Q.

v

w

(1, 4)

Q

3

y = 1
3

x

Figure 5.1.3.
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Solution
The vector w = (3, 1)T is a vector in the direction of the line y = 1

3 x . Let v = (1, 4)T .
If Q is the desired point, then QT is the vector projection of v onto w.

QT =
(

vT w
wT w

)
w = 7

10

⎧⎪⎩3
1

⎫⎪⎭ =
⎧⎪⎩2.1

0.7

⎫⎪⎭
Thus, Q = (2.1, 0.7) is the closest point.

Notation

If P1 and P2 are two points in 3-space, we will denote the vector from P1 to P2 by−−→
P1 P2.

If N is a nonzero vector and P0 is a fixed point, the set of points P such that
−−→
P0 P

is orthogonal to N forms a plane π in 3-space that passes through P0. The vector N
and the plane π are said to be normal to each other. A point P = (x, y, z) will lie on
π if and only if

(
−−→
P0 P)T N = 0

If N = (a, b, c)T and P0 = (x0, y0, z0), this equation can be written in the form

a(x − x0) + b(y − y0) + c(z − z0) = 0

EXAMPLE 6 Find the equation of the plane passing through the point (2, −1, 3) and normal to the
vector N = (2, 3, 4)T .

Solution
−−→
P0 P = (x − 2, y + 1, z − 3)T . The equation is (

−−→
P0 P)T N = 0, or

2(x − 2) + 3(y + 1) + 4(z − 3) = 0

The span of two linearly independent vectors x and y in R
3 corresponds to a plane

through the origin in 3-space. To determine the equation of the plane, we must find
a vector normal to the plane. In Section 3 of Chapter 2, it was shown that the cross
product of the two vectors is orthogonal to each vector. If we take N = x × y as our
normal vector, then the equation of the plane is given by

n1x + n2 y + n3z = 0

EXAMPLE 7 Find the equation of the plane that passes through the points

P1 = (1, 1, 2), P2 = (2, 3, 3), P3 = (3, −3, 3)

Solution
Let

x = −−→
P1 P2 =

⎧⎪⎪⎪⎪⎪⎩
1
2
1

⎫⎪⎪⎪⎪⎪⎭ and y = −−→
P1 P3 =

⎧⎪⎪⎪⎪⎪⎩
2

−4
1

⎫⎪⎪⎪⎪⎪⎭
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The normal vector N must be orthogonal to both x and y. If we set

N = x × y =
⎧⎪⎪⎪⎪⎪⎩

6
1

−8

⎫⎪⎪⎪⎪⎪⎭
then N will be a normal vector to the plane that passes through the given points. We
can then use any one of the points to determine the equation of the plane. Using the
point P1, we see that the equation of the plane is

6(x − 1) + (y − 1) − 8(z − 2) = 0

EXAMPLE 8 Find the distance from the point (2, 0, 0) to the plane x + 2y + 2z = 0.

Solution
The vector N = (1, 2, 2)T is normal to the plane and the plane passes through the
origin. Let v = (2, 0, 0)T . The distance d from (2, 0, 0) to the plane is simply the
absolute value of the scalar projection of v onto N. Thus,

d = |vT N|
‖N‖ = 2

3

If x and y are nonzero vectors in R
3 and θ is the angle between the vectors, then

cos θ = xT y
‖x‖‖y‖

It then follows that

sin θ =
√

1 − cos2 θ =
√

1 − (xT y)2

‖x‖2‖y‖2
=

√‖x‖2‖y‖2 − (xT y)2

‖x‖‖y‖

and hence

‖x‖‖y‖ sin θ =
√

‖x‖2‖y‖2 − (xT y)2

=
√

(x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3) − (x1 y1 + x2 y2 + x3 y3)2

=
√

(x2 y3 − x3 y2)2 + (x3 y1 − x1 y3)2 + (x1 y2 − x2 y1)2

= ‖x × y‖

Thus, we have, for any nonzero vectors x and y in R
3,

‖x × y‖ = ‖x‖‖y‖ sin θ

If either x or y is the zero vector, then x × y = 0 and hence the norm of x × y will be 0.
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Orthogonality in R
n

The definitions that have been given for R
2 and R

3 can all be generalized to R
n . Indeed,

if x ∈ R
n , then the Euclidean length of x is defined by

‖x‖ = (xT x)1/2 = (x2
1 + x2

2 + · · · + x2
n)

1/2

If x and y are two vectors in R
n , then the distance between the vectors is ‖y − x‖.

The Cauchy–Schwarz inequality holds in R
n . (We will prove this in Section 4.)

Consequently,

−1 ≤ xT y
‖x‖‖y‖ ≤ 1 (3)

for any nonzero vectors x and y in R
n . In view of (3), the definition of the angle

between two vectors that was used for R
2 can be generalized to R

n . Thus, the angle θ

between two nonzero vectors x and y in R
n is given by

cos θ = xT y
‖x‖‖y‖ , 0 ≤ θ ≤ π

In talking about angles between vectors, it is usually more convenient to scale the
vectors so as to make them unit vectors. If we set

u = 1

‖x‖x and v = 1

‖y‖y

then the angle θ between u and v is clearly the same as the angle between x and y, and
its cosine can be computed simply by taking the scalar product of the two unit vectors:

cos θ = xT y
‖x‖‖y‖ = uT v

The vectors x and y are said to be orthogonal if xT y = 0. Often the symbol ⊥ is used
to indicate orthogonality. Thus, if x and y are orthogonal, we will write x ⊥ y. Vector
and scalar projections are defined in R

n in the same way that they were defined for R
2.

If x and y are vectors in R
n , then

‖x + y‖2 = (x + y)T (x + y) = ‖x‖2 + 2xT y + ‖y‖2 (4)

In the case that x and y are orthogonal, equation (4) becomes the Pythagorean law:

‖x + y‖2 = ‖x‖2 + ‖y‖2

The Pythagorean law is a generalization of the Pythagorean theorem. When x and
y are orthogonal vectors in R

2, we can use these vectors and their sum x + y to form a
right triangle as in Figure 5.1.4. The Pythagorean law relates the lengths of the sides
of the triangle. Indeed, if we set

a = ‖x‖, b = ‖y‖, c = ‖x + y‖
then

c2 = a2 + b2 (the famous Pythagorean theorem)
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b = ||y||

a = ||x||

c = ||x + y||

Figure 5.1.4.

In many applications, the cosine of the angle between two nonzero vectors is used
as a measure of how closely the directions of the vectors match up. If cos θ is near 1,
then the angle between the vectors is small and hence the vectors are in nearly the same
direction. A cosine value near zero would indicate that the angle between the vectors
is nearly a right angle.

APPLICATION 1 Information Retrieval Revisited

In Section 4 of Chapter 1, we considered the problem of searching a database for
documents that contain certain key words. If there are m possible key search words
and a total of n documents in the collection, then the database can be represented by an
m × n matrix A. Each column of A represents a document in the database. The entries
of the j th column correspond to the relative frequencies of the key words in the j th
document.

Refined search techniques must deal with vocabulary disparities and the complex-
ities of language. Two of the main problems are polysemy (words having multiple
meanings) and synonymy (multiple words having the same meaning). On the one hand,
some of the words that you are searching for may have multiple meanings and could
appear in contexts that are completely irrelevant to your particular search. For example,
the word calculus would occur frequently in both mathematical papers and in dentistry
papers. On the other hand, most words have synonyms, and it is possible that many
of the documents may use the synonyms rather than the specified search words. For
example, you could search for an article on rabies using the key word dogs; however,
the author of the article may have preferred to use the word canines throughout the
paper. To handle these problems, we need a technique to find the documents that best
match the list of search words without necessarily matching every word on the list. We
want to pick out the column vectors of the database matrix that most closely match a
given search vector. To do this, we use the cosine of the angle between two vectors as
a measure of how closely the vectors match up.

In practice, both m and n are quite large, as there are many possible key words and
many documents to search. For simplicity, let us consider an example where m = 10
and n = 8. Suppose that a Web site has eight modules for learning linear algebra
and each module is located on a separate Web page. Our list of possible search words
consists of

determinants, eigenvalues, linear, matrices, numerical,

orthogonality, spaces, systems, transformations, vector

(This list of key words was compiled from the chapter headings for this book.) Table 1
shows the frequencies of the key words in each of the modules. The (2, 6) entry of the
table is 5, which indicates that the key word eigenvalues appears five times in the sixth
module.
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Table 1 Frequency of Key Words

Modules

Key words M1 M2 M3 M4 M5 M6 M7 M8

determinants 0 6 3 0 1 0 1 1

eigenvalues 0 0 0 0 0 5 3 2

linear 5 4 4 5 4 0 3 3

matrices 6 5 3 3 4 4 3 2

numerical 0 0 0 0 3 0 4 3

orthogonality 0 0 0 0 4 6 0 2

spaces 0 0 5 2 3 3 0 1

systems 5 3 3 2 4 2 1 1

transformations 0 0 0 5 1 3 1 0

vector 0 4 4 3 4 1 0 3

The database matrix is formed by scaling each column of the table so that all
column vectors are unit vectors. Thus, if A is the matrix corresponding to Table 1,
then the columns of the database matrix Q are determined by setting

q j = 1

‖a j‖a j j = 1, . . . , 8

To do a search for the key words orthogonality, spaces, and vector, we form a search
vector x whose entries are all 0 except for the three rows corresponding to the search
words. To obtain a unit search vector, we put 1√

3
in each of the rows corresponding to

the search words. For this example, the database matrix Q and search vector x (with
entries rounded to three decimal places) are given by

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.000 0.594 0.327 0.000 0.100 0.000 0.147 0.154
0.000 0.000 0.000 0.000 0.000 0.500 0.442 0.309
0.539 0.396 0.436 0.574 0.400 0.000 0.442 0.463
0.647 0.495 0.327 0.344 0.400 0.400 0.442 0.309
0.000 0.000 0.000 0.000 0.300 0.000 0.590 0.463
0.000 0.000 0.000 0.000 0.400 0.600 0.000 0.309
0.000 0.000 0.546 0.229 0.300 0.300 0.000 0.154
0.539 0.297 0.327 0.229 0.400 0.200 0.147 0.154
0.000 0.000 0.000 0.574 0.100 0.300 0.147 0.000
0.000 0.396 0.436 0.344 0.400 0.100 0.000 0.463

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.000
0.000
0.000
0.000
0.000
0.577
0.577
0.000
0.000
0.577

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If we set y = QT x, then

yi = qT
i x = cos θi

where θi is the angle between the unit vectors x and qi . For our example,

y = (0.000, 0.229, 0.567, 0.331, 0.635, 0.577, 0.000, 0.535)T

Since y5 = 0.635 is the entry of y that is closest to 1, the direction of the search vector
x is closest to the direction of q5 and hence module 5 is the one that best matches
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our search criteria. The next-best matches come from modules 6 (y6 = 0.577) and
3 (y3 = 0.567). If a document doesn’t contain any of the search words, then the
corresponding column vector of the database matrix will be orthogonal to the search
vector. Note that modules 1 and 7 do not have any of the three search words, and
consequently

y1 = qT
1 x = 0 and y7 = qT

7 x = 0

This example illustrates some of the basic ideas behind database searches. Using
modern matrix techniques, we can improve the search process significantly. We can
speed up searches and at the same time correct for errors due to polysemy and syn-
onymy. These advanced techniques are referred to as latent semantic indexing (LSI)
and depend on a matrix factorization, the singular value decomposition, which we will
discuss in Section 5 of Chapter 6.

There are many other important applications involving angles between vectors. In
particular, statisticians use the cosine of the angle between two vectors as a measure of
how closely the two vectors are correlated.

APPLICATION 2 Statistics—Correlation and Covariance Matrices

Suppose that we wanted to compare how closely exam scores for a class correlate
with scores on homework assignments. As an example, we consider the total scores
on assignments and tests of a mathematics class at the University of Massachusetts
Dartmouth. The total scores for homework assignments during the semester for the
class are given in the second column of Table 2. The third column represents the total
scores for the two exams given during the semester, and the last column contains the
scores on the final exam. In each case, a perfect score would be 200 points. The last
row of the table summarizes the class averages.

Table 2 Math Scores Fall 1996

Scores

Student Assignments Exams Final

S1 198 200 196

S2 160 165 165

S3 158 158 133

S4 150 165 91

S5 175 182 151

S6 134 135 101

S7 152 136 80

Average 161 163 131

We would like to measure how student performance compares between each set
of exam or assignment scores. To see how closely the two sets of scores are correlated
and allow for any differences in difficulty, we need to adjust the scores so that each test
has a mean of 0. If, in each column, we subtract the average score from each of the
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test scores, then the translated scores will each have an average of 0. Let us store these
translated scores in a matrix:

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The column vectors of X represent the deviations from the mean for each of the three
sets of scores. The three sets of translated data specified by the column vectors of X all
have mean 0, and all sum to 0. To compare two sets of scores, we compute the cosine
of the angle between the corresponding column vectors of X . A cosine value near 1
indicates that the two sets of scores are highly correlated. For example, correlation
between the assignment scores and the exam scores is given by

cos θ = xT
1 x2

‖x1‖‖x2‖ ≈ 0.92

A perfect correlation of 1 would correspond to the case where the two sets of translated
scores are proportional. Thus, for a perfect correlation, the translated vectors would
satisfy

x2 = αx1 (α > 0)

and if the corresponding coordinates of x1 and x2 were paired off, then each ordered
pair would lie on the line y = αx . Although the vectors x1 and x2 in our example are
not perfectly correlated, the coefficient value 0.92 does indicate that the two sets of
scores are highly correlated. Figure 5.1.5 shows how close the actual pairs are to lying
on a line y = αx . The slope of the line in the figure was determined by setting

α = xT
1 x2

xT
1 x1

= 2625

2506
≈ 1.05

This choice of slope yields an optimal least squares fit to the data points. (See Exer-
cise 7 of Section 3.)

If we scale x1 and x2 to make them unit vectors

u1 = 1

‖x1‖x1 and u2 = 1

‖x2‖x2

then the cosine of the angle between the vectors will remain unchanged, and it can
be computed simply by taking the scalar product uT

1 u2. Let us scale all three sets of
translated scores in this way and store the results in a matrix:

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.74 0.65 0.62
−0.02 0.03 0.33
−0.06 −0.09 0.02
−0.22 0.03 −0.38

0.28 0.33 0.19
−0.54 −0.49 −0.29
−0.18 −0.47 −0.49

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Figure 5.1.5.

If we set C = U T U , then

C =
⎧⎪⎪⎪⎪⎪⎩

1 0.92 0.83
0.92 1 0.83
0.83 0.83 1

⎫⎪⎪⎪⎪⎪⎭
and the (i, j) entry of C represents the correlation between the i th and j th sets of
scores. The matrix C is referred to as a correlation matrix.

The three sets of scores in our example are all positively correlated, since the cor-
relation coefficients are all positive. A negative coefficient would indicate that two data
sets were negatively correlated, and a coefficient of 0 would indicate that they were un-
correlated. Thus, two sets of test scores would be uncorrelated if the corresponding
vectors of deviations from the mean were orthogonal.

Another statistically important quantity that is closely related to the correlation
matrix is the covariance matrix. Given a collection of n data points representing values
of some variable x , we compute the mean x of the data points and form a vector x of
the deviations from the mean. The variance, s2, is defined by

s2 = 1

n − 1

n∑
1

x2
i = xT x

n − 1

and the standard deviation s is the square root of the variance. If we have two data sets
X1 and X2 each containing n values of a variable, we can form vectors x1 and x2 of
deviations from the mean for both sets. The covariance is defined by

cov(X1, X2) = xT
1 x2

n − 1

If we have more than two data sets, we can form a matrix X whose columns represent
the deviations from the mean for each data set and then form a covariance matrix S by



5.1 The Scalar Product in R
n 211

setting

S = 1

n − 1
X T X

The covariance matrix for the three sets of mathematics scores is

S = 1

6

⎧⎪⎪⎪⎪⎪⎩
37 −1 −3 −11 14 −27 −9
37 2 −5 2 19 −28 −27
65 34 2 −40 20 −30 −51

⎫⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

417.7 437.5 725.7
437.5 546.0 830.0
725.7 830.0 1814.3

⎫⎪⎪⎪⎪⎪⎭
The diagonal entries of S are the variances for the three sets of scores, and the off-
diagonal entries are the covariances.

To illustrate the importance of the correlation and covariance matrices, we will
consider an application to the field of psychology.

APPLICATION 3 Psychology—Factor Analysis and Principal Component Analysis

Factor analysis had its start at the beginning of the 20th century with the efforts of
psychologists to identify the factor or factors that make up intelligence. The person
most responsible for pioneering this field was the psychologist Charles Spearman. In
a 1904 paper, Spearman analyzed a series of exam scores at a preparatory school. The
exams were taken by a class of 23 pupils in a number of standard subject areas and also
in pitch discrimination. The correlation matrix reported by Spearman is summarized
in Table 3.

Table 3 Spearman's Correlation Matrix

Classics French English Math Discrim. Music

Classics 1 0.83 0.78 0.70 0.66 0.63

French 0.83 1 0.67 0.67 0.65 0.57

English 0.78 0.67 1 0.64 0.54 0.51

Math 0.70 0.67 0.64 1 0.45 0.51

Discrim. 0.66 0.65 0.54 0.45 1 0.40

Music 0.63 0.57 0.51 0.51 0.40 1

Using this and other sets of data, Spearman observed a hierarchy of correlations
among the test scores for the various disciplines. This led him to conclude that “All
branches of intellectual activity have in common one fundamental function (or group
of fundamental functions), . . . ” Although Spearman did not assign names to these
functions, others have used terms such as verbal comprehension, spatial, perceptual,
associative memory, and so on to describe the hypothetical factors.
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The hypothetical factors can be isolated mathematically using a method known as
principal component analysis. The basic idea is to form a matrix X of deviations from
the mean and then factor it into a product U W , where the columns of U correspond to
the hypothetical factors. While, in practice, the columns of X are positively correlated,
the hypothetical factors should be uncorrelated. Thus, the column vectors of U should
be mutually orthogonal (i.e., uT

i u j = 0 whenever i �= j). The entries in each column
of U measure how well the individual students exhibit the particular intellectual ability
represented by that column. The matrix W measures to what extent each test depends
on the hypothetical factors.

The construction of the principal component vectors relies on the covariance ma-
trix S = 1

n−1 X T X . Since it depends on the eigenvalues and eigenvectors of S, we will
defer the details of the method until Chapter 6. In Section 5 of Chapter 6, we will
revisit this application and learn an important factorization called the singular value
decomposition, which is the main tool of principal component analysis.
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SECTION 5.1 EXERCISES
1. Find the angle between the vectors v and w in each

of the following:
(a) v = (2, 1, 3)T , w = (6, 3, 9)T

(b) v = (2, −3)T , w = (3, 2)T

(c) v = (4, 1)T , w = (3, 2)T

(d) v = (−2, 3, 1)T , w = (1, 2, 4)T

2. For each pair of vectors in Exercise 1, find the
scalar projection of v onto w. Also, find the vec-
tor projection of v onto w.

3. For each of the following pairs of vectors x and y,
find the vector projection p of x onto y and verify
that p and x − p are orthogonal:
(a) x = (3, 4)T , y = (1, 0)T

(b) x = (3, 5)T , y = (1, 1)T

(c) x = (2, 4, 3)T , y = (1, 1, 1)T

(d) x = (2, −5, 4)T , y = (1, 2, −1)T

4. Let x and y be linearly independent vectors in R
2.

If ‖x‖ = 2 and ‖y‖ = 3, what, if anything, can we
conclude about the possible values of |xT y|?

5. Find the point on the line y = 2x that is closest to
the point (5, 2).

6. Find the point on the line y = 2x + 1 that is closest
to the point (5, 2).

7. Find the distance from the point (1, 2) to the line
4x − 3y = 0.

8. In each of the following, find the equation of the
plane normal to the given vector N and passing
through the point P0:
(a) N = (2, 4, 3)T , P0 = (0, 0, 0)

(b) N = (−3, 6, 2)T , P0 = (4, 2, −5)

(c) N = (0, 0, 1)T , P0 = (3, 2, 4)

9. Find the equation of the plane that passes through
the points

P1 = (2, 3, 1), P2 = (5, 4, 3), P3 = (3, 4, 4)

10. Find the distance from the point (1, 1, 1) to the
plane 2x + 2y + z = 0.
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11. Find the distance from the point (2, 1, −2) to the
plane

6(x − 1) + 2(y − 3) + 3(z + 4) = 0

12. Prove that if x = (x1, x2)
T , y = (y1, y2)

T , and
z = (z1, z2)

T are arbitrary vectors in R
2, then

(a) xT x ≥ 0 (b) xT y = yT x
(c) xT (y + z) = xT y + xT z

13. Show that if u and v are any vectors in R
2, then

‖u + v‖2 ≤ (‖u‖ + ‖v‖)2 and hence ‖u + v‖ ≤
‖u‖ + ‖v‖. When does equality hold? Give a geo-
metric interpretation of the inequality.

14. Let x1, x2, and x3 be vectors in R
3. If x1 ⊥ x2 and

x2 ⊥ x3, is it necessarily true that x1 ⊥ x3? Prove
your answer.

15. Let A be a 2 × 2 matrix with linearly independent
column vectors a1 and a2. If a1 and a2 are used
to form a parallelogram P with altitude h (see the
accompanying figure), show that
(a) h2‖a2‖2 = ‖a1‖2‖a2‖2 − (aT

1 a2)
2

(b) Area of P = | det(A)|

h
a1

a1

a2

a2α

16. If x and y are linearly independent vectors in R
3,

then they can be used to form a parallelogram P
in the plane through the origin corresponding to
Span(x, y). Show that

Area of P = ‖x × y‖
17. Let

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
4

−4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
2
2
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Determine the angle between x and y.
(b) Determine the distance between x and y.

18. Let x and y be vectors in R
n and define

p = xT y
yT y

y and z = x − p

(a) Show that p ⊥ z. Thus, p is the vector projec-
tion of x onto y; that is, x = p + z, where p
and z are orthogonal components of x, and p is
a scalar multiple of y.

(b) If ‖p‖ = 6 and ‖z‖ = 8, determine the value
of ‖x‖.

19. Use the database matrix U from Application 1 and
search for the key words orthogonality, spaces, vec-
tor, only this time give the key word orthogonal-
ity twice the weight of the other two key words.
Which of the eight modules best matches the search
criteria? [Hint: Form the search vector using the
weights 2, 1, 1 in the rows corresponding to the
search words and then scale the vector to make it a
unit vector.]

20. Five students in an elementary school take aptitude
tests in English, mathematics, and science. Their
scores are given in the table that follows. Deter-
mine the correlation matrix and describe how the
three sets of scores are correlated.

Scores

Student English Mathematics Science

S1 61 53 53

S2 63 73 78

S3 78 61 82

S4 65 84 96

S5 63 59 71

Average 66 66 76

21. Let t be a fixed real number and let

c = cos t, s = sin t,

x = (c, cs, cs2, . . . , csn−1, sn)T

Show that x is a unit vector in R
n+1.

Hint:

1 + s2 + s4 + · · · + s2n−2 = 1 − s2n

1 − s2
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5.2 Orthogonal Subspaces

Let A be an m × n matrix and let x ∈ N (A), the null space of A. Since Ax = 0, we
have

ai1x1 + ai2x2 + · · · + ainxn = 0 (1)

for i = 1, . . . , m. Equation (1) says that x is orthogonal to the i th column vector
of AT for i = 1, . . . , m. Since x is orthogonal to each column vector of AT , it is
orthogonal to any linear combination of the column vectors of AT . So if y is any vector
in the column space of AT , then xT y = 0. Thus, each vector in N (A) is orthogonal to
every vector in the column space of AT . When two subspaces of R

n have this property,
we say that they are orthogonal.

Definition Two subspaces X and Y of R
n are said to be orthogonal if xT y = 0 for every x ∈ X

and every y ∈ Y . If X and Y are orthogonal, we write X ⊥ Y .

EXAMPLE 1 Let X be the subspace of R
3 spanned by e1, and let Y be the subspace spanned by e2.

If x ∈ X and y ∈ Y , these vectors must be of the form

x =
⎧⎪⎪⎪⎪⎪⎩

x1

0
0

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

0
y2

0

⎫⎪⎪⎪⎪⎪⎭
Thus,

xT y = x1 · 0 + 0 · y2 + 0 · 0 = 0

Therefore, X ⊥ Y .

The concept of orthogonal subspaces does not always agree with our intuitive idea
of perpendicularity. For example, the floor and wall of the classroom “look” orthog-
onal, but the xy-plane and the yz-plane are not orthogonal subspaces. Indeed, we
can think of the vectors x1 = (1, 1, 0)T and x2 = (0, 1, 1)T as lying in the xy and
yz-planes, respectively. Since

xT
1 x2 = 1 · 0 + 1 · 1 + 0 · 1 = 1

the subspaces are not orthogonal. The next example shows that the subspace corre-
sponding to the z-axis is orthogonal to the subspace corresponding to the xy-plane.

EXAMPLE 2 Let X be the subspace of R
3 spanned by e1 and e2, and let Y be the subspace spanned

by e3. If x ∈ X and y ∈ Y , then

xT y = x1 · 0 + x2 · 0 + 0 · y3 = 0

Thus, X ⊥ Y . Furthermore, if z is any vector in R
3 that is orthogonal to every vector

in Y , then z ⊥ e3, and hence
z3 = zT e3 = 0

But if z3 = 0, then z ∈ X . Therefore, X is the set of all vectors in R
3 that are orthogonal

to every vector in Y (see Figure 5.2.1).
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X

e1

e2

Y

e3

Figure 5.2.1.

Definition Let Y be a subspace of R
n . The set of all vectors in R

n that are orthogonal to every
vector in Y will be denoted Y ⊥. Thus,

Y ⊥ = {
x ∈ R

n | xT y = 0 for every y ∈ Y
}

The set Y ⊥ is called the orthogonal complement of Y .

Note

The subspaces X = Span(e1) and Y = Span(e2) of R
3 given in Example 1 are orthog-

onal, but they are not orthogonal complements. Indeed,

X⊥ = Span(e2, e3) and Y ⊥ = Span(e1, e3)

Remarks

1. If X and Y are orthogonal subspaces of R
n , then X ∩ Y = {0}.

2. If Y is a subspace of R
n , then Y ⊥ is also a subspace of R

n .

Proof of (1) If x ∈ X ∩ Y and X ⊥ Y , then ‖x‖2 = xT x = 0 and hence x = 0.

Proof of (2) If x ∈ Y ⊥ and α is a scalar, then, for any y ∈ Y ,

(αx)T y = α(xT y) = α · 0 = 0

Therefore, αx ∈ Y ⊥. If x1 and x2 are elements of Y ⊥, then

(x1 + x2)
T y = xT

1 y + xT
2 y = 0 + 0 = 0

for each y ∈ Y . Hence, x1 + x2 ∈ Y ⊥. Therefore, Y ⊥ is a subspace of R
n .

Fundamental Subspaces

Let A be an m × n matrix. We saw in Chapter 3 that a vector b ∈ R
m is in the column

space of A if and only if b = Ax for some x ∈ R
n . If we think of A as a linear
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transformation mapping R
n into R

m , then the column space of A is the same as the
range of A. Let us denote the range of A by R(A). Thus,

R(A) = {
b ∈ R

m | b = Ax for some x ∈ R
n
}

= the column space of A

The column space of AT , R(AT ), is a subspace of R
n:

R(AT ) = {
y ∈ R

n | y = AT x for some x ∈ R
m
}

The column space of R(AT ) is essentially the same as the row space of A, except that
it consists of vectors in R

n (n × 1 matrices) rather than n-tuples. Thus, y ∈ R(AT )

if and only if yT is in the row space of A. We have seen that R(AT ) ⊥ N (A). The
following theorem shows that N (A) is actually the orthogonal complement of R(AT ):

Theorem 5.2.1 Fundamental Subspaces Theorem
If A is an m × n matrix, then N (A) = R(AT )⊥ and N (AT ) = R(A)⊥.

Proof On the one hand, we have already seen that N (A) ⊥ R(AT ), and this implies that
N (A) ⊂ R(AT )⊥. On the other hand, if x is any vector in R(AT )⊥, then x is orthogonal
to each of the column vectors of AT and, consequently, Ax = 0. Thus, x must be
an element of N (A) and hence N (A) = R(AT )⊥. This proof does not depend on
the dimensions of A. In particular, the result will also hold for the matrix B = AT .
Consequently,

N (AT ) = N (B) = R(BT )⊥ = R(A)⊥

EXAMPLE 3 Let

A =
⎧⎪⎩1 0

2 0

⎫⎪⎭
The column space of A consists of all vectors of the form⎧⎪⎩ α

2α

⎫⎪⎭ = α

⎧⎪⎩1
2

⎫⎪⎭
Note that if x is any vector in R

2 and b = Ax then

b =
⎧⎪⎩1 0

2 0

⎫⎪⎭⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩1x1

2x1

⎫⎪⎭ = x1

⎧⎪⎩1
2

⎫⎪⎭
The null space of AT consists of all vectors of the form β(−2, 1)T . Since (1, 2)T

and (−2, 1)T are orthogonal, it follows that every vector in R(A) will be orthogonal
to every vector in N (AT ). The same relationship holds between R(AT ) and N (A).
R(AT ) consists of vectors of the form αe1, and N (A) consists of all vectors of the
form βe2. Since e1 and e2 are orthogonal, it follows that each vector in R(AT ) is
orthogonal to every vector in N (A).



5.2 Orthogonal Subspaces 217

Theorem 5.2.1 is one of the most important theorems in this chapter. In Section 3,
we will see that the result N (AT ) = R(A)⊥ provides a key to solving least squares
problems. For the present, we will use Theorem 5.2.1 to prove the following theorem,
which, in turn, will be used to establish two more important results about orthogonal
subspaces:

Theorem 5.2.2 If S is a subspace of R
n , then dim S + dim S⊥ = n. Furthermore, if {x1, . . . , xr } is

a basis for S and {xr+1, . . . , xn} is a basis for S⊥, then {x1, . . . , xr , xr+1, . . . , xn} is a
basis for R

n .

Proof If S = {0}, then S⊥ = R
n and

dim S + dim S⊥ = 0 + n = n

If S �= {0}, then let {x1, . . . , xr } be a basis for S and define X to be an r × n matrix
whose i th row is xT

i for each i . By construction, the matrix X has rank r and R(X T ) =
S. By Theorem 5.2.1,

S⊥ = R(X T )⊥ = N (X)

It follows from Theorem 3.6.5 that

dim S⊥ = dim N (X) = n − r

To show that {x1, . . . , xr , xr+1, . . . , xn} is a basis for R
n , it suffices to show that the n

vectors are linearly independent. Suppose that

c1x1 + · · · + cr xr + cr+1xr+1 + · · · + cnxn = 0

Let y = c1x1 + · · · + cr xr and z = cr+1xr+1 + · · · + cnxn . We then have

y + z = 0
y = −z

Thus, y and z are both elements of S ∩ S⊥. But S ∩ S⊥ = {0}. Therefore,

c1x1 + · · · + cr xr = 0
cr+1xr+1 + · · · + cnxn = 0

Since x1, . . . , xr are linearly independent,

c1 = c2 = · · · = cr = 0

Similarly, xr+1, . . . , xn are linearly independent and hence

cr+1 = cr+2 = · · · = cn = 0

So x1, x2, . . . , xn are linearly independent and form a basis for R
n .

Given a subspace S of R
n , we will use Theorem 5.2.2 to prove that each x ∈ R

n

can be expressed uniquely as a sum y + z, where y ∈ S and z ∈ S⊥.
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Definition If U and V are subspaces of a vector space W and each w ∈ W can be written
uniquely as a sum u + v, where u ∈ U and v ∈ V , then we say that W is a direct
sum of U and V , and we write W = U ⊕ V .

Theorem 5.2.3 If S is a subspace of R
n , then

R
n = S ⊕ S⊥

Proof The result is trivial if either S = {0} or S = R
n . In the case where the dimension of

S is r , 0 < r < n, it follows from Theorem 5.2.2 that each vector x ∈ R
n can be

represented in the form

x = c1x1 + · · · + cr xr + cr+1xr+1 + · · · + cnxn

where {x1, . . . , xr } is a basis for S and {xr+1, . . . , xn} is a basis for S⊥. If we let

u = c1x1 + · · · + cr xr and v = cr+1xr+1 + · · · + cnxn

then u ∈ S, v ∈ S⊥, and x = u + v. To show uniqueness, suppose that x can also be
written as a sum y + z, where y ∈ S and z ∈ S⊥. Thus,

u + v = x = y + z
u − y = z − v

But u − y ∈ S and z − v ∈ S⊥, so each is in S ∩ S⊥. Since

S ∩ S⊥ = {0}
it follows that

u = y and v = z

Theorem 5.2.4 If S is a subspace of R
n , then (S⊥)⊥ = S.

Proof On the one hand, if x ∈ S, then x is orthogonal to each y in S⊥. Therefore, x ∈ (S⊥)⊥
and hence S ⊂ (S⊥)⊥. On the other hand, suppose that z is an arbitrary element of
(S⊥)⊥. By Theorem 5.2.3, we can write z as a sum u + v, where u ∈ S and v ∈ S⊥.
Since v ∈ S⊥, it is orthogonal to both u and z. It then follows that

0 = vT z = vT u + vT v = vT v

and, consequently, v = 0. Therefore, z = u ∈ S and hence S = (S⊥)⊥.

It follows from Theorem 5.2.4 that if T is the orthogonal complement of a sub-
space S, then S is the orthogonal complement of T , and we may say simply that S and
T are orthogonal complements. In particular, it follows from Theorem 5.2.1 that N (A)

and R(AT ) are orthogonal complements of each other and that N (AT ) and R(A) are
orthogonal complements. Hence, we may write

N (A)⊥ = R(AT ) and N (AT )⊥ = R(A)

Recall that the system Ax = b is consistent if and only if b ∈ R(A). Since
R(A) = N (AT )⊥, we have the following result, which may be considered a corollary
to Theorem 5.2.1:
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Corollary 5.2.5 If A is an m × n matrix and b ∈ R
m , then either there is a vector x ∈ R

n such that
Ax = b or there is a vector y ∈ R

m such that AT y = 0 and yT b �= 0.

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case where R(A) is a two-
dimensional subspace of R

3. The angle θ in the figure will be a right angle if and only
if b ∈ R(A).

b

y R(A)
θ

N(AT)

Figure 5.2.2.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
1 3 4

⎫⎪⎪⎪⎪⎪⎭
Find the bases for N (A), R(AT ), N (AT ), and R(A).

Solution
We can find bases for N (A) and R(AT ) by transforming A into reduced row echelon
form: ⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
1 3 4

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
0 2 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Since (1, 0, 1) and (0, 1, 1) form a basis for the row space of A, it follows that (1, 0, 1)T

and (0, 1, 1)T form a basis for R(AT ). If x ∈ N (A), it follows from the reduced row
echelon form of A that

x1 + x3 = 0

x2 + x3 = 0

Thus,
x1 = x2 = −x3

Setting x3 = α, we see that N (A) consists of all vectors of the form α(−1, −1, 1)T .
Note that (−1, −1, 1)T is orthogonal to (1, 0, 1)T and (0, 1, 1)T .
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To find bases for R(A) and N (AT ), transform AT to reduced row echelon form:⎧⎪⎪⎪⎪⎪⎩
1 0 1
1 1 3
2 1 4

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 2
0 1 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 2
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Thus, (1, 0, 1)T and (0, 1, 2)T form a basis for R(A). If x ∈ N (AT ), then x1 = −x3,
x2 = −2x3. Hence, N (AT ) is the subspace of R

3 spanned by (−1, −2, 1)T . Note that
(−1, −2, 1)T is orthogonal to (1, 0, 1)T and (0, 1, 2)T .

We saw in Chapter 3 that the row space and the column space have the same
dimension. If A has rank r , then

dim R(A) = dim R(AT ) = r

Actually, A can be used to establish a one-to-one correspondence between R(AT ) and
R(A).

We can think of an m × n matrix A as a linear transformation from R
n to R

m :

x ∈ R
n → Ax ∈ R

m

Since R(AT ) and N (A) are orthogonal complements in R
n ,

R
n = R(AT ) ⊕ N (A)

Each vector x ∈ R
n can be written as a sum

x = y + z, y ∈ R(AT ), z ∈ N (A)

It follows that
Ax = Ay + Az = Ay for each x ∈ R

n

and hence
R(A) = {

Ax | x ∈ R
n
} = {

Ay | y ∈ R(AT )
}

Thus, if we restrict the domain of A to R(AT ), then A maps R(AT ) onto R(A). Fur-
thermore, the mapping is one-to-one. Indeed, if x1, x2 ∈ R(AT ) and

Ax1 = Ax2

then
A(x1 − x2) = 0

and hence
x1 − x2 ∈ R(AT ) ∩ N (A)

Since R(AT ) ∩ N (A) = {0}, it follows that x1 = x2. Therefore, we can think of A as
determining a one-to-one correspondence between R(AT ) and R(A). Since each b in
R(A) corresponds to exactly one y in R(AT ), we can define an inverse transformation
from R(A) to R(AT ). Indeed, every m × n matrix A is invertible when viewed as a
linear transformation from R(AT ) to R(A).
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EXAMPLE 5 Let A =
⎧⎪⎩2 0 0

0 3 0

⎫⎪⎭. R(AT ) is spanned by e1 and e2, and N (A) is spanned by e3.

Any vector x ∈ R
3 can be written as a sum

x = y + z

where
y = (x1, x2, 0)T ∈ R(AT ) and z = (0, 0, x3)

T ∈ N (A)

If we restrict ourselves to vectors y ∈ R(AT ), then

y =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

0

⎫⎪⎪⎪⎪⎪⎭ → Ay =
⎧⎪⎩2x1

3x2

⎫⎪⎭
In this case, R(A) = R

2 and the inverse transformation from R(A) to R(AT ) is
defined by

b =
⎧⎪⎩b1

b2

⎫⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2 b1

1
3 b2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

SECTION 5.2 EXERCISES
1. For each of the following matrices, determine a ba-

sis for each of the subspaces R(AT ), N (A), R(A),
and N (AT ):

(a) A =
⎧⎪⎩3 4

6 8

⎫⎪⎭ (b) A =
⎧⎪⎩1 3 1

2 4 0

⎫⎪⎭

(c) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −2
1 3
2 1
3 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (d) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 1 1 1
0 0 1 1
1 1 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
2. Let S be the subspace of R

3 spanned by x =
(1, −1, 1)T .
(a) Find a basis for S⊥.

(b) Give a geometrical description of S and S⊥.

3. (a) Let S be the subspace of R
3 spanned by

the vectors x = (x1, x2, x3)
T and y =

(y1, y2, y3)
T . Let

A =
⎧⎪⎩ x1 x2 x3

y1 y2 y3

⎫⎪⎭
Show that S⊥ = N (A).

(b) Find the orthogonal complement of the sub-
space of R

3 spanned by (1, 2, 1)T and
(1,−1, 2)T .

4. Let S be the subspace of R
4 spanned by x1 =

(1, 0, −2, 1)T and x2 = (0, 1, 3, −2)T . Find a ba-
sis for S⊥.

5. Let A be a 3 × 2 matrix with rank 2. Give geomet-
ric descriptions of R(A) and N (AT ), and describe
geometrically how the subspaces are related.

6. Is it possible for a matrix to have the vector (3, 1, 2)

in its row space and (2, 1, 1)T in its null space? Ex-
plain.

7. Let a j be a nonzero column vector of an m × n
matrix A. Is it possible for a j to be in N (AT )? Ex-
plain.

8. Let S be the subspace of R
n spanned by the vec-

tors x1, x2, . . . , xk . Show that y ∈ S⊥ if and only if
y ⊥ xi for i = 1, . . . , k.

9. If A is an m × n matrix of rank r , what are the
dimensions of N (A) and N (AT )? Explain.

10. Prove Corollary 5.2.5.

11. Prove: If A is an m × n matrix and x ∈ R
n , then

either Ax = 0 or there exists y ∈ R(AT ) such that
xT y �= 0. Draw a picture similar to Figure 5.2.2
to illustrate this result geometrically for the case
where N (A) is a two-dimensional subspace of R

3.
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12. Let A be an m × n matrix. Explain why the follow-
ing are true:
(a) Any vector x in R

n can be uniquely written as
a sum y + z, where y ∈ N (A) and z ∈ R(AT ).

(b) Any vector b ∈ R
m can be uniquely written as

a sum u + v, where u ∈ N (AT ) and v ∈ R(A).

13. Let A be an m × n matrix. Show that
(a) if x ∈ N (ATA), then Ax is in both R(A) and

N (AT ).
(b) N (ATA) = N (A).
(c) A and ATA have the same rank.
(d) if A has linearly independent columns, then

ATA is nonsingular.

14. Let A be an m × n matrix, B an n × r matrix, and
C = AB. Show that
(a) N (B) is a subspace of N (C).

(b) N (C)⊥ is a subspace of N (B)⊥ and, conse-
quently, R(CT ) is a subspace of R(BT ).

15. Let U and V be subspaces of a vector space W .
Show that if W = U ⊕ V , then U ∩ V = {0}.

16. Let A be an m × n matrix of rank r and let
{x1, . . . , xr } be a basis for R(AT ). Show that
{Ax1, . . . , Axr } is a basis for R(A).

17. Let x and y be linearly independent vectors in R
n

and let S = Span(x, y). We can use x and y to
define a matrix A by setting

A = xyT + yxT

(a) Show that A is symmetric.

(b) Show that N (A) = S⊥.

(c) Show that the rank of A must be 2.

5.3 Least Squares Problems

A standard technique in mathematical and statistical modeling is to find a least squares
fit to a set of data points in the plane. The least squares curve is usually the graph of
a standard type of function, such as a linear function, a polynomial, or a trigonometric
polynomial. Since the data may include errors in measurement or experiment-related
inaccuracies, we do not require the curve to pass through all the data points. Instead,
we require the curve to provide an optimal approximation in the sense that the sum
of squares of errors between the y values of the data points and the corresponding y
values of the approximating curve are minimized.

The technique of least squares was developed independently by Adrien-Marie Leg-
endre and Carl Friedrich Gauss. The first paper on the subject was published by Legen-
dre in 1806, although there is clear evidence that Gauss had discovered it as a student
nine years prior to Legendre’s paper and had used the method to do astronomical cal-
culations. Figure 5.3.1 is a portrait of Gauss.

Figure 5.3.1.
Carl Friedrich Gauss
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APPLICATION 1 Astronomy—The Ceres Orbit of Gauss

On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the asteroid
Ceres. He was able to track the asteroid for six weeks, but it was lost due to interference
caused by the sun. A number of leading astronomers published papers predicting the
orbit of the asteroid. Gauss also published a forecast, but his predicted orbit differed
considerably from the others. Ceres was relocated by one observer on December 7
and by another on January 1, 1802. In both cases, the position was very close to that
predicted by Gauss. Gauss won instant fame in astronomical circles and for a time was
more well known as an astronomer than as a mathematician. The key to his success
was the use of the method of least squares.

Least Squares Solutions of Overdetermined Systems

A least squares problem can generally be formulated as an overdetermined linear sys-
tem of equations. Recall that an overdetermined system is one involving more equa-
tions than unknowns. Such systems are usually inconsistent. Thus, given an m × n
system Ax = b with m > n, we cannot expect in general to find a vector x ∈ R

n for
which Ax equals b. Instead, we can look for a vector x for which Ax is “closest” to b.
As you might expect, orthogonality plays an important role in finding such an x.

If we are given a system of equations Ax = b, where A is an m × n matrix with
m > n and b ∈ R

m , then, for each x ∈ R
n , we can form a residual

r(x) = b − Ax

The distance between b and Ax is given by

‖b − Ax‖ = ‖r(x)‖
We wish to find a vector x ∈ R

n for which ‖r(x)‖ will be a minimum. Minimizing
‖r(x)‖ is equivalent to minimizing ‖r(x)‖2. A vector x̂ that accomplishes this is said
to be a least squares solution of the system Ax = b.

If x̂ is a least squares solution of the system Ax = b and p = Ax̂, then p is a vector
in the column space of A that is closest to b. The next theorem guarantees that such a
closest vector p not only exists, but is unique. Additionally, it provides an important
characterization of the closest vector.

Theorem 5.3.1 Let S be a subspace of R
m . For each b ∈ R

m , there is a unique element p of S that is
closest to b; that is,

‖b − y‖ > ‖b − p‖
for any y �= p in S. Furthermore, a given vector p in S will be closest to a given vector
b ∈ R

m if and only if b − p ∈ S⊥.

Proof Since R
m = S ⊕ S⊥, each element b in R

m can be expressed uniquely as a sum

b = p + z

where p ∈ S and z ∈ S⊥. If y is any other element of S, then

‖b − y‖2 = ‖(b − p) + (p − y)‖2
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Since p − y ∈ S and b − p = z ∈ S⊥, it follows from the Pythagorean law that

‖b − y‖2 = ‖b − p‖2 + ‖p − y‖2

Therefore,
‖b − y‖ > ‖b − p‖

Thus, if p ∈ S and b − p ∈ S⊥, then p is the element of S that is closest to b.
Conversely, if q ∈ S and b − q �∈ S⊥, then q �= p, and it follows from the preceding
argument (with y = q) that

‖b − q‖ > ‖b − p‖

In the special case that b is in the subspace S to begin with, we have

b = p + z, p ∈ S, z ∈ S⊥

and
b = b + 0

By the uniqueness of the direct sum representation,

p = b and z = 0

A vector x̂ will be a solution of the least squares problem Ax = b if and only
if p = Ax̂ is the vector in R(A) that is closest to b. The vector p is said to be the
projection of b onto R(A). It follows from Theorem 5.3.1 that

b − p = b − Ax̂ = r(x̂)

must be an element of R(A)⊥. Thus, x̂ is a solution to the least squares problem if and
only if

r(x̂) ∈ R(A)⊥ (1)

(see Figure 5.3.2).

b

p
R(A)

(b) b ∈ R2 and A is a 3 × 2 matrix of rank 2.

b

p

R(A)

(a) b ∈ R2 and A is a 2 × 1 matrix of rank 1.

r(x)ˆ

r(x)ˆ

Figure 5.3.2.

How do we find a vector x̂ satisfying (1)? The key to solving the least squares
problem is provided by Theorem 5.2.1, which states that

R(A)⊥ = N (AT )

A vector x̂ will be a least squares solution of the system Ax = b if and only if

r(x̂) ∈ N (AT )
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or, equivalently,
0 = AT r(x̂) = AT (b − Ax̂)

Thus, to solve the least squares problem Ax = b, we must solve

ATAx = AT b (2)

Equation (2) represents an n ×n system of linear equations. These equations are called
the normal equations. In general, it is possible to have more than one solution of the
normal equations; however, if x̂ and ŷ are both solutions, then, since the projection p
of b onto R(A) is unique,

Ax̂ = Aŷ = p

The following theorem characterizes the conditions under which the least squares prob-
lem Ax = b will have a unique solution:

Theorem 5.3.2 If A is an m × n matrix of rank n, the normal equations

ATAx = AT b

have a unique solution
x̂ = (ATA)−1 AT b

and x̂ is the unique least squares solution of the system Ax = b.

Proof We will first show that ATA is nonsingular. To prove this, let z be a solution of

ATAx = 0 (3)

Then Az ∈ N (AT ). Clearly, Az ∈ R(A) = N (AT )⊥. Since N (AT )∩N (AT )⊥ = {0}, it
follows that Az = 0. If A has rank n, the column vectors of A are linearly independent
and, consequently, Ax = 0 has only the trivial solution. Thus, z = 0 and (3) has only
the trivial solution. Therefore, by Theorem 1.5.2, ATA is nonsingular. It follows that
x̂ = (ATA)−1 AT b is the unique solution of the normal equations and, consequently,
the unique least squares solution of the system Ax = b.

The projection vector

p = Ax̂ = A(ATA)−1 AT b

is the element of R(A) that is closest to b in the least squares sense. The matrix
P = A(ATA)−1 AT is called the projection matrix.

APPLICATION 2 Spring Constants

Hooke’s law states that the force applied to a spring is proportional to the distance that
the spring is stretched. Thus, if F is the force applied and x is the distance that the
spring has been stretched, then F = kx . The proportionality constant k is called the
spring constant.

Some physics students want to determine the spring constant for a given spring.
They apply forces of 3, 5, and 8 pounds, which have the effect of stretching the spring
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4, 7, and 11 inches, respectively. Using Hooke’s law, they derive the following system
of equations:

4k = 3

7k = 5

11k = 8

The system is clearly inconsistent, since each equation yields a different value of k.
Rather than use any one of these values, the students decide to compute the least
squares solution of the system:

(4, 7, 11)

⎧⎪⎪⎪⎪⎪⎩
4
7

11

⎫⎪⎪⎪⎪⎪⎭ (k) = (4, 7, 11)

⎧⎪⎪⎪⎪⎪⎩
3
5
8

⎫⎪⎪⎪⎪⎪⎭
186k = 135

k ≈ 0.726

EXAMPLE 1 Find the least squares solution of the system

x1 + x2 = 3
−2x1 + 3x2 = 1

2x1 − x2 = 2

Solution
The normal equations for this system are

⎧⎪⎩1 −2 2
1 3 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1
−2 3

2 −1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩1 −2 2

1 3 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3
1
2

⎫⎪⎪⎪⎪⎪⎭
This simplifies to the 2 × 2 system⎧⎪⎩ 9 −7

−7 11

⎫⎪⎭⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩5

4

⎫⎪⎭
The solution of the 2 × 2 system is

(
83
50 , 71

50

)T
.

Scientists often collect data and try to find a functional relationship among the
variables. For example, the data may involve temperatures T0, T1, . . . , Tn of a liquid
measured at times t0, t1, . . . , tn , respectively. If the temperature T can be represented
as a function of the time t , this function can be used to predict the temperatures at future
times. If the data consist of n + 1 points in the plane, it is possible to find a polynomial
of degree n or less passing through all the points. Such a polynomial is called an
interpolating polynomial. Actually, since the data usually involve experimental error,
there is no reason to require that the function pass through all the points. Indeed, lower
degree polynomials that do not pass through the points exactly usually give a truer
description of the relationship between the variables. If, for example, the relationship
between the variables is actually linear and the data involve slight errors, it would be
disastrous to use an interpolating polynomial (see Figure 5.3.3).
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x –1.00 0.00 2.10 2.30 2.40 5.30 6.00 6.50 8.00

y –1.02 –0.52 0.55 0.70 0.70 2.13 2.52 2.82 3.54

8

5

–1

–1

Figure 5.3.3.

Given a table of data
x x1 x2 · · · xm

y y1 y2 · · · ym

we wish to find a linear function

y = c0 + c1x

that best fits the data in the least squares sense. If we require that

yi = c0 + c1xi for i = 1, . . . , m

we get a system of m equations in two unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 x1

1 x2
...

...

1 xm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩c0

c1

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (4)

The linear function whose coefficients are the least squares solution of (4) is said to be
the best least squares fit to the data by a linear function.

EXAMPLE 2 Given the data
x 0 3 6
y 1 4 5

Find the best least squares fit by a linear function.
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Solution
For this example, the system (4) becomes

Ac = y

where

A =
⎧⎪⎪⎪⎪⎪⎩

1 0
1 3
1 6

⎫⎪⎪⎪⎪⎪⎭ , c =
⎧⎪⎩c0

c1

⎫⎪⎭ , and y =
⎧⎪⎪⎪⎪⎪⎩

1
4
5

⎫⎪⎪⎪⎪⎪⎭
The normal equations

ATAc = AT y

simplify to ⎧⎪⎩3 9
9 45

⎫⎪⎭⎧⎪⎩c0

c1

⎫⎪⎭ =
⎧⎪⎩10

42

⎫⎪⎭ (5)

The solution of this system is
(

4
3 , 2

3

)
. Thus, the best linear least squares fit is

given by

y = 4
3 + 2

3 x

Example 2 could also have been solved using calculus. The residual r(c) is given
by

r(c) = y − Ac

and

‖r(c)‖2 = ‖y − Ac‖2

= [1 − (c0 + 0c1)]
2 + [4 − (c0 + 3c1)]

2 + [5 − (c0 + 6c1)]
2

= f (c0, c1)

Thus, ‖r(c)‖2 can be thought of as a function of two variables, f (c0, c1). The minimum
of this function will occur when its partial derivatives are zero:

∂ f

∂c0
= −2(10 − 3c0 − 9c1) = 0

∂ f

∂c1
= −6(14 − 3c0 − 15c1) = 0

Dividing both equations through by −2 gives the same system as (5) (see Figure 5.3.4).
If the data do not resemble a linear function, we could use a higher degree polyno-

mial. To find the coefficients c0, c1, . . . , cn of the best least squares fit to the data

x x1 x2 · · · xm

y y1 y2 · · · ym

by a polynomial of degree n, we must find the least squares solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

1 xm x2
m · · · xn

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c0

c1
...

cn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (6)
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0 3 6

}d1

d2{

(6, 5)
}d3

||r(c)||2 = d2
1 + d2

2 + d2
3

(3, 4)

y = c0 + c1x

(0, 1)

Figure 5.3.4.

EXAMPLE 3 Find the best quadratic least squares fit to the data

x 0 1 2 3
y 3 2 4 4

Solution
For this example, the system (6) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1 1 1
1 2 4
1 3 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, the normal equations are

⎧⎪⎪⎪⎪⎪⎩
1 1 1 1
0 1 2 3
0 1 4 9

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1 1 1
1 2 4
1 3 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1
0 1 2 3
0 1 4 9

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
These simplify to ⎧⎪⎪⎪⎪⎪⎩

4 6 14
6 14 36

14 36 98

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

13
22
54

⎫⎪⎪⎪⎪⎪⎭
The solution of this system is (2.75, −0.25, 0.25). The quadratic polynomial that gives
the best least squares fit to the data is

p(x) = 2.75 − 0.25x + 0.25x2

APPLICATION 3 Coordinate Metrology

Many manufactured goods, such as rods, disks, and pipes, are circular in shape. A
company will often employ quality control engineers to test whether items produced
on the production line are meeting industrial standards. Sensing machines are used to
record the coordinates of points on the perimeter of the manufactured products. To
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determine how close these points are to being circular, we can fit a least squares circle
to the data and check to see how close the measured points are to the circle. (See
Figure 5.3.5.)

–1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3.5.

To fit a circle
(x − c1)

2 + (y − c2)
2 = r2 (7)

to n sample pairs of coordinates (x1, y1), (x2, y2), . . . , (xn, yn), we must determine the
center (c1, c2) and the radius r . Rewriting equation (7), we get

2xc1 + 2yc2 + (r2 − c2
1 − c2

2) = x2 + y2

If we set c3 = r2 − c2
1 − c2

2, then the equation takes the form

2xc1 + 2yc2 + c3 = x2 + y2

Substituting each of the data points into this equation, we obtain the overdetermined
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 2y1 1
2x2 2y2 1
...

...
...

2xn 2yn 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c1

c2

c3

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Once we find the least squares solution c, the center of the least squares circle is
(c1, c2), and the radius is determined by setting

r =
√

c3 + c2
1 + c2

2

To measure how close the sampled points are to the circle, we can form a residual
vector r by setting

ri = r2 − (xi − c1)
2 − (yi − c2)

2 i = 1, . . . , n

We can then use ‖r‖ as a measure of how close the points are to the circle.
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SECTION 5.3 EXERCISES
1. Find the least squares solution of each of the fol-

lowing systems:

(a) x1 + x2 = 3

2x1 − 3x2 = 1

0x1 + 0x2 = 2

(b) −x1 + x2 = 10

2x1 + x2 = 5

x1 − 2x2 = 20

(c) x1 + x2 + x3 = 4

−x1 + x2 + x3 = 0

− x2 + x3 = 1

x1 + x3 = 2

2. For each of your solutions x̂ in Exercise 1,
(a) determine the projection p = Ax̂.

(b) calculate the residual r(x̂).

(c) verify that r(x̂) ∈ N (AT ).

3. For each of the following systems Ax = b, find all
least squares solutions:

(a) A =
⎧⎪⎪⎪⎪⎪⎩

1 2
2 4

−1 −2

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

3
2
1

⎫⎪⎪⎪⎪⎪⎭
(b) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 3

−1 3 1
1 2 4

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

−2
0
8

⎫⎪⎪⎪⎪⎪⎭
4. For each of the systems in Exercise 3, determine

the projection p of b onto R(A) and verify that
b − p is orthogonal to each of the column vectors
of A.

5. (a) Find the best least squares fit by a linear func-
tion to the data

x −1 0 1 2
y 0 1 3 9

(b) Plot your linear function from part (a) along
with the data on a coordinate system.

6. Find the best least squares fit to the data in Exer-
cise 5 by a quadratic polynomial. Plot the points
x = −1, 0, 1, 2 for your function and sketch the
graph.

7. Given a collection of points (x1, y1), (x2, y2),. . . ,
(xn, yn), let

x = (x1, x2, . . . , xn)
T y = (y1, y2, . . . , yn)

T

x = 1

n

n∑
i=1

xi y = 1

n

n∑
i=1

yi

and let y = c0+c1x be the linear function that gives
the best least squares fit to the points. Show that if
x = 0, then

c0 = y and c1 = xT y
xT x

8. The point (x, y) is the center of mass for the col-
lection of points in Exercise 7. Show that the least
squares line must pass through the center of mass.
[Hint: Use a change of variables z = x − x to trans-
late the problem so that the new independent vari-
able has mean 0.]

9. Let A be an m × n matrix of rank n and let
P = A(ATA)−1 AT .
(a) Show that Pb = b for every b ∈ R(A). Ex-

plain this property in terms of projections.
(b) If b ∈ R(A)⊥, show that Pb = 0.
(c) Give a geometric illustration of parts (a)

and (b) if R(A) is a plane through the origin
in R

3.

10. Let A be an 8 × 5 matrix of rank 3, and let b be a
nonzero vector in N (AT ).
(a) Show that the system Ax = b must be incon-

sistent.
(b) How many least squares solutions will the sys-

tem Ax = b have? Explain.

11. Let P = A(ATA)−1 AT , where A is an m ×n matrix
of rank n.
(a) Show that P2 = P .
(b) Prove that Pk = P for k = 1, 2, . . . .
(c) Show that P is symmetric. [Hint: If B is non-

singular, then (B−1)T = (BT )−1.]

12. Show that if⎧⎪⎩ A I
O AT

⎫⎪⎭⎧⎪⎩ x̂
r

⎫⎪⎭ =
⎧⎪⎩b

0

⎫⎪⎭
then x̂ is a least squares solution of the system
Ax = b and r is the residual vector.

13. Let A ∈ R
m×n and let x̂ be a solution of the

least squares problem Ax = b. Show that a vec-
tor y ∈ R

n will also be a solution if and only if
y = x̂ + z, for some vector z ∈ N (A).
[Hint: N (ATA) = N (A).]

14. Find the equation of the circle that gives the best
least squares circle fit to the points (−1, −2),
(0, 2.4), (1.1, −4), and (2.4, −1.6).



232 Chapter 5 Orthogonality

5.4 Inner Product Spaces

Scalar products are useful not only in R
n , but in a wide variety of contexts. To gener-

alize this concept to other vector spaces, we introduce the following definition.

Definition and Examples

Definition An inner product on a vector space V is an operation on V that assigns, to each
pair of vectors x and y in V , a real number 〈x, y〉 satisfying the following conditions:

I. 〈x, x〉 ≥ 0 with equality if and only if x = 0.
II. 〈x, y〉 = 〈y, x〉 for all x and y in V .

III. 〈αx+βy, z〉 = α〈x, z〉+β〈y, z〉 for all x, y, z in V and all scalars α and β.

A vector space V with an inner product is called an inner product space.

The Vector Space R
n

The standard inner product for R
n is the scalar product

〈x, y〉 = xT y

Given a vector w with positive entries, we could also define an inner product on R
n by

〈x, y〉 =
n∑

i=1

xi yiwi (1)

The entries wi are referred to as weights.

The Vector Space R
m×n

Given A and B in R
m×n , we can define an inner product by

〈A, B〉 =
m∑

i=1

n∑
j=1

ai j bi j (2)

We leave it to the reader to verify that (2) does indeed define an inner product on R
m×n .

The Vector Space C[a, b]
We may define an inner product on C[a, b] by

〈 f, g〉 =
∫ b

a
f (x)g(x) dx (3)

Note that

〈 f, f 〉 =
∫ b

a
( f (x))2 dx ≥ 0
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If f (x0) �= 0 for some x0 in [a, b], then, since ( f (x))2 is continuous, there exists a
subinterval I of [a, b] containing x0 such that ( f (x))2 ≥ ( f (x0))

2/2 for all x in I . If
we let p represent the length of I , then it follows that

〈 f, f 〉 =
∫ b

a
( f (x))2 dx ≥

∫
I
( f (x))2 dx ≥ ( f (x0))

2 p

2
> 0

So if 〈 f, f 〉 = 0, then f (x) must be identically zero on [a, b]. We leave it to the reader
to verify that (3) satisfies the other two conditions specified in the definition of an inner
product.

If w(x) is a positive continuous function on [a, b], then

〈 f, g〉 =
∫ b

a
f (x)g(x)w(x) dx (4)

also defines an inner product on C[a, b]. The function w(x) is called a weight function.
Thus, it is possible to define many different inner products on C[a, b].

The Vector Space Pn

Let x1, x2, . . . , xn be distinct real numbers. For each pair of polynomials in Pn , define

〈p, q〉 =
n∑

i=1

p(xi )q(xi ) (5)

It is easily seen that (5) satisfies conditions (ii) and (iii) of the definition of an inner
product. To show that (i) holds, note that

〈p, p〉 =
n∑

i=1

(p(xi ))
2 ≥ 0

If 〈p, p〉 = 0, then x1, x2, . . . , xn must be roots of p(x) = 0. Since p(x) is of degree
less than n, it must be the zero polynomial.

If w(x) is a positive function, then

〈p, q〉 =
n∑

i=1

p(xi )q(xi )w(xi )

also defines an inner product on Pn .

Basic Properties of Inner Product Spaces

The results presented in Section 1 for scalar products in R
n all generalize to inner

product spaces. In particular, if v is a vector in an inner product space V , the length,
or norm, of v is given by

‖v‖ = √〈v, v〉
Two vectors u and v are said to be orthogonal if 〈u, v〉 = 0. As in R

n , a pair of
orthogonal vectors will satisfy the Pythagorean law.
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Theorem 5.4.1 The Pythagorean Law
If u and v are orthogonal vectors in an inner product space V , then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Proof

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2〈u, v〉 + 〈v, v〉
= ‖u‖2 + ‖v‖2

Interpreted in R
2, this is just the familiar Pythagorean theorem as shown in Fig-

ure 5.4.1.

u

v

u + v

Figure 5.4.1.

EXAMPLE 1 Consider the vector space C[−1, 1] with inner product defined by (3). The vectors 1
and x are orthogonal, since

〈1, x〉 =
∫ 1

−1
1 · x dx = 0

To determine the lengths of these vectors, we compute

〈1, 1〉 =
∫ 1

−1
1 · 1 dx = 2

〈x, x〉 =
∫ 1

−1
x2 dx = 2

3

It follows that

‖1‖ = (〈1, 1〉)1/2 = √
2

‖x‖ = (〈x, x〉)1/2 =
√

6

3

Since 1 and x are orthogonal, they satisfy the Pythagorean law:

‖1 + x‖2 = ‖1‖2 + ‖x‖2 = 2 + 2

3
= 8

3

The reader may verify that

‖1 + x‖2 = 〈1 + x, 1 + x〉 =
∫ 1

−1
(1 + x)2 dx = 8

3
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EXAMPLE 2 For the vector space C[−π, π ], if we use a constant weight function w(x) = 1/π to
define an inner product

〈 f, g〉 = 1

π

∫ π

−π

f (x)g(x) dx (6)

then

〈cos x, sin x〉 = 1

π

∫ π

−π

cos x sin x dx = 0

〈cos x, cos x〉 = 1

π

∫ π

−π

cos x cos x dx = 1

〈sin x, sin x〉 = 1

π

∫ π

−π

sin x sin x dx = 1

Thus, cos x and sin x are orthogonal unit vectors with respect to this inner product. It
follows from the Pythagorean law that

‖ cos x + sin x‖ = √
2

The inner product (6) plays a key role in Fourier analysis applications involving
trigonometric approximation of functions. We will look at some of these applications
in Section 5.

For the vector space R
m×n , the norm derived from the inner product (2) is called

the Frobenius norm and is denoted by ‖ · ‖F . Thus, if A ∈ R
m×n , then

‖A‖F = (〈A, A〉)1/2 =
(

m∑
i=1

n∑
j=1

a2
i j

)1/2

EXAMPLE 3 If

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 2
3 3

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−1 1
3 0

−3 4

⎫⎪⎪⎪⎪⎪⎭
then

〈A, B〉 = 1 · −1 + 1 · 1 + 1 · 3 + 2 · 0 + 3 · −3 + 3 · 4 = 6

Hence, A is not orthogonal to B. The norms of these matrices are given by

‖A‖F = (1 + 1 + 1 + 4 + 9 + 9)1/2 = 5

‖B‖F = (1 + 1 + 9 + 0 + 9 + 16)1/2 = 6

EXAMPLE 4 In P5, define an inner product by (5) with xi = (i − 1)/4 for i = 1, 2, . . . , 5. The
length of the function p(x) = 4x is given by

‖4x‖ = (〈4x, 4x〉)1/2 =
(

5∑
i=1

16x2
i

)1/2

=
(

5∑
i=1

(i − 1)2

)1/2

= √
30
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Definition If u and v are vectors in an inner product space V and v �= 0, then the scalar
projection of u onto v is given by

α = 〈u, v〉
‖v‖

and the vector projection of u onto v is given by

p = α

(
1

‖v‖v
)

= 〈u, v〉
〈v, v〉v (7)

Observations

If v �= 0 and p is the vector projection of u onto v, then

I. u − p and p are orthogonal.
II. u = p if and only if u is a scalar multiple of v.

Proof of
Observation I

Since

〈p, p〉 = 〈 α

‖v‖v,
α

‖v‖v〉 =
(

α

‖v‖
)2

〈v, v〉 = α2

and

〈u, p〉 = (〈u, v〉)2

〈v, v〉 = α2

it follows that
〈u − p, p〉 = 〈u, p〉 − 〈p, p〉 = α2 − α2 = 0

Therefore, u − p and p are orthogonal.

Proof of
Observation II

If u = βv, then the vector projection of u onto v is given by

p = 〈βv, v〉
〈v, v〉 v = βv = u

Conversely, if u = p, it follows from (7) that

u = βv where β = α

‖v‖
Observations I and II are useful for establishing the following theorem:

Theorem 5.4.2 The Cauchy–Schwarz Inequality
If u and v are any two vectors in an inner product space V , then

|〈u, v〉| ≤ ‖u‖ ‖v‖ (8)

Equality holds if and only if u and v are linearly dependent.
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Proof If v = 0, then
|〈u, v〉| = 0 = ‖u‖‖v‖

If v �= 0, then let p be the vector projection of u onto v. Since p is orthogonal to u − p,
it follows from the Pythagorean law that

‖p‖2 + ‖u − p‖2 = ‖u‖2

Thus,
(〈u, v〉)2

‖v‖2
= ‖p‖2 = ‖u‖2 − ‖u − p‖2

and hence
(〈u, v〉)2 = ‖u‖2‖v‖2 − ‖u − p‖2‖v‖2 ≤ ‖u‖2‖v‖2 (9)

Therefore,
|〈u, v〉| ≤ ‖u‖‖v‖

Equality holds in (9) if and only if u = p. It follows from observation II that equality
will hold in (8) if and only if v = 0 or u is a multiple of v. More simply stated, equality
will hold if and only if u and v are linearly dependent.

One consequence of the Cauchy–Schwarz inequality is that if u and v are nonzero
vectors, then

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1

and hence there is a unique angle θ in [0, π ] such that

cos θ = 〈u, v〉
‖u‖‖v‖ (10)

Thus, equation (10) can be used to define the angle θ between two nonzero vectors u
and v.

Norms

The word norm in mathematics has its own meaning that is independent of an inner
product, and its use here should be justified.

Definition A vector space V is said to be a normed linear space if, to each vector v ∈ V ,
there is associated a real number ‖v‖, called the norm of v, satisfying

I. ‖v‖ ≥ 0 with equality if and only if v = 0.
II. ‖αv‖ = |α| ‖v‖ for any scalar α.

III. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V .

The third condition is called the triangle inequality (see Figure 5.4.2).

Theorem 5.4.3 If V is an inner product space, then the equation

‖v‖ = √〈v, v〉 for all v ∈ V

defines a norm on V .
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w

v

v + w

Figure 5.4.2.

Proof It is easily seen that conditions I and II of the definition are satisfied. We leave this for
the reader to verify and proceed to show that condition III is satisfied.

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2〈u, v〉 + 〈v, v〉
≤ ‖u‖2 + 2‖u‖ ‖v‖ + ‖v‖2 (Cauchy–Schwarz)

= (‖u‖ + ‖v‖)2

Thus,

‖u + v‖ ≤ ‖u‖ + ‖v‖

It is possible to define many different norms on a given vector space. For example,
in R

n we could define

‖x‖1 =
n∑

i=1

|xi |

for every x = (x1, x2, . . . , xn)
T . It is easily verified that ‖ · ‖1 defines a norm on R

n .
Another important norm on R

n is the uniform norm, or infinity norm, which is defined
by

‖x‖∞ = max
1≤i≤n

|xi |
More generally, we could define a norm on R

n by

‖x‖p =
(

n∑
i=1

|xi |p

)1/p

for any real number p ≥ 1. In particular, if p = 2, then

‖x‖2 =
(

n∑
i=1

|xi |2
)1/2

= √〈x, x〉

The norm ‖ · ‖2 is the norm on R
n derived from the inner product. If p �= 2, ‖ · ‖p does

not correspond to any inner product. In the case of a norm that is not derived from an
inner product, the Pythagorean law will not hold. For example,

x1 =
⎧⎪⎩1

2

⎫⎪⎭ and x2 =
⎧⎪⎩−4

2

⎫⎪⎭
are orthogonal; however,

‖x1‖2
∞ + ‖x2‖2

∞ = 4 + 16 = 20
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while
‖x1 + x2‖2

∞ = 16

If, however, ‖ · ‖2 is used, then

‖x1‖2
2 + ‖x2‖2

2 = 5 + 20 = 25 = ‖x1 + x2‖2
2

EXAMPLE 5 Let x be the vector (4, −5, 3)T in R
3. Compute ‖x‖1, ‖x‖2, and ‖x‖∞.

‖x‖1 = |4| + |−5| + |3| = 12

‖x‖2 = √
16 + 25 + 9 = 5

√
2

‖x‖∞ = max(|4|, |−5|, |3|) = 5

It is also possible to define different matrix norms for R
m×n . In Chapter 7, we will

study other types of matrix norms that are useful in determining the sensitivity of linear
systems.

In general, a norm provides a way of measuring the distance between vectors.

Definition Let x and y be vectors in a normed linear space. The distance between x and y is
defined to be the number ‖y − x‖.

Many applications involve finding a unique closest vector in a subspace S to a
given vector v in a vector space V . If the norm used for V is derived from an in-
ner product, then the closest vector can be computed as a vector projection of v onto
the subspace S. This type of approximation problem is discussed further in the next
section.

SECTION 5.4 EXERCISES
1. Let x = (−1, −1, 1, 1)T and y = (1, 1, 5, −3)T .

Show that x ⊥ y. Calculate ‖x‖2, ‖y‖2, ‖x + y‖2

and verify that the Pythagorean law holds.

2. Let x = (1, 1, 1, 1)T and y = (8, 2, 2, 0)T .
(a) Determine the angle θ between x and y.

(b) Find the vector projection p of x onto y.

(c) Verify that x − p is orthogonal to p.

(d) Compute ‖x − p‖2, ‖p‖2, ‖x‖2 and verify that
the Pythagorean law is satisfied.

3. Use equation (1) with weight vector w =(
1
4 , 1

2 , 1
4

)T
to define an inner product for R

3, and
let x = (1, 1, 1)T and y = (−5, 1, 3)T .
(a) Show that x and y are orthogonal with respect

to this inner product.

(b) Compute the values of ‖x‖ and ‖y‖ with re-
spect to this inner product.

4. Given

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 2
1 0 2
3 1 1

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−4 1 1
−3 3 2

1 −2 −2

⎫⎪⎪⎪⎪⎪⎭
determine the value of each of the following:
(a) 〈A, B〉 (b) ‖A‖F

(c) ‖B‖F (d) ‖A + B‖F

5. Show that equation (2) defines an inner product on
R

m×n .

6. Show that the inner product defined by equation (3)
satisfies the last two conditions of the definition of
an inner product.

7. In C[0, 1], with inner product defined by (3), com-
pute
(a) 〈ex , e−x 〉 (b) 〈x, sin πx〉 (c) 〈x2, x3〉
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8. In C[0, 1], with inner product defined by (3), con-
sider the vectors 1 and x .
(a) Find the angle θ between 1 and x .
(b) Determine the vector projection p of 1 onto x

and verify that 1 − p is orthogonal to p.
(c) Compute ‖1 − p‖, ‖p‖, ‖1‖ and verify that the

Pythagorean law holds.

9. In C[−π, π ] with inner product defined by (6),
show that cos mx and sin nx are orthogonal and that
both are unit vectors. Determine the distance be-
tween the two vectors.

10. Show that the functions x and x2 are orthogonal
in P5 with inner product defined by (5), where
xi = (i − 3)/2 for i = 1, . . . , 5.

11. In P5 with inner product as in Exercise 10 and norm
defined by

‖p‖ = √〈p, p〉 =
{

5∑
i=1

[p(xi )]
2

}1/2

compute
(a) ‖x‖ (b) ‖x2‖
(c) the distance between x and x2

12. If V is an inner product space, show that

‖v‖ = √〈v, v〉
satisfies the first two conditions in the definition of
a norm.

13. Show that

‖x‖1 =
n∑

i=1

|xi |

defines a norm on R
n .

14. Show that
‖x‖∞ = max

1≤i≤n
|xi |

defines a norm on R
n .

15. Compute ‖x‖1, ‖x‖2, and ‖x‖∞ for each of the fol-
lowing vectors in R

3:
(a) x = (−3, 4, 0)T (b) x = (−1, −1, 2)T

(c) x = (1, 1, 1)T

16. Let x = (5, 2, 4)T and y = (3, 3, 2)T . Compute
‖x − y‖1, ‖x − y‖2, and ‖x − y‖∞. Under which
norm are the two vectors closest together? Under
which norm are they farthest apart?

17. Let x and y be vectors in an inner product space.
Show that if x ⊥ y, then the distance between x
and y is (‖x‖2 + ‖y‖2

)1/2

18. Show that if u and v are vectors in an inner product
space that satisfy the Pythagorean law

‖u + v‖2 = ‖u‖2 + ‖v‖2

then u and v must be orthogonal.

19. In R
n with inner product

〈x, y〉 = xT y

derive a formula for the distance between two vec-
tors x = (x1, . . . , xn)

T and y = (y1, . . . , yn)
T .

20. Let A be a nonsingular n × n matrix and, for each
vector x in R

n , define

‖x‖A = ‖Ax‖2 (11)

Show that (11) defines a norm on R
n .

21. Let x ∈ R
n . Show that ‖x‖∞ ≤ ‖x‖2.

22. Let x ∈ R
2. Show that ‖x‖2 ≤ ‖x‖1. [Hint: Write

x in the form x1e1 + x2e2 and use the triangle in-
equality.]

23. Give an example of a nonzero vector x ∈ R
2 for

which
‖x‖∞ = ‖x‖2 = ‖x‖1

24. Show that, in any vector space with a norm,

‖−v‖ = ‖v‖
25. Show that, for any u and v in a normed vector

space,
‖u + v‖ ≥ | ‖u‖ − ‖v‖ |

26. Prove that, for any u and v in an inner product space
V ,

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2

Give a geometric interpretation of this result for the
vector space R

2.

27. The result of Exercise 26 is not valid for norms
other than the norm derived from the inner prod-
uct. Give an example of this in R

2 using ‖ · ‖1.

28. Determine whether the following define norms on
C[a, b]:
(a) ‖ f ‖ = | f (a)| + | f (b)|
(b) ‖ f ‖ = ∫ b

a | f (x)| dx
(c) ‖ f ‖ = max

a≤x≤b
| f (x)|

29. Let x ∈ R
n and show that

(a) ‖x‖1 ≤ n‖x‖∞ (b) ‖x‖2 ≤ √
n ‖x‖∞

Give examples of vectors in R
n for which equality

holds in parts (a) and (b).
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30. Sketch the set of points (x1, x2) = xT in R
2 such

that
(a) ‖x‖2 = 1 (b) ‖x‖1 = 1 (c) ‖x‖∞ = 1

31. Let K be an n × n matrix of the form

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −c −c · · · −c −c
0 s −sc · · · −sc −sc
0 0 s2 · · · −s2c −s2c
...

0 0 0 · · · sn−2 −sn−2c
0 0 0 · · · 0 sn−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where c2 + s2 = 1. Show that ‖K‖F = √

n.

32. The trace of an n × n matrix C , denoted tr(C), is
the sum of its diagonal entries; that is,

tr(C) = c11 + c22 + · · · + cnn

If A and B are m × n matrices, show that
(a) ‖A‖2

F = tr(ATA)

(b) ‖A + B‖2
F = ‖A‖2

F + 2 tr(AT B) + ‖B‖2
F .

33. Consider the vector space R
n with inner product

〈x, y〉 = xT y. Show that, for any n × n matrix
A,
(a) 〈Ax, y〉 = 〈x, AT y〉
(b) 〈ATAx, x〉 = ‖Ax‖2

5.5 Orthonormal Sets

In R
2, it is generally more convenient to use the standard basis {e1, e2} than to use

some other basis, such as {(2, 1)T , (3, 5)T }. For example, it would be easier to find
the coordinates of (x1, x2)

T with respect to the standard basis. The elements of the
standard basis are orthogonal unit vectors. In working with an inner product space V ,
it is generally desirable to have a basis of mutually orthogonal unit vectors. Such a
basis is convenient not only in finding coordinates of vectors, but also in solving least
squares problems.

Definition Let v1, v2, . . . , vn be nonzero vectors in an inner product space V . If 〈vi , v j 〉 = 0
whenever i �= j , then {v1, v2, . . . , vn} is said to be an orthogonal set of vectors.

EXAMPLE 1 The set {(1, 1, 1)T , (2, 1, −3)T , (4, −5, 1)T } is an orthogonal set in R
3, since

(1, 1, 1)(2, 1, −3)T = 0

(1, 1, 1)(4, −5, 1)T = 0

(2, 1, −3)(4, −5, 1)T = 0

Theorem 5.5.1 If {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an inner product space V ,
then v1, v2, . . . , vn are linearly independent.

Proof Suppose that v1, v2, . . . , vn are mutually orthogonal nonzero vectors and

c1v1 + c2v2 + · · · + cnvn = 0 (1)

If 1 ≤ j ≤ n, then, taking the inner product of v j with both sides of equation (1), we
see that

c1〈v j , v1〉 + c2〈v j , v2〉 + · · · + cn〈v j , vn〉 = 0

c j‖v j‖2 = 0

and hence all the scalars c1, c2, . . . , cn must be 0.
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Definition An orthonormal set of vectors is an orthogonal set of unit vectors.

The set {u1, u2, . . . , un} will be orthonormal if and only if

〈ui , u j 〉 = δi j

where

δi j =
{

1 i = j
0 i �= j

Given any orthogonal set of nonzero vectors {v1, v2, . . . , vn}, it is possible to form an
orthonormal set by defining

ui =
(

1

‖vi‖
)

vi for i = 1, 2, . . . , n

The reader may verify that {u1, u2, . . . , un} will be an orthonormal set.

EXAMPLE 2 We saw in Example 1 that if v1 = (1, 1, 1)T , v2 = (2, 1, −3)T , and v3 = (4, −5, 1)T ,
then {v1, v2, v3} is an orthogonal set in R

3. To form an orthonormal set, let

u1 =
(

1

‖v1‖
)

v1 = 1√
3
(1, 1, 1)T

u2 =
(

1

‖v2‖
)

v2 = 1√
14

(2, 1, −3)T

u3 =
(

1

‖v3‖
)

v3 = 1√
42

(4, −5, 1)T

EXAMPLE 3 In C[−π, π ] with inner product

〈 f, g〉 = 1

π

∫ π

−π

f (x)g(x) dx (2)

the set {1, cos x, cos 2x, . . . , cos nx} is an orthogonal set of vectors, since, for any
positive integers j and k,

〈1, cos kx〉 = 1

π

∫ π

−π

cos kx dx = 0

〈cos j x, cos kx〉 = 1

π

∫ π

−π

cos j x cos kx dx = 0 ( j �= k)

The functions cos x , cos 2x , . . . , cos nx are already unit vectors, since

〈cos kx, cos kx〉 = 1

π

∫ π

−π

cos2 kx dx = 1 for k = 1, 2, . . . , n
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To form an orthonormal set, we need only find a unit vector in the direction of 1.

‖1‖2 = 〈1, 1〉 = 1

π

∫ π

−π

1 dx = 2

Thus, 1/
√

2 is a unit vector, and hence {1/
√

2, cos x, cos 2x, . . . , cos nx} is an ortho-
normal set of vectors.

It follows from Theorem 5.5.1 that if B = {u1, u2, . . . , uk} is an orthonormal set in
an inner product space V , then B is a basis for the subspace S = Span(u1, u2, . . . , uk).
We say that B is an orthonormal basis for S. It is generally much easier to work
with an orthonormal basis than with an ordinary basis. In particular, it is much easier
to calculate the coordinates of a given vector v with respect to an orthonormal basis.
Once these coordinates have been determined, they can be used to compute ‖v‖.

Theorem 5.5.2 Let {u1, u2, . . . , un} be an orthonormal basis for an inner product space V . If

v =
n∑

i=1

ci ui , then ci = 〈v, ui 〉.

Proof

〈v, ui 〉 = 〈
n∑

j=1

c j u j , ui 〉 =
n∑

j=1

c j 〈u j , ui 〉 =
n∑

j=1

c jδ j i = ci

As a consequence of Theorem 5.5.2, we can state two more important results:

Corollary 5.5.3 Let {u1, u2, . . . , un} be an orthonormal basis for an inner product space V . If

u =
n∑

i=1

ai ui and v =
n∑

i=1

bi ui , then

〈u, v〉 =
n∑

i=1

ai bi

Proof By Theorem 5.5.2,
〈v, ui 〉 = bi i = 1, . . . , n

Therefore,

〈u, v〉 = 〈
n∑

i=1

ai ui , v〉 =
n∑

i=1

ai 〈ui , v〉 =
n∑

i=1

ai 〈v, ui 〉 =
n∑

i=1

ai bi

Corollary 5.5.4 Parseval's Formula

If {u1, . . . , un} is an orthonormal basis for an inner product space V and v =
n∑

i=1

ci ui ,

then

‖v‖2 =
n∑

i=1

c2
i
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Proof If v =
n∑

i=1

ci ui , then, by Corollary 5.5.3,

‖v‖2 = 〈v, v〉 =
n∑

i=1

c2
i

EXAMPLE 4 The vectors

u1 =
(

1√
2
,

1√
2

)T

and u2 =
(

1√
2
, − 1√

2

)T

form an orthonormal basis for R
2. If x ∈ R

2, then

xTu1 = x1 + x2√
2

and xTu2 = x1 − x2√
2

It follows from Theorem 5.5.2 that

x = x1 + x2√
2

u1 + x1 − x2√
2

u2

and it follows from Corollary 5.5.4 that

‖x‖2 =
(

x1 + x2√
2

)2

+
(

x1 − x2√
2

)2

= x2
1 + x2

2

EXAMPLE 5 Given that {1/
√

2, cos 2x} is an orthonormal set in C[−π, π ] (with inner product as in
Example 3), determine the value of

∫ π

−π
sin4 x dx without computing antiderivatives.

Solution
Since

sin2 x = 1 − cos 2x

2
= 1√

2

1√
2

+
(

−1

2

)
cos 2x

it follows from Parseval’s formula that∫ π

−π

sin4 x dx = π‖ sin2 x‖2 = π

(
1

2
+ 1

4

)
= 3π

4

Orthogonal Matrices
Of particular importance are n×n matrices whose column vectors form an orthonormal
set in R

n .

Definition An n × n matrix Q is said to be an orthogonal matrix if the column vectors of Q
form an orthonormal set in R

n .

Theorem 5.5.5 An n × n matrix Q is orthogonal if and only if QTQ = I .
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Proof It follows from the definition that an n × n matrix Q is orthogonal if and only if its
column vectors satisfy

qT
i q j = δi j

However, qT
i q j is the (i, j) entry of the matrix QTQ. Thus Q is orthogonal if and only

if QTQ = I .

It follows from the theorem that if Q is an orthogonal matrix, then Q is invertible
and Q−1 = QT .

EXAMPLE 6 For any fixed θ , the matrix

Q =
⎧⎪⎩cos θ −sin θ

sin θ cos θ

⎫⎪⎭
is orthogonal and

Q−1 = QT =
⎧⎪⎩ cos θ sin θ

−sin θ cos θ

⎫⎪⎭
The matrix Q in Example 6 can be thought of as a linear transformation from R

2

onto R
2 that has the effect of rotating each vector by an angle θ while leaving the length

of the vector unchanged (see Example 2 in Section 2 of Chapter 4). Similarly, Q−1 can
be thought of as a rotation by the angle −θ (see Figure 5.5.1).

y

Q–1y

Qx

x

θ

(a) (b)

θ–

Figure 5.5.1.

In general, inner products are preserved under multiplication by an orthogonal
matrix [i.e., 〈x, y〉 = 〈Qx, Qy〉]. Indeed,

〈Qx, Qy〉 = (Qy)TQx = yTQTQx = yT x = 〈x, y〉

In particular, if x = y, then ‖Qx‖2 = ‖x‖2 and hence ‖Qx‖ = ‖x‖. Multiplication by
an orthogonal matrix preserves the lengths of vectors.
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Properties of Orthogonal Matrices

If Q is an n × n orthogonal matrix, then

(a) the column vectors of Q form an orthonormal basis for R
n .

(b) QTQ = I

(c) QT = Q−1

(d) 〈Qx, Qy〉 = 〈x, y〉
(e) ‖Qx‖2 = ‖x‖2

Permutation Matrices

A permutation matrix is a matrix formed from the identity matrix by reordering its
columns. Clearly, then, permutation matrices are orthogonal matrices. If P is the
permutation matrix formed by reordering the columns of I in the order (k1, . . . , kn),
then P = (ek1, . . . , ekn ). If A is an m × n matrix, then

AP = (Aek1, . . . , Aekn ) = (ak1, . . . , akn )

Postmultiplication of A by P reorders the columns of A in the order (k1, . . . , kn). For
example, if

A =
⎧⎪⎩1 2 3

1 2 3

⎫⎪⎭ and P =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 1
1 0 0

⎫⎪⎪⎪⎪⎪⎭
then

AP =
⎧⎪⎩3 1 2

3 1 2

⎫⎪⎭
Since P = (ek1, . . . , ekn ) is orthogonal, it follows that

P−1 = PT =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1
...

eT
kn

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The k1 column of PT will be e1, the k2 column will be e2, and so on. Thus, PT is a
permutation matrix. The matrix PT can be formed directly from I by reordering its
rows in the order (k1, k2, . . . , kn). In general, a permutation matrix can be formed from
I by reordering either its rows or its columns.

If Q is the permutation matrix formed by reordering the rows of I in the order
(k1, k2, . . . , kn) and B is an n × r matrix, then

Q B =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1
...

eT
kn

⎫⎪⎪⎪⎪⎪⎪⎪⎭ B =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1

B
...

eT
kn

B

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
�bk1
...

�bkn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Thus, Q B is the matrix formed by reordering the rows of B in the order (k1, . . . , kn).
For example, if

Q =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 1
2 2
3 3

⎫⎪⎪⎪⎪⎪⎭
then

Q B =
⎧⎪⎪⎪⎪⎪⎩

3 3
1 1
2 2

⎫⎪⎪⎪⎪⎪⎭
In general, if P is an n × n permutation matrix, premultiplication of an n × r matrix B
by P reorders the rows of B and postmultiplication of an m ×n matrix A by P reorders
the columns of A.

Orthonormal Sets and Least Squares

Orthogonality plays an important role in solving least squares problems. Recall that
if A is an m × n matrix of rank n, then the least squares problem Ax = b has a
unique solution x̂ that is determined by solving the normal equations ATAx = AT b.
The projection p = Ax̂ is the vector in R(A) that is closest to b. The least squares
problem is especially easy to solve in the case where the column vectors of A form an
orthonormal set in R

m .

Theorem 5.5.6 If the column vectors of A form an orthonormal set of vectors in R
m , then ATA = I

and the solution to the least squares problem is

x̂ = AT b

Proof The (i, j) entry of ATA is formed from the i th row of AT and the j th column of A.
Thus, the (i, j) entry is actually the scalar product of the i th and j th columns of A.
Since the column vectors of A are orthonormal, it follows that

ATA = (
δi j
) = I

Consequently, the normal equations simplify to

x = AT b

What if the columns of A are not orthonormal? In the next section, we will learn a
method for finding an orthonormal basis for R(A). From this method, we will obtain
a factorization of A into a product Q R, where Q has an orthonormal set of column
vectors and R is upper triangular. With this factorization, the least squares problem
can be solved quickly and accurately.

If we have an orthonormal basis for R(A), the projection p = Ax̂ can be deter-
mined in terms of the basis elements. Indeed, this is a special case of the more general
least squares problem of finding the element p in a subspace S of an inner product
space V that is closest to a given element x in V . This problem is easily solved if S has
an orthonormal basis. We first prove the following theorem:
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Theorem 5.5.7 Let S be a subspace of an inner product space V and let x ∈ V . Let {u1, u2, . . . , un}
be an orthonormal basis for S. If

p =
n∑

i=1

ci ui (3)

where
ci = 〈x, ui 〉 for each i (4)

then p − x ∈ S⊥ (see Figure 5.5.2).

x

p
S

p – x

Figure 5.5.2.

Proof We will show first that (p − x) ⊥ ui for each i :

〈ui , p − x〉 = 〈ui , p〉 − 〈ui , x〉
= 〈xi ,

n∑
j=1

c j u j 〉 − ci

=
n∑

j=1

c j 〈ui , u j 〉 − ci

= 0

So p − x is orthogonal to all the ui ’s. If y ∈ S, then

y =
n∑

i=1

αi ui

and hence

〈p − x, y〉 = 〈p − x,

n∑
i=1

αi ui 〉 =
n∑

i=1

αi 〈p − x, ui 〉 = 0

If x ∈ S, the preceding result is trivial, since, by Theorem 5.5.2, p − x = 0. If
x �∈ S, then p is the element in S closest to x.

Theorem 5.5.8 Under the hypothesis of Theorem 5.5.7, p is the element of S that is closest to x; that
is,

‖y − x‖ > ‖p − x‖
for any y �= p in S.
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Proof If y ∈ S and y �= p, then

‖y − x‖2 = ‖(y − p) + (p − x)‖2

Since y − p ∈ S, it follows from Theorem 5.5.7 and the Pythagorean law that

‖y − x‖2 = ‖y − p‖2 + ‖p − x‖2 > ‖p − x‖2

Therefore, ‖y − x‖ > ‖p − x‖.

The vector p defined by (3) and (4) is said to be the projection of x onto S.

Corollary 5.5.9 Let S be a nonzero subspace of R
m and let b ∈ R

m . If {u1, u2, . . . , uk} is an orthonor-
mal basis for S and U = (u1, u2, . . . , uk), then the projection p of b onto S is given
by

p = UU T b

Proof It follows from Theorem 5.5.7 that the projection p of b onto S is
given by

p = c1u1 + c2u2 + · · · + ckuk = Uc

where

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1

c2
...

ck

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
uT

1 b
uT

2 b
...

uT
k b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = U T b

Therefore,

p = UU T b

The matrix UU T in Corollary 5.5.9 is the projection matrix corresponding to the
subspace S of R

m . To project any vector b ∈ R
m onto S, we need only find an or-

thonormal basis {u1, u2, . . . , uk} for S, form the matrix UU T , and then multiply UU T

times b.
If P is a projection matrix corresponding to a subspace S of R

m , then, for any
b ∈ R

m , the projection p of b onto S is unique. If Q is also a projection matrix
corresponding to S, then

Qb = p = Pb

It then follows that

q j = Qe j = Pe j = p j for j = 1, . . . , m

and hence Q = P . Thus, the projection matrix for a subspace S of R
m is unique.

EXAMPLE 7 Let S be the set of all vectors in R
3 of the form (x, y, 0)T . Find the vector p in S that

is closest to w = (5, 3, 4)T (see Figure 5.5.3).
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S

w

(5, 3, 4)

(5, 3, 0)

Figure 5.5.3.

Solution
Let u1 = (1, 0, 0)T and u2 = (0, 1, 0)T . Clearly, u1 and u2 form an orthonormal basis
for S. Now,

c1 = wT u1 = 5

c2 = wT u2 = 3

The vector p turns out to be exactly what we would expect:

p = 5u1 + 3u2 = (5, 3, 0)T

Alternatively, p could have been calculated using the projection matrix UU T :

p = UU T w =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5
3
4

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
3
0

⎫⎪⎪⎪⎪⎪⎭
Approximation of Functions
In many applications, it is necessary to approximate a continuous function in terms of
functions from some special type of approximating set. Most commonly, we approxi-
mate by a polynomial of degree n or less. We can use Theorem 5.5.8 to obtain the best
least squares approximation.

EXAMPLE 8 Find the best least squares approximation to ex on the interval [0, 1] by a linear func-
tion.

Solution
Let S be the subspace of all linear functions in C[0, 1]. Although the functions 1 and x
span S, they are not orthogonal. We seek a function of the form x −a that is orthogonal
to 1.

〈1, x − a〉 =
∫ 1

0
(x − a) dx = 1

2 − a

Thus, a = 1
2 . Since ‖x − 1

2‖ = 1/
√

12, it follows that

u1(x) = 1 and u2(x) = √
12

(
x − 1

2

)
form an orthonormal basis for S.
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Let

c1 =
∫ 1

0
u1(x) ex dx = e − 1

c2 =
∫ 1

0
u2(x) ex dx = √

3 (3 − e)

The projection

p(x) = c1u1(x) + c2u2(x)

= (e − 1) · 1 + √
3(3 − e)

[√
12

(
x − 1

2

)]
= (4e − 10) + 6(3 − e)x

is the best linear least squares approximation to ex on [0, 1] (see Figure 5.5.4).

0.5

0.5 1.0

1.0

1.5

2.0

2.5 y = p(x)

y = e x

Figure 5.5.4.

Approximation by Trigonometric Polynomials

Trigonometric polynomials are used to approximate periodic functions. By a trigono-
metric polynomial of degree n, we mean a function of the form

tn(x) = a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

We have already seen that the collection of functions

1√
2
, cos x, cos 2x, . . . , cos nx
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forms an orthonormal set with respect to the inner product (2). We leave it to the reader
to verify that if the functions

sin x, sin 2x, . . . , sin nx

are added to the collection, it will still be an orthonormal set. Thus, we can use The-
orem 5.5.8 to find the best least squares approximation to a continuous 2π periodic
function f (x) by a trigonometric polynomial of degree n or less. Note that

〈 f,
1√
2
〉 1√

2
= 〈 f, 1〉1

2

so that if

a0 = 〈 f, 1〉 = 1

π

∫ π

−π

f (x) dx

and

ak = 〈 f, cos kx〉 = 1

π

∫ π

−π

f (x) cos kx dx

bk = 〈 f, sin kx〉 = 1

π

∫ π

−π

f (x) sin kx dx

for k = 1, 2, . . . , n, then these coefficients determine the best least squares approxima-
tion to f . The ak’s and the bk’s turn out to be the well-known Fourier coefficients that
occur in many applications involving trigonometric series approximations of functions.

Let us think of f (x) as representing the position at time x of an object moving
along a line, and let tn be the Fourier approximation of degree n to f . If we set

rk =
√

a2
k + b2

k and θk = tan−1

(
bk

ak

)
then

ak cos kx + bk sin kx = rk

(
ak

rk
cos kx + bk

rk
sin kx

)
= rk cos(kx − θk)

Thus, the motion f (x) is being represented as a sum of simple harmonic motions.
For signal-processing applications, it is useful to express the trigonometric ap-

proximation in complex form. To this end, we define complex Fourier coefficients ck

in terms of the real Fourier coefficients ak and bk :

ck = 1

2
(ak − ibk) = 1

2π

∫ π

−π

f (x)(cos kx − i sin kx) dx

= 1

2π

∫ π

−π

f (x)e−ikx dx (k ≥ 0)

The latter equality follows from the identity

eiθ = cos θ + i sin θ



5.5 Orthonormal Sets 253

We also define the coefficient c−k to be the complex conjugate of ck . Thus,

c−k = ck = 1

2
(ak + ibk) (k ≥ 0)

Alternatively, if we solve for ak and bk , then

ak = ck + c−k and bk = i(ck − c−k)

From these identities, it follows that

ckeikx + c−ke−ikx = (ck + c−k) cos kx + i(ck − c−k) sin kx

= ak cos kx + bk sin kx

and hence the trigonometric polynomial

tn(x) = a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

can be rewritten in complex form as

tn(x) =
n∑

k=−n

ckeikx

APPLICATION 1 Signal Processing

The Discrete Fourier Transform

The function f (x) pictured in Figure 5.5.5(a) corresponds to a noisy signal. Here, the
independent variable x represents time and the signal values are plotted as a function
of time. In this context, it is convenient to start with time 0. Thus, we will choose
[0, 2π ] rather than [−π, π ] as the interval for our inner product.

Let us approximate f (x) by a trigonometric polynomial:

tn(x) =
n∑

k=−n

ckeikx

As noted in the previous discussion, the trigonometric approximation allows us
to represent the function as a sum of simple harmonics. The kth harmonic can be
written as rk cos(kx − θk). It is said to have angular frequency k. A signal is smooth
if the coefficients ck approach 0 rapidly as k increases. If some of the coefficients
corresponding to larger frequencies are not small, the graph will appear to be noisy
as in Figure 5.5.5(a). We can filter the signal by setting these coefficients equal to 0.
Figure 5.5.5(b) shows the smooth function obtained by suppressing some of the higher
frequencies from the original signal.

In actual signal-processing applications, we do not have a mathematical formula
for the signal function f (x); rather, the signal is sampled over a sequence of times
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0 2 4 6 8 10
(b)  Filtered Signal

12 14 16 18 20
–6

–4

–2

0

2

4

0 2 4 6 8 10
(a)  Noisy Signal

12 14 16 18 20
–6

–4

–2

0

2

4

Figure 5.5.5.

x0, x1, . . . , xN , where x j = 2 jπ
N . The function f is represented by the N sample

values
y0 = f (x0), y1 = f (x1), . . . , yN−1 = f (xN−1)

[Note: yN = f (2π) = f (0) = y0.] In this case, it is not possible to compute the
Fourier coefficients as integrals. Instead of using

ck = 1

2π

∫ 2π

0
f (x)e−ikx dx

we use a numerical integration method, the trapezoid rule, to approximate the integral.
The approximation is given by

dk = 1

N

N−1∑
j=0

f (x j )e
−ikx j (5)

The dk coefficients are approximations to the Fourier coefficients. The larger the sam-
ple size N , the closer dk will be to ck .

If we set

ωN = e− 2π i
N = cos

2π

N
− i sin

2π

N
then equation (5) can be rewritten in the form

dk = 1

N

N−1∑
j=0

y jω
jk
N
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The finite sequence {d0, d1, . . . , dN−1} is said to be the discrete Fourier transform of
{y0, y1, . . . , yN−1}. The discrete Fourier transform can be determined by a single ma-
trix vector multiplication. For example, if N = 4, the coefficients are given by

d0 = 1

4
(y0 + y1 + y2 + y3)

d1 = 1

4
(y0 + ω4 y1 + ω2

4 y2 + ω3
4 y3)

d2 = 1

4
(y0 + ω2

4 y1 + ω4
4 y2 + ω6

4 y3)

d3 = 1

4
(y0 + ω3

4 y1 + ω6
4 y2 + ω9

4 y3)

If we set

z = 1

4
y = 1

4
(y0, y1, y2, y3)

T

then the vector d = (d0, d1, d2, d3)
T is determined by multiplying z by the matrix

F4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix F4 is called a Fourier matrix.

In the case of N sample values, y0, y1, . . . , yN−1, the coefficients are computed by
setting

z = 1

N
y and d = FN z

where y = (y0, y1, . . . , yN−1)
T and FN is the N × N matrix whose ( j, k) entry is given

by f j,k = ω
( j−1)(k−1)

N . The method of computing the discrete Fourier transform d by
multiplying FN times z will be referred to as the DFT algorithm. The DFT computation
requires a multiple of N 2 arithmetic operations (roughly 8N 2, since complex arithmetic
is used).

In signal-processing applications, N is generally very large and consequently the
DFT computation of the discrete Fourier transform can be prohibitively slow and costly
even on modern high-powered computers. A revolution in signal processing occurred
in 1965 with the introduction by James W. Cooley and John W. Tukey of a dramatically
more efficient method for computing the discrete Fourier transform. Actually, it turns
out that the 1965 Cooley–Tukey paper is a rediscovery of a method that was known to
Gauss in 1805.

The Fast Fourier Transform

The method of Cooley and Tukey, known as the fast Fourier transform or simply the
FFT, is an efficient algorithm for computing the discrete Fourier transform. It takes
advantage of the special structure of the Fourier matrices. We illustrate this method
in the case N = 4. To see the special structure, we rearrange the columns of F4
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so that its odd-numbered columns all come before the even-numbered columns. This
rearrangement is equivalent to postmultiplying F4 by the permutation matrix

P4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If we set w = PT

4 z, then
F4z = F4 P4 PT

4 z = F4 P4w

Partitioning F4 P4 into 2 × 2 blocks, we get

F4 P4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The (1,1) and (2,1) blocks are both equal to the Fourier matrix F2, and if we set

D2 =
⎧⎪⎩1 0

0 −i

⎫⎪⎭
then the (1,2) and (2,2) blocks are D2 F2 and −D2 F2, respectively. The computation of
the Fourier transform can now be carried out as a block multiplication:

d4 =
⎧⎪⎩ F2 D2 F2

F2 −D2 F2

⎫⎪⎭⎧⎪⎩w1

w2

⎫⎪⎭ =
⎧⎪⎩ F2w1 + D2 F2w2

F2w1 − D2 F2w2

⎫⎪⎭
The computation reduces to computing two Fourier transforms of length 2. If we set
q1 = F2w1 and q2 = D2(F2w2), then

d4 =
⎧⎪⎩q1 + q2

q1 − q2

⎫⎪⎭
The procedure we have just described will work in general whenever the number

of sample points is even. If, say, N = 2m, and we permute the columns of F2m so that
the odd columns are first, then the reordered Fourier matrix F2m P2m can be partitioned
into m × m blocks

F2m P2m =
⎧⎪⎩ Fm Dm Fm

Fm −Dm Fm

⎫⎪⎭
where Dm is a diagonal matrix whose ( j, j) entry is ω

j−1
2m . The discrete Fourier trans-

form can then be computed in terms of two transforms of length m. Furthermore, if m
is even, then each length m transform can be computed in terms of two transforms of
length m

2 , and so on.
If, initially, N is a power of 2, say, N = 2k , then we can apply this procedure re-

cursively through k levels of recursion. The amount of arithmetic required to compute
the FFT is proportional to Nk = N log2 N . In fact, the actual amount of arithmetic op-
erations required for the FFT is approximately 5N log2 N . How dramatic of a speedup
is this? If we consider, for example, the case where N = 220 = 1,048,576, then the
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DFT algorithm requires 8N 2 = 8 · 240 operations, that is, approximately 8.8 trillion
operations. On the other hand, the FFT algorithm requires only 100N = 100 · 220, or
approximately 100 million, operations. The ratio of these two operations counts is

r = 8N 2

5N log2 N
= 0.08 · 1,048,576 = 83,886

In this case, the FFT algorithm is approximately 84,000 times faster than the DFT
algorithm.

SECTION 5.5 EXERCISES
1. Which of the following sets of vectors form an or-

thonormal basis for R
2?

(a)
{
(1, 0)T , (0, 1)T

}
(b)

{(
3

5
,

4

5

)T

,

(
5

13
,

12

13

)T
}

(c)
{
(1, −1)T , (1, 1)T

}
(d)

⎧⎨
⎩
(√

3

2
,

1

2

)T

,

(
−1

2
,

√
3

2

)T
⎫⎬
⎭

2. Let

u1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

3
√

2

1
3
√

2

− 4
3
√

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , u2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
3

2
3

1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , u3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that {u1, u2, u3} is an orthonormal basis

for R
3.

(b) Let x = (1, 1, 1)T . Write x as a linear combi-
nation of u1, u2, and u3 using Theorem 5.5.2
and use Parseval’s formula to compute ‖x‖.

3. Let S be the subspace of R
3 spanned by the vectors

u2 and u3 of Exercise 2. Let x = (1, 2, 2)T . Find
the projection p of x onto S. Show that (p−x) ⊥ u2

and (p − x) ⊥ u3.

4. Let θ be a fixed real number and let

x1 =
⎧⎪⎩cos θ

sin θ

⎫⎪⎭ and x2 =
⎧⎪⎩ − sin θ

cos θ

⎫⎪⎭
(a) Show that {x1, x2} is an orthonormal basis for

R
2.

(b) Given a vector y in R
2, write it as a linear com-

bination c1x1 + c2x2.
(c) Verify that

c2
1 + c2

2 = ‖y‖2 = y2
1 + y2

2

5. Let u1 and u2 form an orthonormal basis for R
2 and

let u be a unit vector in R
2. If uT u1 = 1

2 , determine
the value of |uT u2|.

6. Let {u1, u2, u3} be an orthonormal basis for an in-
ner product space V and let

u = u1 + 2u2 + 2u3 and v = u1 + 7u3

Determine the value of each of the following:
(a) 〈u, v〉 (b) ‖u‖ and ‖v‖
(c) The angle θ between u and v

7. Let {u1, u2, u3} be an orthonormal basis for an in-
ner product space V . If x = c1u1 + c2u2 + c3u3 is
a vector with the properties ‖x‖ = 5, 〈u1, x〉 = 4,
and x ⊥ u2, then what are the possible values of c1,
c2, and c3?

8. The functions cos x and sin x form an orthonormal
set in C[−π, π]. If

f (x) = 3 cos x +2 sin x and g(x) = cos x −sin x

use Corollary 5.5.3 to determine the value of

〈 f, g〉 = 1

π

∫ π

−π

f (x)g(x) dx

9. The set

S =
{

1√
2
, cos x, cos 2x, cos 3x, cos 4x

}

is an orthonormal set of vectors in C[−π, π ] with
inner product defined by (2).
(a) Use trigonometric identities to write the func-

tion sin4 x as a linear combination of elements
of S.
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(b) Use part (a) and Theorem 5.5.2 to find the val-
ues of the following integrals:

(i)
∫ π

−π
sin4 x cos x dx

(ii)
∫ π

−π
sin4 x cos 2x dx

(iii)
∫ π

−π
sin4 x cos 3x dx

(iv)
∫ π

−π
sin4 x cos 4x dx

10. Write out the Fourier matrix F8. Show that F8 P8

can be partitioned into block form:⎧⎪⎩ F4 D4 F4

F4 −D4 F4

⎫⎪⎭
11. Prove that the transpose of an orthogonal matrix is

an orthogonal matrix.

12. If Q is an n × n orthogonal matrix and x and y are
nonzero vectors in R

n , then how does the angle be-
tween Qx and Qy compare with the angle between
x and y? Prove your answer.

13. Let Q be an n × n orthogonal matrix. Use mathe-
matical induction to prove each of the following:
(a) (Qm)−1 = (QT )m = (Qm)T for any positive

integer m.

(b) ‖Qmx‖ = ‖x‖ for any x ∈ R
n .

14. Let u be a unit vector in R
n and let H = I − 2uuT .

Show that H is both orthogonal and symmetric and
hence is its own inverse.

15. Let Q be an orthogonal matrix and let d = det(Q).
Show that |d| = 1.

16. Show that the product of two orthogonal matrices
is also an orthogonal matrix. Is the product of two
permutation matrices a permutation matrix? Ex-
plain.

17. How many n × n permutation matrices are there?

18. Show that if P is a symmetric permutation matrix,
then P2k = I and P2k+1 = P .

19. Show that if U is an n × n orthogonal matrix, then

u1uT
1 + u2uT

2 + · · · + unuT
n = I

20. Use mathematical induction to show that if an n×n
matrix Q is both upper triangular and orthogonal,
then q j = ±e j , j = 1, . . . , n.

21. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2

1
2 − 1

2

1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Show that the column vectors of A form an or-
thonormal set in R

4.
(b) Solve the least squares problem Ax = b for

each of the following choices of b:

(i) b = (4, 0, 0, 0)T

(ii) b = (1, 2, 3, 4)T

(iii) b = (1, 1, 2, 2)T

22. Let A be the matrix given in Exercise 21.
(a) Find the projection matrix P that projects vec-

tors in R
4 onto R(A).

(b) For each of your solutions x to Exercise 21(b),
compute Ax and compare it with Pb.

23. Let A be the matrix given in Exercise 21.
(a) Find an orthonormal basis for N (AT ).
(b) Determine the projection matrix Q that

projects vectors in R
4 onto N (AT ).

24. Let A be an m × n matrix, let P be the projection
matrix that projects vectors in R

m onto R(A), and
let Q be the projection matrix that projects vectors
in R

n onto R(AT ). Show that
(a) I − P is the projection matrix from R

m onto
N (AT ).

(b) I − Q is the projection matrix from R
n onto

N (A).

25. Let P be the projection matrix corresponding to a
subspace S of R

m . Show that
(a) P2 = P (b) PT = P

26. Let A be an m × n matrix whose column vectors
are mutually orthogonal, and let b ∈ R

m . Show
that if y is the least squares solution of the system
Ax = b, then

yi = bT ai

aT
i ai

i = 1, . . . , n

27. Let v be a vector in an inner product space V and
let p be the projection of v onto an n-dimensional
subspace S of V . Show that ‖p‖ ≤ ‖v‖. Under
what conditions does equality occur?

28. Let v be a vector in an inner product space V and
let p be the projection of v onto an n-dimensional
subspace S of V . Show that ‖p‖2 = 〈p, v〉.

29. Consider the vector space C[−1, 1] with inner
product

〈 f, g〉 =
∫ 1

−1
f (x)g(x) dx

and norm
‖ f ‖ = (〈 f, f 〉)1/2

(a) Show that the vectors 1 and x are orthogonal.
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(b) Compute ‖1‖ and ‖x‖.

(c) Find the best least squares approximation to
x1/3 on [−1, 1] by a linear function l(x) =
c11 + c2x .

(d) Sketch the graphs of x1/3 and l(x) on [−1, 1].
30. Consider the inner product space C[0, 1] with inner

product defined by

〈 f, g〉 =
∫ 1

0
f (x)g(x) dx

Let S be the subspace spanned by the vectors 1 and
2x − 1.
(a) Show that 1 and 2x − 1 are orthogonal.

(b) Determine ‖1‖ and ‖2x − 1‖.

(c) Find the best least squares approximation to√
x by a function from the subspace S.

31. Let

S ={1/
√

2, cos x, cos 2x, . . . , cos nx,

sin x, sin 2x, . . . , sin nx}
Show that S is an orthonormal set in C[−π, π ] with
inner product defined by (2).

32. Find the best least squares approximation to
f (x) = |x | on [−π, π] by a trigonometric poly-
nomial of degree less than or equal to 2.

33. Let {x1, x2, . . . , xk, xk+1, . . . , xn} be an orthonor-
mal basis for an inner product space V . Let S1 be
the subspace of V spanned by x1, . . . , xk , and let
S2 be the subspace spanned by xk+1, xk+2, . . . , xn .
Show that S1 ⊥ S2.

34. Let x be an element of the inner product space V in
Exercise 33, and let p1 and p2 be the projections of
x onto S1 and S2, respectively. Show that
(a) x = p1 + p2.

(b) if x ∈ S⊥
1 , then p1 = 0 and hence S⊥ = S2.

35. Let S be a subspace of an inner product space V .
Let {x1, . . . , xn} be an orthogonal basis for S and

let x ∈ V . Show that the best least squares approx-
imation to x by elements of S is given by

p =
n∑

i=1

〈x, xi 〉
〈xi , xi 〉xi

36. A (real or complex) scalar u is said to be an nth root
of unity if un = 1.
(a) Show that if u is an nth root of unity and u �= 1,

then

1 + u + +u2 + · · · + un−1 = 0

[Hint: 1−un = (1−u)(1+u+u2+· · ·+un−1)]

(b) Let ωn = e
2π i

n . Use Euler’s formula (eiθ =
cos θ + i sin θ ) to show that ωn is an nth root
of unity.

(c) Show that if j and k are positive integers and
if u = ω j−1

n and z = ω−(k−1)
n , then u, z, and uz

are all nth roots of unity.

37. Let ωn , u and z be defined as in Exercise 36. If Fn

is the n × n Fourier matrix, then its ( j, s) entry is

f js = ω( j−1)(s−1)
n = us−1

Let Gn be the matrix defined by

gsk = 1

fsk
= ω−(s−1)(k−1) = zs−1,

1 ≤ s ≤ n,
1 ≤ k ≤ n

Show that the ( j, k) entry of FnGn is

1 + uz + (uz)2 + · · · + (uz)n−1

38. Use the results from Exercises 36 and 37 to show
that Fn is nonsingular and

F−1
n = 1

n
Gn = 1

n
Fn

where Fn is the matrix whose (i, j) entry is the
complex conjugate of fi j .

5.6 The Gram–Schmidt Orthogonalization Process

In this section, we learn a process for constructing an orthonormal basis for an n-
dimensional inner product space V . The method involves using projections to trans-
form an ordinary basis {x1, x2, . . . , xn} into an orthonormal basis {u1, u2, . . . , un}.
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We will construct the ui ’s so that

Span(u1, . . . , uk) = Span(x1, . . . , xk)

for k = 1, . . . , n. To begin the process, let

u1 =
(

1

‖x1‖
)

x1 (1)

Span(u1) = Span(x1), since u1 is a unit vector in the direction of x1. Let p1 denote the
projection of x2 onto Span(x1) = Span(u1); that is,

p1 = 〈x2, u1〉u1

By Theorem 5.5.7,
(x2 − p1) ⊥ u1

Note that x2 − p1 �= 0, since

x2 − p1 = −〈x2, u1〉
‖x1‖ x1 + x2 (2)

and x1 and x2 are linearly independent. If we set

u2 = 1

‖x2 − p1‖ (x2 − p1) (3)

then u2 is a unit vector orthogonal to u1. It follows from (1), (2), and (3) that
Span(u1, u2) ⊂ Span(x1, x2). Since u1 and u2 are linearly independent, it also fol-
lows that {u1, u2} is an orthonormal basis for Span(x1, x2), and hence

Span(x1, x2) = Span(u1, u2)

To construct u3, continue in the same manner. Let p2 be the projection of x3 onto
Span(x1, x2) = Span(u1, u2),

p2 = 〈x3, u1〉u1 + 〈x3, u2〉u2

and set

u3 = 1

‖x3 − p2‖ (x3 − p2)

and so on (see Figure 5.6.1).

x3 – p2

x3

p2

Span (x1, x2)

Figure 5.6.1.
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Theorem 5.6.1 The Gram–Schmidt Process
Let {x1, x2, . . . , xn} be a basis for the inner product space V . Let

u1 =
(

1

‖x1‖
)

x1

and define u2, . . . , un recursively by

uk+1 = 1

‖xk+1 − pk‖ (xk+1 − pk) for k = 1, . . . , n − 1

where
pk = 〈xk+1, u1〉u1 + 〈xk+1, u2〉u2 + · · · + 〈xk+1, uk〉uk

is the projection of xk+1 onto Span(u1, u2, . . . , uk). Then the set

{u1, u2, . . . , un}
is an orthonormal basis for V .

Proof We will argue inductively. Clearly, Span(u1) = Span(x1). Suppose that u1, u2, . . . , uk

have been constructed so that {u1, u2, . . . , uk} is an orthonormal set and

Span(u1, u2, . . . , uk) = Span(x1, x2, . . . , xk)

Since pk is a linear combination of u1, . . . , uk , it follows that pk ∈ Span(x1, . . . , xk)

and xk+1 − pk ∈ Span(x1, . . . , xk+1).

xk+1 − pk = xk+1 −
k∑

i=1

ci xi

Since x1, . . . , xk+1 are linearly independent, it follows that xk+1 − pk is nonzero
and, by Theorem 5.5.7, it is orthogonal to each ui , 1 ≤ i ≤ k. Thus, {u1, u2, . . . , uk+1}
is an orthonormal set of vectors in Span(x1, . . . , xk+1). Since u1, . . . , uk+1 are linearly
independent, they form a basis for Span(x1, . . . , xk+1) and, consequently,

Span(u1, . . . , uk+1) = Span(x1, . . . , xk+1)

It follows by mathematical induction that {u1, u2, . . . , un} is an orthonormal basis for
V .

EXAMPLE 1 Find an orthonormal basis for P3 if the inner product on P3 is defined by

〈p, q〉 =
3∑

i=1

p(xi )q(xi )

where x1 = −1, x2 = 0, and x3 = 1.
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Solution
Starting with the basis {1, x, x2}, we can use the Gram–Schmidt process to generate an
orthonormal basis.

‖1‖2 = 〈1, 1〉 = 3

so

u1 =
(

1

‖1‖
)

1 = 1√
3

Set

p1 = 〈x,
1√
3
〉 1√

3
=
(

−1 · 1√
3

+ 0 · 1√
3

+ 1 · 1√
3

)
1√
3

= 0

Therefore,

x − p1 = x and ‖x − p1‖2 = 〈x, x〉 = 2

Hence,

u2 = 1√
2

x

Finally,

p2 = 〈x2,
1√
3
〉 1√

3
+ 〈x2,

1√
2

x〉 1√
2

x = 2

3

‖x2 − p2‖2 = 〈x2 − 2

3
, x2 − 2

3
〉 = 2

3

and hence

u3 =
√

6

2

(
x2 − 2

3

)

Orthogonal polynomials will be studied in more detail in Section 7.

EXAMPLE 2 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 4
1 4 −2
1 4 2
1 −1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Find an orthonormal basis for the column space of A.

Solution
The column vectors of A are linearly independent and hence form a basis for a three-
dimensional subspace of R

4. The Gram–Schmidt process can be used to construct an
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orthonormal basis as follows: Set

r11 = ‖a1‖ = 2

q1 = 1

r11
a1 =

(
1

2
,

1

2
,

1

2
,

1

2

)T

r12 = 〈a2, q1〉 = qT
1 a2 = 3

p1 = r12q1 = 3q1

a2 − p1 =
(

−5

2
,

5

2
,

5

2
, −5

2

)T

r22 = ‖a2 − p1‖ = 5

q2 = 1

r22
(a2 − p1) =

(
−1

2
,

1

2
,

1

2
, −1

2

)T

r13 = 〈a3, q1〉 = qT
1 a3 = 2, r23 = 〈a3, q2〉 = qT

2 a3 = −2

p2 = r13q1 + r23q2 = (2, 0, 0, 2)T

a3 − p2 = (2, −2, 2, −2)T

r33 = ‖a3 − p2‖ = 4

q3 = 1

r33
(a3 − p2) =

(
1

2
, −1

2
,

1

2
, −1

2

)T

The vectors q1, q2, q3 form an orthonormal basis for R(A).

We can obtain a useful factorization of the matrix A if we keep track of all the
inner products and norms computed in the Gram–Schmidt process. For the matrix in
Example 2, if the ri j ’s are used to form a matrix

R =
⎧⎪⎪⎪⎪⎪⎩

r11 r12 r13

0 r22 r23

0 0 r33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

2 3 2
0 5 −2
0 0 4

⎫⎪⎪⎪⎪⎪⎭
and we set

Q = (q1, q2, q3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2
1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2 − 1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then it is easily verified that Q R = A. This result is proved in the following theorem:

Theorem 5.6.2 Gram–Schmidt QR Factorization
If A is an m × n matrix of rank n, then A can be factored into a product Q R, where
Q is an m × n matrix with orthonormal column vectors and R is an upper triangular
n × n matrix whose diagonal entries are all positive. [Note: R must be nonsingular,
since det(R) > 0.]
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Proof Let p1, . . . , pn−1 be the projection vectors defined in Theorem 5.6.1, and let
{q1, q2, . . . , qn} be the orthonormal basis of R(A) derived from the Gram–Schmidt
process. Define

r11 = ‖a1‖
rkk = ‖ak − pk−1‖ for k = 2, . . . , n

and
rik = qT

i ak for i = 1, . . . , k − 1 and k = 2, . . . , n

By the Gram–Schmidt process,

r11q1 = a1 (4)

rkkqk = ak − r1kq1 − r2kq2 − · · · − rk−1,kqk−1 for k = 2, . . . , n

System (4) may be rewritten in the form

a1 = r11q1

a2 = r12q1 + r22q2

...

an = r1nq1 + · · · + rnnqn

If we set
Q = (q1, q2, . . . , qn)

and define R to be the upper triangular matrix

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
r11 r12 · · · r1n

0 r22 · · · r2n
...

0 0 · · · rnn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the j th column of the product Q R will be

Qr j = r1 j q1 + r2 j q2 + · · · + r j j q j = a j

for j = 1, . . . , n. Therefore,

Q R = (a1, a2, . . . , an) = A

EXAMPLE 3 Compute the Gram–Schmidt Q R factorization of the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 −1
2 0 1
2 −4 2
4 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Solution

Step 1. Set

r11 = ‖a1‖ = 5

q1 = 1

r11
a1 =

(
1

5
,

2

5
,

2

5
,

4

5

)T

Step 2. Set

r12 = qT
1 a2 = −2

p1 = r12q1 = −2q1

a2 − p1 =
(

−8

5
,

4

5
, −16

5
,

8

5

)T

r22 = ‖a2 − p1‖ = 4

q2 = 1

r22
(a2 − p1) =

(
−2

5
,

1

5
, −4

5
,

2

5

)T

Step 3. Set

r13 = qT
1 a3 = 1, r23 = qT

2 a3 = −1

p2 = r13q1 + r23q2 = q1 − q2 =
(

3

5
,

1

5
,

6

5
,

2

5

)T

a3 − p2 =
(

−8

5
,

4

5
,

4

5
, −2

5

)T

r33 = ‖a3 − p2‖ = 2

q3 = 1

r33
(a3 − p2) =

(
−4

5
,

2

5
,

2

5
, −1

5

)T

At each step, we have determined a column of Q and a column of R. The factor-
ization is given by

A = Q R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5 − 2

5 − 4
5

2
5

1
5

2
5

2
5 − 4

5
2
5

4
5

2
5 − 1

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5 −2 1
0 4 −1
0 0 2

⎫⎪⎪⎪⎪⎪⎭
We saw in Section 5 that if the columns of an m ×n matrix A form an orthonormal

set, then the least squares solution of Ax = b is simply x̂ = AT b. If A has rank n, but
its column vectors do not form an orthonormal set in R

m , then the Q R factorization
can be used to solve the least squares problem.

Theorem 5.6.3 If A is an m × n matrix of rank n, then the least squares solution of Ax = b is given by
x̂ = R−1 QT b, where Q and R are the matrices obtained from the factorization given
in Theorem 5.6.2. The solution x̂ may be obtained by using back substitution to solve
Rx = QT b.
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Proof Let x̂ be the least squares solution of Ax = b guaranteed by Theorem 5.3.2. Thus, x̂ is
the solution of the normal equations

AT Ax = AT b

If A is factored into a product Q R, these equations become

(Q R)T Q Rx = (Q R)T b

or

RT (QT Q)Rx = RT QT b

Since Q has orthonormal columns, it follows that QT Q = I , and hence

RT Rx = RT QT b

Since RT is invertible, this equation simplifies to

Rx = QT b or x = R−1 QT b

EXAMPLE 4 Find the least squares solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 −1
2 0 1
2 −4 2
4 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solution
The coefficient matrix of this system was factored in Example 3. Using that factoriza-
tion, we have

QT b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
5

2
5

2
5

4
5

− 2
5

1
5 − 4

5
2
5

− 4
5

2
5

2
5 − 1

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

1

1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

−1
−1

2

⎫⎪⎪⎪⎪⎪⎭

The system Rx = QT b is easily solved by back substitution:

⎧⎪⎪⎪⎪⎪⎩
5 −2 1 −1
0 4 −1 −1
0 0 2 2

⎫⎪⎪⎪⎪⎪⎭
The solution is x = (− 2

5 , 0, 1
)T

.
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The Modified Gram–Schmidt Process

In Chapter 7, we will consider computer methods for solving least squares problems.
The Q R method of Example 4 does not in general produce accurate results when car-
ried out with finite-precision arithmetic. In practice, there may be a loss of orthogonal-
ity due to roundoff error in computing q1, q2, . . . , qn . We can achieve better numerical
accuracy by using a modified version of the Gram–Schmidt method. In the modified
version, the vector q1 is constructed as before:

q1 = 1

‖a1‖a1

However, the remaining vectors a2, . . . , an are then modified so as to be orthogonal to
q1. This can be done by subtracting from each vector ak the projection of ak onto q1:

a(1)
k = ak − (qT

1 ak)q1 k = 2, . . . , n

At the second step, we take

q2 = 1

‖a(1)

2 ‖a(1)

2

The vector q2 is already orthogonal to q1. We then modify the remaining vectors to
make them orthogonal to q2:

a(2)
k = a(1)

k − (qT
2 a(1)

k )q2 k = 3, . . . , n

In a similar manner, q3, q4, . . . , qn are successively determined. At the last step, we
need only set

qn = 1

‖a(n−1)
n ‖a(n−1)

n

to achieve an orthonormal set {q1, . . . , qn}. The following algorithm summarizes the
process:

Algorithm 5.6.4 Modified Gram–Schmidt Process

For k = 1, 2, . . . , n set
rkk = ‖ak‖
qk = 1

rkk
ak

For j = k + 1, k + 2, . . . , n, set

rk j = qT
k a j

a j = a j − rk j qk

→ End for loop
→ End for loop

If the modified Gram–Schmidt process is applied to the column vectors of an m×n
matrix A having rank n, then, as before, we can obtain a Q R factorization of A. This
factorization may then be used computationally to determine the least squares solution
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of Ax = b, however, in this case one should not compute QT b directly. Instead, one
should transform b by using the modified Gram–Schmidt process and modifying b as
if it were an extra and final column of A.

SECTION 5.6 EXERCISES
1. For each of the following, use the Gram–Schmidt

process to find an orthonormal basis for R(A):

(a) A =
⎧⎪⎩−1 3

1 5

⎫⎪⎭ (b) A =
⎧⎪⎩2 5

1 10

⎫⎪⎭
2. Factor each of the matrices in Exercise 1 into a

product Q R, where Q is an orthogonal matrix and
R is upper triangular.

3. Given the basis {(1, 2, −2)T , (4, 3, 2)T , (1, 2, 1)T }
for R

3, use the Gram–Schmidt process to obtain an
orthonormal basis.

4. Consider the vector space C[−1, 1] with inner
product defined by

〈 f, g〉 =
∫ 1

−1
f (x)g(x) dx

Find an orthonormal basis for the subspace spanned
by 1, x , and x2.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1
1 1
2 1

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

12
6

18

⎫⎪⎪⎪⎪⎪⎭
(a) Use the Gram–Schmidt process to find an or-

thonormal basis for the column space of A.
(b) Factor A into a product Q R, where Q has an

orthonormal set of column vectors and R is up-
per triangular.

(c) Solve the least squares problem Ax = b.

6. Repeat Exercise 5, using

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1
4 2
0 2

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

0
20
10

⎫⎪⎪⎪⎪⎪⎭
7. The vectors

x1 = 1

2
(1, 1, 1, −1)T and x2 = 1

6
(1, 1, 3, 5)T

form an orthonormal set in R
4. Extend this set to an

orthonormal basis for R
4 by finding an orthonormal

basis for the null space of⎧⎪⎩1 1 1 −1
1 1 3 5

⎫⎪⎭

[Hint: First find a basis for the null space and then
use the Gram–Schmidt process.]

8. Use the Gram–Schmidt process to find an or-
thonormal basis for the subspace of R

4 spanned
by x1 = (4, 2, 2, 1)T , x2 = (2, 0, 0, 2)T , x3 =
(1, 1, −1, 1)T .

9. Repeat Exercise 8, using the modified Gram–
Schmidt process. Compare your answers.

10. Let A be an m × 2 matrix. Show that if both the
classical Gram–Schmidt process and the modified
Gram–Schmidt process are applied to the column
vectors of A, then both algorithms will produce the
exact same Q R factorization, even when the com-
putations are carried out in finite-precision arith-
metic (i.e., show that both algorithms will perform
the exact same arithmetic computations).

11. Let A be an m × 3 matrix. Let Q R be the Q R
factorization obtained when the classical Gram–
Schmidt process is applied to the column vectors of
A, and let Q̃ R̃ be the factorization obtained when
the modified Gram–Schmidt process is used. Show
that if all computations were carried out using exact
arithmetic, then we would have

Q̃ = Q and R̃ = R

and show that, when the computations are done in
finite-precision arithmetic, r̃23 will not necessarily
be equal to r23 and consequently r̃33 and q̃3 will not
necessarily be the same as r33 and q3.

12. What will happen if the Gram–Schmidt process is
applied to a set of vectors {v1, v2, v3}, where v1 and
v2 are linearly independent, but v3 ∈ Span(v1, v2).
Will the process fail? If so, how? Explain.

13. Let A be an m × n matrix of rank n and let b ∈ R
m .

Show that if Q and R are the matrices derived from
applying the Gram–Schmidt process to the column
vectors of A and

p = c1q1 + c2q2 + · · · + cnqn

is the projection of b onto R(A), then:
(a) c = QT b (b) p = Q QT b
(c) Q QT = A(ATA)−1 AT
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14. Let U be an m-dimensional subspace of R
n and

let V be a k-dimensional subspace of U , where
0 < k < m.
(a) Show that any orthonormal basis

{v1, v2, . . . , vk}
for V can be expanded to form an orthonormal
basis {v1, v2, . . . , vk , vk+1, . . . , vm} for U .

(b) Show that if W = Span(vk+1, vk+2, . . . , vm),
then U = V ⊕ W .

15. Dimension Theorem Let U and V be subspaces of
R

n . In the case that U ∩ V = {0}, we have the
following dimension relation

dim (U + V ) = dim U + dim V

(See Exercise 18 in Section 4 of Chapter 3.) Make
use of the result from Exercise 14 to prove the more
general theorem

dim (U + V ) = dim U + dim V − dim(U ∩ V )

5.7 Orthogonal Polynomials

We have already seen how polynomials can be used for data fitting and for approxi-
mating continuous functions. Since both of these problems are least squares problems,
they can be simplified by selecting an orthogonal basis for the class of approximating
polynomials. This leads us to the concept of orthogonal polynomials.

In this section, we study families of orthogonal polynomials associated with var-
ious inner products on C[a, b]. We will see that the polynomials in each of these
classes satisfy a three-term recursion relation. This recursion relation is particularly
useful in computer applications. Certain families of orthogonal polynomials have im-
portant applications in many areas of mathematics. We will refer to these polynomials
as classical polynomials and examine them in more detail. In particular, the classical
polynomials are solutions of certain classes of second-order linear differential equa-
tions that arise in the solution of many partial differential equations from mathematical
physics.

Orthogonal Sequences

Since the proof of Theorem 5.6.1 was by induction, the Gram–Schmidt process is
valid for a denumerable set. Thus, if x1, x2, . . . is a sequence of vectors in an inner
product space V and x1, x2, . . . , xn are linearly independent for each n, then the Gram–
Schmidt process may be used to form a sequence u1, u2, . . . , where {u1, u2, . . . } is an
orthonormal set and

Span(x1, x2, . . . , xn) = Span(u1, u2, . . . , un)

for each n. In particular, from the sequence 1, x, x2, . . . it is possible to construct an
orthonormal sequence p0(x), p1(x), . . . .

Let P be the vector space of all polynomials and define the inner product 〈, 〉 on P
by

〈p, q〉 =
∫ b

a
p(x)q(x)w(x) dx (1)

where w(x) is a positive continuous function. The interval can be taken as either open
or closed and may be finite or infinite. If, however,∫ b

a
p(x)w(x) dx

is improper, we require that it converge for every p ∈ P .
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Definition Let p0(x), p1(x), . . . be a sequence of polynomials with deg pi (x) = i for each i .
If 〈pi (x), p j (x)〉 = 0 whenever i �= j , then {pn(x)} is said to be a sequence of
orthogonal polynomials. If 〈pi , p j 〉 = δi j , then {pn(x)} is said to be a sequence
of orthonormal polynomials.

Theorem 5.7.1 If p0, p1, . . . is a sequence of orthogonal polynomials, then

I. p0, . . . , pn−1 form a basis for Pn .
II. pn ∈ P⊥

n (i.e., pn is orthogonal to every polynomial of degree less than n).

Proof It follows from Theorem 5.5.1 that p0, p1, . . . , pn−1 are linearly independent in Pn .
Since dim Pn = n, these n vectors must form a basis for Pn . Let p(x) be any polyno-
mial of degree less than n. Then

p(x) =
n−1∑
i=0

ci pi (x)

and hence

〈pn, p〉 = 〈pn,

n−1∑
i=0

ci pi 〉 =
n−1∑
i=0

ci〈pn, pi 〉 = 0

Therefore, pn ∈ P⊥
n .

If {p0, p1, . . . , pn−1} is an orthogonal set in Pn and

ui =
(

1

‖pi‖
)

pi for i = 0, . . . , n − 1

then {u0, . . . , un−1} is an orthonormal basis for Pn . Hence, if p ∈ Pn , then

p =
n−1∑
i=0

〈p, ui 〉ui

=
n−1∑
i=0

〈p,

(
1

‖pi‖
)

pi 〉
(

1

‖pi‖
)

pi

=
n−1∑
i=0

〈p, pi 〉
〈pi , pi 〉 pi

Similarly, if f ∈ C[a, b], then the best least squares approximation to f by the ele-
ments of Pn is given by

p =
n−1∑
i=0

〈 f, pi 〉
〈pi , pi 〉 pi

where p0, p1, . . . , pn−1 are orthogonal polynomials.
Another nice feature of sequences of orthogonal polynomials is that they satisfy a

three-term recursion relation.
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Theorem 5.7.2 Let p0, p1, . . . be a sequence of orthogonal polynomials. Let ai denote the lead coeffi-
cient of pi for each i , and define p−1(x) to be the zero polynomial. Then

αn+1 pn+1(x) = (x − βn+1)pn(x) − αnγn pn−1(x) (n ≥ 0)

where α0 = γ0 = 1 and

αn = an−1

an
, βn = 〈pn−1, xpn−1〉

〈pn−1, pn−1〉 , γn = 〈pn, pn〉
〈pn−1, pn−1〉 (n ≥ 1)

Proof Since p0, p1, . . . , pn+1 form a basis for Pn+2, we can write

xpn(x) =
n+1∑
k=0

cnk pk(x) (2)

where

cnk = 〈xpn, pk〉
〈pk, pk〉 (3)

For any inner product defined by (1),

〈x f, g〉 = 〈 f, xg〉
In particular,

〈xpn, pk〉 = 〈pn, xpk〉
It follows from Theorem 5.7.1 that if k < n − 1, then

cnk = 〈xpn, pk〉
〈pk, pk〉 = 〈pn, xpk〉

〈pk, pk〉 = 0

Therefore, (2) simplifies to

xpn(x) = cn,n−1 pn−1(x) + cn,n pn(x) + cn,n+1 pn+1(x)

This equation can be rewritten in the form

cn,n+1 pn+1(x) = (x − cn,n)pn(x) − cn,n−1 pn−1(x) (4)

Comparing the lead coefficients of the polynomials on each side of (4), we see that

cn,n+1an+1 = an

or
cn,n+1 = an

an+1
= αn+1 (5)

It follows from (4) that

cn,n+1〈pn, pn+1〉 = 〈pn, (x − cn,n)pn〉 − cn,n−1〈pn, pn−1〉
0 = 〈pn, xpn〉 − cnn〈pn, pn〉
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Thus,

cnn = 〈pn, xpn〉
〈pn, pn〉 = βn+1

It follows from (3) that

〈pn−1, pn−1〉cn,n−1 = 〈xpn, pn−1〉
= 〈pn, xpn−1〉
= 〈pn, pn〉cn−1,n

and hence, by (5), we have

cn,n−1 = 〈pn, pn〉
〈pn−1, pn−1〉αn = γnαn

In generating a sequence of orthogonal polynomials by the recursion relation in
Theorem 5.7.2, we are free to choose any nonzero lead coefficient an+1 that we want
at each step. This is reasonable, since any nonzero multiple of a particular pn+1 will
also be orthogonal to p0, . . . , pn . If we were to choose our ai ’s to be 1, for example,
then the recursion relation would simplify to

pn+1(x) = (x − βn+1)pn(x) − γn pn−1(x)

Classical Orthogonal Polynomials

Let us now look at some examples. Because of their importance, we will consider the
classical polynomials, beginning with the simplest: the Legendre polynomials.

Legendre Polynomials

The Legendre polynomials are orthogonal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Let Pn(x) denote the Legendre polynomial of degree n. If we choose the lead coef-
ficients so that Pn(1) = 1 for each n, then the recursion formula for the Legendre
polynomials is

(n + 1)Pn+1(x) = (2n + 1)x Pn(x) − n Pn−1(x)

By the use of this formula, the sequence of Legendre polynomials is easily generated.
The first five polynomials of the sequence are

P0(x) = 1

P1(x) = x

P2(x) = 1
2 (3x2 − 1)

P3(x) = 1
2 (5x3 − 3x)

P4(x) = 1
8 (35x4 − 30x2 + 3)
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Chebyshev Polynomials

The Chebyshev polynomials are orthogonal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x2)−1/2 dx

It is customary to normalize the lead coefficients so that a0 = 1 and ak = 2k−1 for k =
1, 2, . . . . The Chebyshev polynomials are denoted by Tn(x) and have the interesting
property that

Tn(cos θ) = cos nθ

This property, together with the trigonometric identity

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ

can be used to derive the recursion relations

T1(x) = xT0(x)

Tn+1(x) = 2xTn(x) − Tn−1(x) for n ≥ 1

Jacobi Polynomials

The Legendre and Chebyshev polynomials are both special cases of the Jacobi polyno-
mials. The Jacobi polynomials P (λ,μ)

n are orthogonal with respect to the inner product,

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x)λ(1 + x)μ dx

where λ, μ > −1.

Hermite Polynomials

The Hermite polynomials are defined on the interval (−∞, ∞). They are orthogonal
with respect to the inner product

〈p, q〉 =
∫ ∞

−∞
p(x)q(x)e−x2

dx

The recursion relation for Hermite polynomials is given by

Hn+1(x) = 2x Hn(x) − 2nHn−1(x)

Laguerre Polynomials

The Laguerre polynomials are defined on the interval (0, ∞) and are orthogonal with
respect to the inner product

〈p, q〉 =
∫ ∞

0
p(x)q(x)xλe−x dx

where λ > −1. The recursion relation for the Laguerre polynomials is given by

(n + 1)L(λ)

n+1(x) = (2n + λ + 1 − x)L(λ)
n (x) − (n + λ)L(λ)

n−1(x)
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The Chebyshev, Hermite, and Laguerre polynomials are compared in Table 1.

Table 1

Chebyshev Hermite Laguerre (λ = 0)

Tn+1 = 2xTn − Tn−1, n ≥ 1

T0 = 1

T1 = x

T2 = 2x2 − 1

T3 = 4x3 − 3x

Hn+1 = 2x Hn − 2nHn−1

H0 = 1

H1 = 2x

H2 = 4x2 − 2

H3 = 8x3 − 12x

(n + 1)L(0)

n+1 = (2n + 1 − x)L(0)
n − nL(0)

n−1

L(0)

0 = 1

L(0)

1 = 1 − x

L(0)

2 = 1
2 x2 − x + 2

L(0)

3 = 1
6 x3 + 9x2 − 18x + 6

APPLICATION 1 Numerical Integration

One important application of orthogonal polynomials occurs in numerical integration.
To approximate ∫ b

a
f (x)w(x) dx (6)

we first approximate f (x) by an interpolating polynomial. Using Lagrange’s interpo-
lation formula,

P(x) =
n∑

i=1

f (xi )Li (x)

where the Lagrange functions Li are defined by

Li (x) =

n∏
j=1
j �=i

(x − x j )

n∏
j=1
j �=i

(xi − x j )

we can determine a polynomial P(x) that agrees with f (x) at n points x1, . . . , xn in
[a, b]. The integral (6) is then approximated by∫ b

a
P(x)w(x) dx =

n∑
i=1

Ai f (xi ) (7)

where

Ai =
∫ b

a
Li (x)w(x) dx i = 1, . . . , n

It can be shown that (7) will give the exact value of the integral whenever f (x) is a
polynomial of degree less than n. If the points x1, . . . , xn are chosen properly, for-
mula (7) will be exact for higher degree polynomials. Indeed, it can be shown that if
p0, p1, p2, . . . is a sequence of orthogonal polynomials with respect to the inner prod-
uct (1) and x1, . . . , xn are the zeros of pn(x), then formula (7) will be exact for all
polynomials of degree less than 2n. The following theorem guarantees that the roots
of pn are all real and lie in the open interval (a, b):
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Theorem 5.7.3 If p0, p1, p2, . . . is a sequence of orthogonal polynomials with respect to the inner
product (1), then the zeros of pn(x) are all real and distinct and lie in the interval
(a, b).

Proof Let x1, . . . , xm be the zeros of pn(x) that lie in (a, b) and for which pn(x) changes
sign. Then pn(x) must have a factor of (x − xi )

ki , where ki is odd, for i = 1, . . . , m.
We may write

pn(x) = (x − x1)
k1(x − x2)

k2 · · · (x − xm)km q(x)

where q(x) does not change sign on (a, b) and q(xi ) �= 0 for i = 1, . . . , m. Clearly,
m ≤ n. We will show that m = n. Let

r(x) = (x − x1)(x − x2) · · · (x − xm)

The product

pn(x)r(x) = (x − x1)
k1+1(x − x2)

k2+1 · · · (x − xm)km+1q(x)

will involve only even powers of (x − xi ) for each i and hence will not change sign on
(a, b). Therefore,

〈pn, r〉 =
∫ b

a
pn(x)r(x)w(x) dx �= 0

Since pn is orthogonal to all polynomials of degree less than n, it follows that
deg(r(x)) = m ≥ n.

Numerical integration formulas of the form (7), where the xi ’s are roots of orthog-
onal polynomials, are called Gaussian quadrature formulas. The proof of exactness
for polynomials of degree less than 2n can be found in most undergraduate numerical
analysis textbooks.

Actually, it is not necessary to perform n integrations to calculate the quadrature
coefficients A1, . . . , An . They can be determined by solving an n × n linear system.
Exercise 16 illustrates how this is done when the roots of the Legendre polynomial Pn

are used in a quadrature rule for approximating
∫ 1
−1 f (x) dx .

SECTION 5.7 EXERCISES
1. Use the recursion formulas to calculate (a) T4, T5

and (b) H4, H5.

2. Let p0(x), p1(x), and p2(x) be orthogonal with re-
spect to the inner product

〈p(x), q(x)〉 =
∫ 1

−1

p(x)q(x)

1 + x2
dx

Use Theorem 5.7.2 to calculate p1(x) and p2(x) if
all polynomials have lead coefficient 1.

3. Show that the Chebyshev polynomials have the fol-
lowing properties:
(a) 2Tm(x)Tn(x) = Tm+n(x)+Tm−n(x), for m > n
(b) Tm(Tn(x)) = Tmn(x)

4. Find the best quadratic least squares approximation
to ex on [−1, 1] with respect to the inner product

〈 f, g〉 =
∫ 1

−1
f (x)g(x) dx
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5. Let p0, p1, . . . be a sequence of orthogonal polyno-
mials and let an denote the lead coefficient of pn .
Prove that

‖pn‖2 = an〈xn, pn〉
6. Let Tn(x) denote the Chebyshev polynomial of de-

gree n, and define

Un−1(x) = 1

n
T ′

n(x)

for n = 1, 2, . . . .
(a) Compute U0(x), U1(x), and U2(x).
(b) Show that if x = cos θ , then

Un−1(x) = sin nθ

sin θ

7. Let Un−1(x) be defined as in Exercise 6 for n ≥ 1,
and define U−1(x) = 0. Show that
(a) Tn(x) = Un(x) − xUn−1(x), for n ≥ 0
(b) Un(x) = 2xUn−1(x) − Un−2(x), for n ≥ 1

8. Show that the Ui ’s defined in Exercise 6 are orthog-
onal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x2)1/2 dx

The Ui ’s are called Chebyshev polynomials of the
second kind.

9. Verify that the Legendre polynomial Pn(x) satisfies
the second-order equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

when n = 0, 1, 2.

10. Prove each of the following:
(a) H ′

n(x) = 2nHn−1(x), n = 0, 1, . . .

(b) H ′′
n (x) − 2x H ′

n(x) + 2nHn(x) = 0,
n = 0, 1, . . .

11. Given a function f (x) that passes through the
points (1, 2), (2, −1), and (3, 4), use the Lagrange
interpolating formula to construct a second-degree
polynomial that interpolates f at the given points.

12. Show that if f (x) is a polynomial of degree less
than n, then f (x) must equal the interpolating poly-
nomial P(x) in (7) and hence the sum in (7) gives
the exact value for

∫ b
a f (x)w(x) dx .

13. Use the zeros of the Legendre polynomial P2(x) to
obtain a two-point quadrature formula∫ 1

−1
f (x) dx ≈ A1 f (x1) + A2 f (x2)

14. (a) For what degree polynomials will the quadra-
ture formula in Exercise 13 be exact?

(b) Use the formula from Exercise 13 to approxi-
mate∫ 1

−1
(x3 + 3x2 + 1) dx and

∫ 1

−1

1

1 + x2
dx

How do the approximations compare with the
actual values?

15. Let x1, x2, . . . , xn be distinct points in the interval
[−1, 1] and let

Ai =
∫ 1

−1
Li (x)dx, i = 1, . . . , n

where the Li ’s are the Lagrange functions for the
points x1, x2, . . . , xn .
(a) Explain why the quadrature formula∫ 1

−1
f (x)dx = A1 f (x1) + · · · + An f (xn)

will yield the exact value of the integral when-
ever f (x) is a polynomial of degree less than n.

(b) Apply the quadrature formula to a polynomial
of degree 0 and show that

A1 + A2 + · · · + An = 2

16. Let x1, x2, . . . , xn be the roots of the Legendre poly-
nomial Pn . If the Ai ’s are defined as in Exercise 15,
then the quadrature formula∫ 1

−1
f (x)dx = A1 f (x1)+ A2 f (x2)+· · ·+ An f (xn)

will be exact for all polynomials of degree less than
2n.
(a) Show that if 1 ≤ j < 2n, then

Pj (x1)A1 + · · · + Pj (xn)An = 〈1, Pj 〉 = 0

(b) Use the results from part (a) and from Exer-
cise 15 to set up a nonhomogeneous n × n lin-
ear system for determining the quadrature co-
efficients A1, A2, . . . , An .

17. Let Q0(x), Q1(x), . . . be an orthonormal sequence
of polynomials; that is, it is an orthogonal sequence
of polynomials and ‖Qk‖ = 1 for each k.
(a) How can the recursion relation in Theo-

rem 5.7.2 be simplified in the case of an or-
thonormal sequence of polynomials?
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(b) Let λ be a root of Qn . Show that λ must satisfy the matrix equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 α1

α1 β2 α2

. . .
. . .

. . .

αn−2 βn−1 αn−1

αn−1 βn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0(λ)

Q1(λ)
...

Qn−2(λ)

Qn−1(λ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0(λ)

Q1(λ)
...

Qn−2(λ)

Qn−1(λ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the αi ’s and β j ’s are the coefficients from the recursion equations.

Chapter Five Exercises

MATLAB EXERCISES

1. Set

x = [ 0 : 4, 4, −4, 1, 1]′ and y = ones(9, 1)

(a) Use the MATLAB function norm to compute
the values of ‖x‖, ‖y‖, and ‖x + y‖ and to
verify that the triangle inequality holds. Use
MATLAB also to verify that the parallelogram
law

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

is satisfied.
(b) If

t = xT y
‖x‖‖y‖

then why do we know that |t | must be less
than or equal to 1? Use MATLAB to compute
the value of t , and use the MATLAB function
acos to compute the angle between x and y.
Convert the angle to degrees by multiplying by
180/π . (Note that the number π is given by
pi in MATLAB.)

(c) Use MATLAB to compute the vector projec-
tion p of x onto y. Set z = x−p and verify that
z is orthogonal to p by computing the scalar
product of the two vectors. Compute ‖x‖2 and
‖z‖2 + ‖p‖2 and verify that the Pythagorean
law is satisfied.

2. Least Squares Fit to a Data Set by a Linear Func-
tion The following table of x and y values was
given in Section 3 of this chapter (see Figure 5.3.3):

x −1.0 0.0 2.1 2.3 2.4 5.3 6.0 6.5 8.0
y −1.02 −0.52 0.55 0.70 0.70 2.13 2.52 2.82 3.54

The nine data points are nearly linear and hence
the data can be approximated by a linear function

z = c1x + c2. Enter the x and y coordinates of the
data points as column vectors x and y, respectively.
Set V = [ x,ones(size(x))] and use the MAT-
LAB “\” operation to compute the coefficients c1

and c2 as the least squares solution of the 9 × 2 lin-
ear system V c = y. To see the results graphically,
set

w = −1 : 0.1 : 8

and

z = c(1) ∗ w + c(2) ∗ ones(size(w))

and plot the original data points and the least
squares linear fit, using the MATLAB command

plot(x, y, ‘x’, w, z)

3. Construction of Temperature Profiles by Least
Squares Polynomials Among the important inputs
in weather-forecasting models are data sets consist-
ing of temperature values at various parts of the
atmosphere. These values are either measured di-
rectly with the use of weather balloons or inferred
from remote soundings taken by weather satellites.
A typical set of RAOB (weather balloon) data is
given next. The temperature T in kelvins may be
considered as a function of p, the atmospheric pres-
sure measured in decibars. Pressures in the range
from 1 to 3 decibars correspond to the top of the
atmosphere, and those in the range from 9 to 10
decibars correspond to the lower part of the atmo-
sphere.

p 1 2 3 4 5 6 7 8 9 10
T 222 227 223 233 244 253 260 266 270 266

(a) Enter the pressure values as a column vector p
by setting p = [1 : 10]′, and enter the tem-
perature values as a column vector T. To find



278 Chapter 5 Orthogonality

the best least squares fit to the data by a lin-
ear function c1x +c2, set up an overdetermined
system V c = T. The coefficient matrix V can
be generated in MATLAB by setting

V = [ p,ones(10, 1)]
or, alternatively, by setting

A = vander(p); V = A(:, 9 : 10)

Note For any vector x = (x1, x2, . . . , xn+1)
T ,

the MATLAB command vander(x) gener-
ates a full Vandermonde matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn
1 xn−1

1 · · · x1 1
xn

2 xn−1
2 · · · x2 1

...

xn
n+1 xn−1

n+1 · · · xn+1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
For a linear fit, only the last two columns of
the full Vandermonde matrix are used. More
information on the vander function can be
obtained by typing help vander. Once V
has been constructed, the least squares solu-
tion c of the system can be calculated using the
MATLAB “\” operation.

(b) To see how well the linear function fits the
data, define a range of pressure values by set-
ting

q = 1 : 0.1 : 10;
The corresponding function values can be de-
termined by setting

z = polyval(c, q);
We can plot the function and the data points
with the command

plot(q, z, p, T, ‘x’)

(c) Let us now try to obtain a better fit by using
a cubic polynomial approximation. Again, we
can calculate the coefficients of the cubic poly-
nomial

c1x3 + c2x2 + c3x + c4

that gives the best least squares fit to the data
by finding the least squares solution of an
overdetermined system V c = T. The coeffi-
cient matrix V is determined by taking the last
four columns of the matrix A = vander(p).
To see the results graphically, again set

z = polyval(c, q)

and plot the cubic function and data points, us-
ing the same plot command as before. Where
do you get the better fit, at the top or bottom of
the atmosphere?

(d) To obtain a good fit at both the top and bot-
tom of the atmosphere, try using a sixth-degree
polynomial. Determine the coefficients as be-
fore, using the last seven columns of A. Set
z = polyval(c, q) and plot the results.

4. Least Squares Circles The parametric equations
for a circle with center (3, 1) and radius 2 are

x = 3 + 2 cos t y = 1 + 2 sin t

Set t = 0 : .5 : 6 and use MATLAB to generate
vectors of x and y coordinates for the correspond-
ing points on the circle. Next, add some noise to
your points by setting

x = x+0.1 ∗ rand(1, 13)

and

y = y+0.1 ∗ rand(1, 13)

Use MATLAB to determine the center c and radius
r of the circle that gives the best least squares fit to
the points. Set

t1 = 0 : 0.1 : 6.3

x1 = c(1)+r ∗cos(t1)

y1 = c(2)+r ∗sin(t1)

and use the command

plot(x1,y1,x,y,‘x’)

to plot the circle and the data points.

5. Fundamental Subspaces: Orthonormal Bases The
vector spaces N (A), R(A), N (AT ), and R(AT ) are
the four fundamental subspaces associated with a
matrix A. We can use MATLAB to construct or-
thonormal bases for each of the fundamental sub-
spaces associated with a given matrix. We can
then construct projection matrices corresponding to
each subspace.
(a) Set

A = rand(5, 2) ∗ rand(2, 5)

What would you expect the rank and nullity
of A to be? Explain. Use MATLAB to check
your answer by computing rank(A) and Z =
null(A). The columns of Z form an or-
thonormal basis for N (A).
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(b) Next, set

Q = orth(A), W = null(A′),
S = [Q W ]

The matrix S should be orthogonal. Why? Ex-
plain. Compute S ∗ S′ and compare your result
with eye(5). In theory, AT W and W TA should
both consist entirely of zeros. Why? Explain.
Use MATLAB to compute AT W and W T A.

(c) Prove that if Q and W had been computed in
exact arithmetic, then we would have

I − W W T = Q QT and Q QTA = A

[Hint: Write SST in terms of Q and W .] Use
MATLAB to verify these identities.

(d) Prove that if Q had been calculated in exact
arithmetic, then we would have Q QT b = b
for all b ∈ R(A). Use MATLAB to verify this
property by setting b = A ∗ rand(5, 1) and
then computing Q ∗ Q ′ ∗ b and comparing it
with b.

(e) Since the column vectors of Q form an or-
thonormal basis for R(A), it follows that
Q QT is the projection matrix corresponding
to R(A). Thus, for any c ∈ R

5, the vector
q = Q QT c is the projection of c onto R(A).
Set c = rand(5, 1) and compute the projec-
tion vector q. The vector r = c − q should be
in N (AT ). Why? Explain. Use MATLAB to
compute A′ ∗ r.

(f) The matrix W W T is the projection matrix cor-
responding to N (AT ). Use MATLAB to com-
pute the projection w = W W T c of c onto
N (AT ) and compare the result to r.

(g) Set Y = orth(A′) and use it to compute the
projection matrix U corresponding to R(AT ).
Let b = rand(5, 1) and compute the projec-
tion vector y = U ∗ b of b onto R(AT ). Com-
pute also U ∗ y and compare it with y. The
vector s = b − y should be in N (A). Why?
Explain. Use MATLAB to compute A ∗ s.

(h) Use the matrix Z = null(A) to compute the
projection matrix V corresponding to N (A).
Compute V ∗ b and compare it with s.

CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of
a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. If x and y are nonzero vectors in R
n , then the vector

projection of x onto y is equal to the vector projec-
tion of y onto x.

2. If x and y are unit vectors in R
n and |xT y| = 1, then

x and y are linearly independent.

3. If U , V , and W are subspaces of R
3 and if U ⊥ V

and V ⊥ W , then U ⊥ W .

4. It is possible to find a nonzero vector y in the col-
umn space of A such that AT y = 0.

5. If A is an m × n matrix, then AAT and ATA have
the same rank.

6. If an m × n matrix A has linearly dependent
columns and b is a vector in R

m , then b does not
have a unique projection onto the column space of
A.

7. If N (A) = {0}, then the system Ax = b will have
a unique least squares solution.

8. If Q1 and Q2 are orthogonal matrices, then Q1 Q2

also is an orthogonal matrix.

9. If {u1, u2, . . . , uk} is an orthonormal set of vectors
in R

n and
U = (u1, u2, . . . , uk)

then U T U = Ik (the k × k identity matrix).

10. If {u1, u2, . . . , uk} is an orthonormal set of vectors
in R

n and
U = (u1, u2, . . . , uk)

then UU T = In (the n × n identity matrix).
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CHAPTER TEST B

1. Let

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
2
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

1
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find the vector projection p of x onto y.
(b) Verify that x − p is orthogonal to p.
(c) Verify that the Pythagorean law holds for x, p,

and x − p.

2. Let v1 and v2 be vectors in an inner product space
V .
(a) Is it possible for |〈v1, v2〉| to be greater than

‖v1‖ ‖v2‖? Explain.
(b) If

|〈v1, v2〉| = ‖v1‖ ‖v2‖
what can you conclude about the vectors v1 and
v2? Explain.

3. Let v1 and v2 be vectors in an inner product space
V . Show that

‖v1 + v2‖2 ≤ (‖v1‖ + ‖v2‖)2

4. Let A be a 8×5 matrix with rank equal to 4 and let b
be a vector in R

8. The four fundamental subspaces
associated with A are R(A), N (AT ), R(AT ), and
N (A).
(a) What is the dimension of N (AT ), and which of

the other fundamental subspaces is the orthog-
onal complement of N (AT )?

(b) If x is a vector in R(A) and AT x = 0, then
what can you conclude about the value of ‖x‖?
Explain.

(c) What is the dimension of N (AT A)? How
many solutions will the least squares system
Ax = b have? Explain.

5. Let x and y be vectors in R
n and let Q be an n × n

orthogonal matrix. Show that if

z = Qx and w = Qy

then the angle between z and w is equal to the angle
between x and y.

6. Let S be the two-dimensional subspace of R
3

spanned by

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
0
2

⎫⎪⎪⎪⎪⎪⎭ and x2 =
⎧⎪⎪⎪⎪⎪⎩

0
1

−2

⎫⎪⎪⎪⎪⎪⎭
(a) Find a basis for S⊥.

(b) Give a geometric description of S and S⊥

(c) Determine the projection matrix P that
projects vectors in R

3 onto S⊥.

7. Given the table of data points

x −1 1 2
y 1 3 3

find the best least squares fit by a linear function
f (x) = c1 + c2x .

8. Let {u1, u2, u3} be an orthonormal basis for a three-
dimensional subspace S of an inner product space
V , and let

x = 2u1 − 2u2 + u3 and y = 3u1 + u2 − 4u3

(a) Determine the value of 〈x, y〉.
(b) Determine the value of ‖x||.

9. Let A be a 7 × 5 matrix of rank 4. Let P and Q be
the projection matrices that project vectors in R

7

onto R(A) and N (AT ), respectively.
(a) Show that P Q = O .
(b) Show that P + Q = I .

10. Given

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −3 −5
1 1 −2
1 −3 1
1 1 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−6

1
1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If the Gram–Schmidt process is applied to deter-
mine an orthonormal basis for R(A) and a Q R fac-
torization of A, then, after the first two orthonormal
vectors q1 and q2 are computed, we have

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2

1
2

1
2

1
2 − 1

2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −2

0 4

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Finish the process. Determine q3 and fill in the

third columns of Q and R.
(b) Use the Q R factorization to find the least

squares solution of Ax = b
11. The functions cos x and sin x are both unit vectors

in C[−π, π] with inner product defined by

〈 f, g〉 = 1

π

∫ π

−π

f (x)g(x)dx

(a) Show that cos x ⊥ sin x .
(b) Determine the value of || cos x + sin x ||2.



Chapter Five Exercises 281

12. Consider the vector space C[−1, 1] with inner
product defined by

〈 f, g〉 =
∫ 1

−1
f (x)g(x)dx

(a) Show that

u1(x) = 1√
2

and u2(x) =
√

6

2
x

form an orthonormal set of vectors.
(b) Use the result from part (a) to find the best least

squares approximation to h(x) = x1/3+x2/3 by
a linear function.



C H A P T E R

6
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

–1

–0.5

0

0.5

1
0

2

4

6

8

10

12

Eigenvalues
In Section 1, we will be concerned with the equation Ax = λx. This equation occurs
in many applications of linear algebra. If the equation has a nonzero solution x, then λ

is said to be an eigenvalue of A and x is said to be an eigenvector belonging to λ.
Eigenvalues are a common part of our life whether we realize it or not. Wherever

there are vibrations, there are eigenvalues, the natural frequencies of the vibrations. If
you have ever tuned a guitar, you have solved an eigenvalue problem. When engineers
design structures, they are concerned with the frequencies of vibration of the structure.
This concern is particularly important in earthquake-prone regions such as California.
The eigenvalues of a boundary value problem can be used to determine the energy
states of an atom or critical loads that cause buckling in a beam. This latter application
is presented in Section 1.

In Section 2, we will learn more about how to use eigenvalues and eigenvectors to
solve systems of linear differential equations. We will consider a number of applica-
tions, including mixture problems, the harmonic motion of a system of springs, and the
vibrations of a building. The motion of a building can be modeled by a second-order
system of differential equations of the form

MY′′(t) = K Y(t)

where Y(t) is a vector whose entries are all functions of t and Y′′(t) is the vector
of functions formed by taking the second derivatives of each of the entries of Y(t).
The solution of the equation is determined by the eigenvalues and eigenvectors of the
matrix A = M−1 K .

In general, we can view eigenvalues as natural frequencies associated with linear
operators. If A is an n×n matrix, we can think of A as representing a linear operator on
R

n . Eigenvalues and eigenvectors provide the key to understanding how the operator
works. For example, if λ > 0, the effect of the operator on any eigenvector belonging
to λ is simply a stretching or shrinking by a constant factor. Indeed, the effect of the
operator is easily determined on any linear combination of eigenvectors. In particular,
if it is possible to find a basis of eigenvectors for R

n , the operator can be represented
by a diagonal matrix D with respect to that basis and the matrix A can be factored

282
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into a product X DX−1. In Section 3, we see how this is done and look at a number of
applications.

In Section 4, we consider matrices with complex entries. In this setting, we will
be concerned with matrices whose eigenvectors can be used to form an orthonormal
basis for C

n (the vector space of all n-tuples of complex numbers). In Section 5, we
introduce the singular value decomposition of a matrix and show four applications.
Another important application of this factorization will be presented in Chapter 7.

Section 6 deals with the application of eigenvalues to quadratic equations in several
variables and also with applications involving maxima and minima of functions of
several variables. In Section 7, we consider symmetric positive definite matrices. The
eigenvalues of such matrices are real and positive. These matrices occur in a wide
variety of applications. Finally, in Section 8 we study matrices with nonnegative entries
and some applications to economics.

6.1 Eigenvalues and Eigenvectors

Many application problems involve applying a linear transformation repeatedly to a
given vector. The key to solving these problems is to choose a coordinate system or
basis that is in some sense natural for the operator and for which it will be simpler to do
calculations involving the operator. With respect to these new basis vectors (eigenvec-
tors) we associate scaling factors (eigenvalues) that represent the natural frequencies
of the operator. We illustrate with a simple example.

EXAMPLE 1 Let us recall Application 1 from Section 4 of Chapter 1. In a certain town, 30 per-
cent of the married women get divorced each year and 20 percent of the single women
get married each year. There are 8000 married women and 2000 single women, and
the total population remains constant. Let us investigate the long-range prospects if
these percentages of marriages and divorces continue indefinitely into the future.

To find the number of married and single women after one year, we multiply the
vector w0 = (8000, 2000)T by

A =
⎧⎪⎩0.7 0.2

0.3 0.8

⎫⎪⎭
The number of married and single women after one year is given by

w1 = Aw0 =
⎧⎪⎩0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩8000
2000

⎫⎪⎭ =
⎧⎪⎩6000

4000

⎫⎪⎭
To determine the number of married and single women after two years, we compute

w2 = Aw1 = A2w0

and, in general, for n years, we must compute wn = Anw0.
Let us compute w10, w20, w30 in this way and round the entries of each to the

nearest integer:

w10 =
⎧⎪⎩4004

5996

⎫⎪⎭ , w20 =
⎧⎪⎩4000

6000

⎫⎪⎭ , w30 =
⎧⎪⎩4000

6000

⎫⎪⎭
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After a certain point, we seem to always get the same answer. In fact,
w12 = (4000, 6000)T and since

Aw12 =
⎧⎪⎩0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩4000
6000

⎫⎪⎭ =
⎧⎪⎩4000

6000

⎫⎪⎭
it follows that all the succeeding vectors in the sequence remain unchanged. The vector
(4000, 6000)T is said to be a steady-state vector for the process.

Suppose that initially we had different proportions of married and single women.
If, for example, we had started with 10,000 married women and 0 single women, then
w0 = (10,000, 0)T and we can compute wn as before by multiplying w0 by An . In this
case, it turns out that w14 = (4000, 6000)T , and hence we still end up with the same
steady-state vector.

Why does this process converge, and why do we seem to get the same steady-state
vector even when we change the initial vector? These questions are not difficult to
answer if we choose a basis for R

2 consisting of vectors for which the effect of the
linear operator A is easily determined. In particular, if we choose a multiple of the
steady-state vector, say, x1 = (2, 3)T , as our first basis vector, then

Ax1 =
⎧⎪⎩0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩2
3

⎫⎪⎭ =
⎧⎪⎩2

3

⎫⎪⎭ = x1

Thus, x1 is also a steady-state vector. It is a natural basis vector to use, since the effect
of A on x1 could not be simpler. Although it would be nice to use another steady-
state vector as the second basis vector, this is not possible, because all the steady-state
vectors turn out to be multiples of x1. However, if we choose x2 = (−1, 1)T , then the
effect of A on x2 is also very simple:

Ax2 =
⎧⎪⎪⎪⎪⎪⎩0.7 0.2

0.3 0.8

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩−1

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩− 1

2
1
2

⎫⎪⎪⎪⎪⎪⎭ = 1
2 x2

Let us now analyze the process, using x1 and x2 as our basis vectors. If we express the
initial vector w0 = (8000, 2000)T as a linear combination of x1 and x2, then

w0 = 2000
⎧⎪⎩2

3

⎫⎪⎭ − 4000
⎧⎪⎩−1

1

⎫⎪⎭ = 2000x1 − 4000x2

and it follows that

w1 = Aw0 = 2000Ax1 − 4000Ax2 = 2000x1 − 4000

(
1

2

)
x2

w2 = Aw1 = 2000x1 − 4000

(
1

2

)2

x2

In general,

wn = Anw0 = 2000x1 − 4000

(
1

2

)n

x2

The first component of this sum is the steady-state vector and the second component
converges to the zero vector.
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Will we always end up with the same steady-state vector for any choice of w0?
Suppose that initially there are p married women. Since there are 10,000 women
altogether, the number of single women must be 10,000 − p. Our initial vector is then

w0 =
⎧⎪⎩ p

10,000 − p

⎫⎪⎭
If we express w0 as a linear combination c1x1 + c2x2, then, as before,

wn = Anw0 = c1x1 +
(

1

2

)n

c2x2

The steady-state vector will be c1x1. To determine c1, we write the equation

c1x1 + c2x2 = w0

as a linear system:

2c1 − c2 = p

3c1 + c2 = 10,000 − p

Adding the two equations, we see that c1 = 2000. Thus, for any integer p in the range
0 ≤ p ≤ 10,000, the steady-state vector turns out to be

2000x1 =
⎧⎪⎩4000

6000

⎫⎪⎭
The vectors x1 and x2 were natural vectors to use in analyzing the process in Ex-

ample 1, since the effect of the matrix A on each of these vectors was so simple:

Ax1 = x1 = 1x1 and Ax2 = 1
2 x2

For each of the two vectors, the effect of A was just to multiply the vector by a scalar.
The two scalars 1 and 1

2 can be thought of as the natural frequencies of the linear
transformation.

In general, if a linear transformation is represented by an n × n matrix A and
we can find a nonzero vector x so that Ax = λx, for some scalar λ, then, for this
transformation, x is a natural choice to use as a basis vector for R

n and the scalar λ

defines a natural frequency corresponding to that basis vector. More precisely, we use
the following terminology to refer to x and λ:

Definition Let A be an n × n matrix. A scalar λ is said to be an eigenvalue or a characteristic
value of A if there exists a nonzero vector x such that Ax = λx. The vector x is
said to be an eigenvector or a characteristic vector belonging to λ.

EXAMPLE 2 Let

A =
⎧⎪⎩4 −2

1 1

⎫⎪⎭ and x =
⎧⎪⎩2

1

⎫⎪⎭
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Since

Ax =
⎧⎪⎩4 −2

1 1

⎫⎪⎭⎧⎪⎩2
1

⎫⎪⎭ =
⎧⎪⎩6

3

⎫⎪⎭ = 3
⎧⎪⎩2

1

⎫⎪⎭ = 3x

it follows that λ = 3 is an eigenvalue of A and x = (2, 1)T is an eigenvector belonging
to λ. Actually, any nonzero multiple of x will be an eigenvector, because

A(αx) = αAx = αλx = λ(αx)

For example, (4, 2)T is also an eigenvector belonging to λ = 3:⎧⎪⎩4 −2
1 1

⎫⎪⎭⎧⎪⎩4
2

⎫⎪⎭ =
⎧⎪⎩12

6

⎫⎪⎭ = 3
⎧⎪⎩4

2

⎫⎪⎭
The equation Ax = λx can be written in the form

(A − λI )x = 0 (1)

Thus, λ is an eigenvalue of A if and only if (1) has a nontrivial solution. The set of
solutions to (1) is N (A − λI ), which is a subspace of R

n . Hence, if λ is an eigenvalue
of A, then N (A − λI ) �= {0} and any nonzero vector in N (A − λI ) is an eigenvector
belonging to λ. The subspace N (A −λI ) is called the eigenspace corresponding to the
eigenvalue λ.

Equation (1) will have a nontrivial solution if and only if A − λI is singular, or
equivalently,

det(A − λI ) = 0 (2)

If the determinant in (2) is expanded, we obtain an nth-degree polynomial in the vari-
able λ:

p(λ) = det(A − λI )

This polynomial is called the characteristic polynomial, and equation (2) is called the
characteristic equation, for the matrix A. The roots of the characteristic polynomial
are the eigenvalues of A. If roots are counted according to multiplicity, then the char-
acteristic polynomial will have exactly n roots. Thus, A will have n eigenvalues, some
of which may be repeated and some of which may be complex numbers. To take care
of the latter case, it will be necessary to expand our field of scalars to the complex
numbers and to allow complex entries for our vectors and matrices.

We have now established a number of equivalent conditions for λ to be an eigen-
value of A.

Let A be an n×n matrix and λ be a scalar. The following statements are equivalent:

(a) λ is an eigenvalue of A.

(b) (A − λI )x = 0 has a nontrivial solution.

(c) N (A − λI ) �= {0}
(d) A − λI is singular.

(e) det(A − λI ) = 0
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We will now use statement (e) to determine the eigenvalues in a number of exam-
ples.

EXAMPLE 3 Find the eigenvalues and the corresponding eigenvectors of the matrix

A =
⎧⎪⎩3 2

3 −2

⎫⎪⎭
Solution
The characteristic equation is∣∣∣∣3 − λ 2

3 −2 − λ

∣∣∣∣ = 0 or λ2 − λ − 12 = 0

Thus, the eigenvalues of A are λ1 = 4 and λ2 = −3. To find the eigenvectors belonging
to λ1 = 4, we must determine the null space of A − 4I :

A − 4I =
⎧⎪⎩−1 2

3 −6

⎫⎪⎭
Solving (A − 4I )x = 0, we get

x = (2x2, x2)
T

Hence, any nonzero multiple of (2, 1)T is an eigenvector belonging to λ1, and {(2, 1)T }
is a basis for the eigenspace corresponding to λ1. Similarly, to find the eigenvectors for
λ2, we must solve

(A + 3I )x = 0

In this case, {(−1, 3)T } is a basis for N (A + 3I ) and any nonzero multiple of (−1, 3)T

is an eigenvector belonging to λ2.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 −3 1
1 −2 1
1 −3 2

⎫⎪⎪⎪⎪⎪⎭
Find the eigenvalues and the corresponding eigenspaces.

Solution ∣∣∣∣∣∣
2 − λ −3 1

1 −2 − λ 1
1 −3 2 − λ

∣∣∣∣∣∣ = −λ(λ − 1)2

Thus, the characteristic polynomial has roots λ1 = 0, λ2 = λ3 = 1. The eigenspace
corresponding to λ1 = 0 is N (A), which we determine in the usual manner:⎧⎪⎪⎪⎪⎪⎩

2 −3 1 0
1 −2 1 0
1 −3 2 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 −1 0
0 1 −1 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
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Setting x3 = α, we find that x1 = x2 = x3 = α. Consequently, the eigenspace
corresponding to λ1 = 0 consists of all vectors of the form α(1, 1, 1)T . To find the
eigenspace corresponding to λ = 1, we must solve the system (A − I )x = 0:⎧⎪⎪⎪⎪⎪⎩

1 −3 1 0
1 −3 1 0
1 −3 1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 −3 1 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
Setting x2 = α and x3 = β, we get x1 = 3α − β. Thus, the eigenspace corresponding
to λ = 1 consists of all vectors of the form⎧⎪⎪⎪⎪⎪⎩

3α − β

α

β

⎫⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎩
3
1
0

⎫⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎩
−1

0
1

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 5 Let

A =
⎧⎪⎩ 1 2

−2 1

⎫⎪⎭
Compute the eigenvalues of A and find bases for the corresponding eigenspaces.

Solution ∣∣∣∣1 − λ 2
−2 1 − λ

∣∣∣∣ = (1 − λ)2 + 4

The roots of the characteristic polynomial are λ1 = 1 + 2i , λ2 = 1 − 2i .

A − λ1 I =
⎧⎪⎩−2i 2

−2 −2i

⎫⎪⎭ = −2
⎧⎪⎩ i −1

1 i

⎫⎪⎭
It follows that {(1, i)T } is a basis for the eigenspace corresponding to λ1 = 1 + 2i .
Similarly,

A − λ2 I =
⎧⎪⎩ 2i 2

−2 2i

⎫⎪⎭ = 2
⎧⎪⎩ i 1

−1 i

⎫⎪⎭
and {(1, −i)T } is a basis for N (A − λ2 I ).

APPLICATION 1 Structures—Buckling of a Beam

For an example of a physical eigenvalue problem, consider the case of a beam. If a
force or load is applied to one end of the beam, the beam will buckle when the load
reaches a critical value. If we continue increasing the load beyond the critical value,
we can expect the beam to buckle again when the load reaches a second critical value,
and so on. Assume that the beam has length L and that it is positioned along the x-
axis in the plane with the left support of the beam at x = 0. Let y(x) represent the
vertical displacement of the beam for any point x , and assume that the beam is simply
supported; that is, y(0) = y(L) = 0. (See Figure 6.1.1.)

The physical system for the beam is modeled by the boundary value problem

R
d2 y

dx2
= −Py y(0) = y(L) = 0 (3)
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y

L
x

p

Figure 6.1.1.

where R is the flexural rigidity of the beam and P is the load placed on the beam. A
standard procedure to compute the solution y(x) is to use a finite difference method to
approximate the differential equation. Specifically, we partition the interval [0, L] into
n equal subintervals

0 = x0 < x1 < · · · < xn = L

(
x j = j L

n
, j = 0, . . . , n

)

and, for each j , we approximate y′′(x j ) by a difference quotient. If we set h = L
n and

use the shorthand notation yk for y(xk), then the standard difference approximation is
given by

y′′(x j ) ≈ y j+1 − 2y j + y j−1

h2
j = 1, . . . , n

Substituting these approximations into equation (3), we end up with a system of n

linear equations. If we multiply each equation through by − h2

R and set λ = Ph2

R , then
the system can be written as a matrix equation of the form Ay = λy, where

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The eigenvalues of this matrix will all be real and positive. (See MATLAB Exercise 24
at the end of the chapter.) For n sufficiently large, each eigenvalue λ of A can be used
to approximate a critical load P = Rλ

h2 under which buckling may occur. The most
important of these critical loads is the one corresponding to the smallest eigenvalue
since the beam may actually break after this load is exceeded.

APPLICATION 2 Aerospace—The Orientation of a Space Shuttle

In Section 2 of Chapter 4, we saw how to determine the matrix representation corre-
sponding to a yaw, pitch, or roll of an airplane in terms of 3 × 3 rotation matrices Y , P ,
and R. Recall that a yaw is a rotation of an aircraft about the z-axis, a pitch is a rotation
about the y-axis, and a roll is a rotation about the x-axis. We also saw in the airplane
application that a combination of a yaw followed by a pitch and then a roll could be
represented by a product Q = Y P R. The same terms—yaw, pitch, and roll—are used
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to describe the rotations of a space shuttle from its initial position to a new orientation.
The only difference is that, for a space shuttle, it is customary to have the positive x
and z axes pointing in the opposite directions. Figure 6.1.2 shows the axis system for
the shuttle, compared with the axis system used for an airplane. The shuttle axes for
the yaw, pitch, and roll are denoted ZS, YS, and XS, respectively. The origin for the
axis system is at the center of mass of the space shuttle. We could use the yaw, pitch,
and roll transformations to reorient the shuttle from its initial position; however, rather
than performing three separate rotations, it is more efficient to use only one rotation.
Given the angles for the yaw, pitch, and roll, it is desirable to have the shuttle computer
determine a new single axis of rotation R and an angle of rotation β about that axis.

ZS

YS

Y

Z

X

XS

+Yaw

Center
of gravity

+Roll

+Pitch

Figure 6.1.2.

In 2-space, a rotation in the plane of 45◦, followed by a 30◦ rotation, is equivalent
to a single 75◦ rotation from the initial position. Likewise, in 3-space, a combination
of two or more rotations is equivalent to a single rotation. In the case of the space
shuttle, we would like to accomplish the combined rotations of yaw, pitch, and roll by
performing a single rotation about a new axis R. The new axis can be determined by
computing the eigenvectors of the transformation matrix Q.

The matrix Q representing the combined yaw, pitch, and roll transformations is
a product of three orthogonal matrices, each having determinant equal to 1. So Q is
also orthogonal and det(Q) = 1. It follows that Q must have λ = 1 as an eigenvalue.
(See Exercise 23.) If z is a unit vector in the direction of the axis of rotation R, then
z should remain unchanged by the transformation and hence we should have Qz = z.
Thus, z is a unit eigenvector of Q belonging to the eigenvalue λ = 1. The eigenvector
z determines the axis of rotation.

To determine the angle of rotation about the new axis R, note that e1 represents
the initial direction of the XS axis and q1 = Qe1 represents the direction after the
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transformation. If we project e1 and q1 onto the R-axis, they both will project onto the
same vector

p = (zT e1)z = z1z

The vectors
v = e1 − p and w = q1 − p

have the same length and both are in the plane that is normal to the R-axis and passes
through the origin. As e1 rotates to q1, the vector v gets rotated to w. (See Figure 6.1.3.)
The angle of rotation β can be computed by finding the angle between v and w:

β = arccos

(
vT w
‖v‖2

)

R

e1

v

b
p

w

z q1

0

Figure 6.1.3.

Complex Eigenvalues

If A is an n × n matrix with real entries, then the characteristic polynomial of A will
have real coefficients, and hence all its complex roots must occur in conjugate pairs.
Thus, if λ = a + bi (b �= 0) is an eigenvalue of A, then λ = a − bi must also be an
eigenvalue of A. Here, the symbol λ (read lambda bar) is used to denote the complex
conjugate of λ. A similar notation can be used for matrices: If A = (ai j ) is a matrix
with complex entries, then A = (ai j ) is the matrix formed from A by conjugating each
of its entries. We define a real matrix to be a matrix with the property that A = A.
In general, if A and B are matrices with complex entries and the multiplication AB is
possible, then AB = A B (see Exercise 20).

Not only do the complex eigenvalues of a real matrix occur in conjugate pairs, but
so do the eigenvectors. Indeed, if λ is a complex eigenvalue of a real n × n matrix A
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and z is an eigenvector belonging to λ, then

Az = A z = Az = λz = λ z

Thus, z is an eigenvector of A belonging to λ. In Example 5, the eigenvector computed
for the eigenvalue λ = 1 + 2i was z = (1, i)T , and the eigenvector computed for
λ = 1 − 2i was z = (1, −i)T .

The Product and Sum of the Eigenvalues

It is easy to determine the product and sum of the eigenvalues of an n × n matrix A. If
p(λ) is the characteristic polynomial of A, then

p(λ) = det(A − λI ) =

∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ a2n
...

an1 an2 ann − λ

∣∣∣∣∣∣∣∣ (4)

Expanding along the first column, we get

det(A − λI ) = (a11 − λ) det(M11) +
n∑

i=2

ai1(−1)i+1 det(Mi1)

where the minors Mi1, i = 2, . . . , n, do not contain the two diagonal elements (a11−λ)

and (aii − λ). Expanding det(M11) in the same manner, we conclude that

(a11 − λ)(a22 − λ) · · · (ann − λ) (5)

is the only term in the expansion of det(A−λI ) involving a product of more than n −2
of the diagonal elements. When (5) is expanded, the coefficient of λn will be (−1)n .
Thus, the lead coefficient of p(λ) is (−1)n , and hence if λ1, . . . , λn are the eigenvalues
of A, then

p(λ) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn)

= (λ1 − λ)(λ2 − λ) · · · (λn − λ)
(6)

It follows from (4) and (6) that

λ1 · λ2 · · · λn = p(0) = det(A)

From (5), we also see that the coefficient of (−λ)n−1 is
n∑

i=1

aii . If we use (6) to deter-

mine this same coefficient, we obtain
n∑

i=1

λi . It follows that

n∑
i=1

λi =
n∑

i=1

aii
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The sum of the diagonal elements of A is called the trace of A and is denoted by tr(A).

EXAMPLE 6 If

A =
⎧⎪⎩5 −18

1 −1

⎫⎪⎭
then

det(A) = −5 + 18 = 13 and tr(A) = 5 − 1 = 4

The characteristic polynomial of A is given by∣∣∣∣5 − λ −18
1 −1 − λ

∣∣∣∣ = λ2 − 4λ + 13

and hence the eigenvalues of A are λ1 = 2 + 3i and λ2 = 2 − 3i . Note that

λ1 + λ2 = 4 = tr(A)

and
λ1λ2 = 13 = det(A)

In the examples we have looked at so far, n has always been less than 4. For larger
n, it is more difficult to find the roots of the characteristic polynomial. In Chapter 7,
we will learn numerical methods for computing eigenvalues. (These methods will
not involve the characteristic polynomial at all.) If the eigenvalues of A have been
computed by some numerical method, one way to check their accuracy is to compare
their sum with the trace of A.

Similar Matrices

We close this section with an important result about the eigenvalues of similar matrices.
Recall that a matrix B is said to be similar to a matrix A if there exists a nonsingular
matrix S such that B = S−1 AS.

Theorem 6.1.1 Let A and B be n × n matrices. If B is similar to A, then the two matrices have the
same characteristic polynomial and, consequently, the same eigenvalues.

Proof Let pA(x) and pB(x) denote the characteristic polynomials of A and B, respectively.
If B is similar to A, then there exists a nonsingular matrix S such that B = S−1 AS.
Thus,

pB(λ) = det(B − λI )

= det(S−1 AS − λI )

= det(S−1(A − λI )S)

= det(S−1) det(A − λI ) det(S)

= pA(λ)

The eigenvalues of a matrix are the roots of the characteristic polynomial. Since the
two matrices have the same characteristic polynomial, they must have the same eigen-
values.
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EXAMPLE 7 Given

T =
⎧⎪⎩2 1

0 3

⎫⎪⎭ and S =
⎧⎪⎩5 3

3 2

⎫⎪⎭
It is easily seen that the eigenvalues of T are λ1 = 2 and λ2 = 3. If we set A = S−1TS,
then the eigenvalues of A should be the same as those of T :

A =
⎧⎪⎩ 2 −3

−3 5

⎫⎪⎭⎧⎪⎩2 1
0 3

⎫⎪⎭⎧⎪⎩5 3
3 2

⎫⎪⎭ =
⎧⎪⎩−1 −2

6 6

⎫⎪⎭
We leave it to the reader to verify that the eigenvalues of this matrix are λ1 = 2 and
λ2 = 3.

SECTION 6.1 EXERCISES
1. Find the eigenvalues and the corresponding

eigenspaces for each of the following matrices:

(a)
⎧⎪⎩3 2

4 1

⎫⎪⎭ (b)
⎧⎪⎩6 −4

3 −1

⎫⎪⎭
(c)

⎧⎪⎩3 −1
1 1

⎫⎪⎭ (d)
⎧⎪⎩3 −8

2 3

⎫⎪⎭
(e)

⎧⎪⎩ 1 1
−2 3

⎫⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
0 1 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 2 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
1 2 1
0 3 1
0 5 −1

⎫⎪⎪⎪⎪⎪⎭
(i)

⎧⎪⎪⎪⎪⎪⎩
4 −5 1
1 0 −1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭ (j)

⎧⎪⎪⎪⎪⎪⎩
−2 0 1

1 0 −1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭
(k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (l)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 0 0
4 1 0 0
0 0 2 1
0 0 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
2. Show that the eigenvalues of a triangular matrix are

the diagonal elements of the matrix.

3. Let A be an n × n matrix. Prove that A is singular
if and only if λ = 0 is an eigenvalue of A.

4. Let A be a nonsingular matrix and let λ be an eigen-
value of A. Show that 1/λ is an eigenvalue of A−1.

5. Let A and B be n × n matrices. Show that if none
of the eigenvalues of A are equal to 1, then the ma-
trix equation

X A + B = X

will have a unique solution.

6. Let λ be an eigenvalue of A and let x be an eigen-
vector belonging to λ. Use mathematical induction
to show that, for m ≥ 1, λm is an eigenvalue of Am

and x is an eigenvector of Am belonging to λm .

7. Let A be an n × n matrix and let B = I −2A+ A2.
(a) Show that if x is an eigenvector of A belong-

ing to an eigenvalue λ of A, then x is also an
eigenvector of B belonging to an eigenvalue μ

of B. How are λ and μ related?
(b) Show that if λ = 1 is an eigenvalue of A, then

the matrix B will be singular.

8. An n × n matrix A is said to be idempotent if
A2 = A. Show that if λ is an eigenvalue of an
idempotent matrix, then λ must be either 0 or 1.

9. An n×n matrix is said to be nilpotent if Ak = O for
some positive integer k. Show that all eigenvalues
of a nilpotent matrix are 0.

10. Let A be an n × n matrix and let B = A − α I for
some scalar α. How do the eigenvalues of A and B
compare? Explain.

11. Let A be an n × n matrix and let B = A + I . Is it
possible for A and B to be similar? Explain.

12. Show that A and AT have the same eigenvalues. Do
they necessarily have the same eigenvectors? Ex-
plain.

13. Show that the matrix

A =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
will have complex eigenvalues if θ is not a multiple
of π . Give a geometric interpretation of this result.

14. Let A be a 2 × 2 matrix. If tr(A) = 8 and
det(A) = 12, what are the eigenvalues of A?

15. Let A = (ai j ) be an n × n matrix with eigenvalues
λ1, . . . , λn . Show that

λ j = a j j +
∑
i �= j

(aii − λi ) for j = 1, . . . , n
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16. Let A be a 2 × 2 matrix and let p(λ) = λ2 + bλ+ c
be the characteristic polynomial of A. Show that
b = − tr(A) and c = det(A).

17. Let λ be a nonzero eigenvalue of A and let x be an
eigenvector belonging to λ. Show that Amx is also
an eigenvector belonging to λ for m = 1, 2, . . . .

18. Let A be an n ×n matrix and let λ be an eigenvalue
of A. If A − λI has rank k, what is the dimension
of the eigenspace corresponding to λ? Explain.

19. Let A be an n × n matrix. Show that a vector x
in R

n is an eigenvector belonging to A if and only
if the subspace S of R

n spanned by x and Ax has
dimension 1.

20. Let α = a + bi and β = c + di be complex scalars
and let A and B be matrices with complex entries.
(a) Show that

α + β = α + β and αβ = α β

(b) Show that the (i, j) entries of AB and A B are
equal and hence that

AB = A B

21. Let Q be an orthogonal matrix.
(a) Show that if λ is an eigenvalue of Q, then

|λ| = 1.
(b) Show that | det(Q)| = 1.

22. Let Q be an orthogonal matrix with an eigenvalue
λ1 = 1 and let x be an eigenvector belonging to λ1.
Show that x is also an eigenvector of QT .

23. Let Q be a 3 × 3 orthogonal matrix whose deter-
minant is equal to 1.
(a) If the eigenvalues of Q are all real and if they

are ordered so that λ1 ≥ λ2 ≥ λ3, determine
the values of all possible triples of eigenvalues
(λ1, λ2, λ3).

(b) In the case that the eigenvalues λ2 and λ3 are
complex, what are the possible values for λ1?
Explain.

(c) Explain why λ = 1 must be an eigenvalue of
Q.

24. Let x1, . . . , xr be eigenvectors of an n × n ma-
trix A and let S be the subspace of R

n spanned by
x1, x2, . . . , xr . Show that S is invariant under A
(i.e., show that Ax ∈ S whenever x ∈ S).

25. Let A be an n × n matrix and let λ be an eigenvalue
of A. Show that if B is any matrix that commutes
with A, then the eigenspace N (A −λI ) is invariant
under B.

26. Let B = S−1 AS and let x be an eigenvector of B
belonging to an eigenvalue λ. Show that Sx is an
eigenvector of A belonging to λ.

27. Let A be an n × n matrix with an eigenvalue λ and
let x be an eigenvector belonging to λ. Let S be
a nonsingular n × n matrix and let α be a scalar.
Show that if

B = α I − S AS−1, y = Sx

then y is an eigenvector of B. Determine the eigen-
value of B corresponding to y.

28. Show that if two n × n matrices A and B have a
common eigenvector x (but not necessarily a com-
mon eigenvalue), then x will also be an eigenvector
of any matrix of the form C = αA + β B.

29. Let A be an n × n matrix and let λ be a nonzero
eigenvalue of A. Show that if x is an eigenvector
belonging to λ, then x is in the column space of
A. Hence, the eigenspace corresponding to λ is a
subspace of the column space of A.

30. Let {u1, u2, . . . , un} be an orthonormal basis for R
n

and let A be a linear combination of the rank 1 ma-
trices u1uT

1 , u2uT
2 , . . . , unuT

n . If

A = c1u1uT
1 + c2u2uT

2 + · · · + cnunuT
n

show that A is a symmetric matrix with eigenvalues
c1, c2, . . . , cn and that ui is an eigenvector belong-
ing to ci for each i .

31. Let A be a matrix whose columns all add up to a
fixed constant δ. Show that δ is an eigenvalue of A.

32. Let λ1 and λ2 be distinct eigenvalues of A. Let x
be an eigenvector of A belonging to λ1 and let y be
an eigenvector of AT belonging to λ2. Show that x
and y are orthogonal.

33. Let A and B be n × n matrices. Show that
(a) If λ is a nonzero eigenvalue of AB, then it is

also an eigenvalue of BA.
(b) If λ = 0 is an eigenvalue of AB, then λ = 0 is

also an eigenvalue of BA.
34. Prove that there do not exist n × n matrices A and

B such that
AB − BA = I

[Hint: See Exercises 10 and 33.]
35. Let p(λ) = (−1)n(λn −an−1λ

n−1 −· · ·−a1λ−a0)

be a polynomial of degree n ≥ 1, and let

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an−1 an−2 · · · a1 a0

1 0 · · · 0 0
0 1 · · · 0 0
...

0 0 · · · 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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(a) Show that if λi is a root of p(λ) = 0, then
λi is an eigenvalue of C with eigenvector x =
(λn−1

i , λn−2
i , . . . , λi , 1)T .

(b) Use part (a) to show that if p(λ) has n distinct
roots, then p(λ) is the characteristic polyno-
mial of C .

The matrix C is called the companion matrix of
p(λ).

36. The result given in Exercise 35(b) holds even if all
the eigenvalues of p(λ) are not distinct. Prove this
as follows:
(a) Let

Dm(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
am am−1 · · · a1 a0

1 −λ · · · 0 0
...

0 0 · · · 1 −λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and use mathematical induction to prove that

det(Dm(λ)) = (−1)m(amλm + am−1λ
m−1 + · · ·

+ a1λ + a0)

(b) Show that

det(C − λI )

= (an−1 − λ)(−λ)n−1 − det(Dn−2)

= p(λ)

6.2 Systems of Linear Differential Equations

Eigenvalues play an important role in the solution of systems of linear differential
equations. In this section, we see how they are used in the solution of systems of linear
differential equations with constant coefficients. We begin by considering systems of
first-order equations of the form

y′
1 = a11 y1 + a12 y2 + · · · + a1n yn

y′
2 = a21 y1 + a22 y2 + · · · + a2n yn
...

y′
n = an1 y1 + an2 y2 + · · · + ann yn

where yi = fi (t) is a function in C
1[a, b] for each i . If we let

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and Y′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y′

1
y′

2
...

y′
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the system can be written in the form

Y′ = AY

Y and Y′ are both vector functions of t . Let us consider the simplest case first. When
n = 1, the system is simply

y′ = ay (1)

Clearly, any function of the form

y(t) = ceat (c an arbitrary constant)
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satisfies equation (1). A natural generalization of this solution for the case n > 1 is to
take

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1eλt

x2eλt

...

xneλt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = eλt x

where x = (x1, x2, . . . , xn)
T . To verify that a vector function of this form does work,

we compute the derivative
Y′ = λeλt x = λY

Now, if we choose λ to be an eigenvalue of A and x to be an eigenvector belonging to
λ, then

AY = eλtAx = λeλt x = λY = Y′

Hence, Y is a solution of the system. Thus, if λ is an eigenvalue of A and x is an
eigenvector belonging to λ, then eλt x is a solution of the system Y′ = AY. This will
be true whether λ is real or complex. Note that if Y1 and Y2 are both solutions of
Y′ = AY, then αY1 + βY2 is also a solution, since

(αY1 + βY2)
′ = αY′

1 + βY′
2

= αAY1 + β AY2

= A(αY1 + βY2)

It follows by induction that if Y1, . . . , Yn are solutions of Y′ = AY, then any linear
combination c1Y1 + · · · + cnYn will also be a solution.

In general, the solutions of an n × n first-order system of the form

Y′ = AY

will form an n-dimensional subspace of the vector space of all continuous vector-
valued functions. If, in addition, we require that Y(t) take on a prescribed value Y0

when t = 0, then a standard theorem from differential equations guarantees that the
problem will have a unique solution. A problem of the form

Y′ = AY, Y(0) = Y0

is called an initial value problem.

EXAMPLE 1 Solve the system
y′

1 = 3y1 + 4y2

y′
2 = 3y1 + 2y2

Solution

A =
⎧⎪⎩3 4

3 2

⎫⎪⎭
The eigenvalues of A are λ1 = 6 and λ2 = −1. Solving (A − λI )x = 0 with λ = λ1

and λ = λ2, we see that x1 = (4, 3)T is an eigenvector belonging to λ1 and x2 =
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(1, −1)T is an eigenvector belonging to λ2. Thus, any vector function of the form

Y = c1eλ1t x1 + c2eλ2t x2 =
⎧⎪⎪⎩4c1e6t + c2e−t

3c1e6t − c2e−t

⎫⎪⎪⎭
is a solution of the system.

In Example 1, suppose that we require that y1 = 6 and y2 = 1 when t = 0. Then

Y(0) =
⎧⎪⎩4c1 + c2

3c1 − c2

⎫⎪⎭ =
⎧⎪⎩6

1

⎫⎪⎭
and it follows that c1 = 1 and c2 = 2. Hence, the solution of the initial value problem
is given by

Y = e6t x1 + 2e−t x2 =
⎧⎪⎪⎩4e6t + 2e−t

3e6t − 2e−t

⎫⎪⎪⎭
APPLICATION 1 Mixtures

Two tanks are connected as shown in Figure 6.2.1. Initially, tank A contains 200 liters
of water in which 60 grams of salt has been dissolved and tank B contains 200 liters of
pure water. Liquid is pumped in and out of the two tanks at rates shown in the diagram.
Determine the amount of salt in each tank at time t .

Solution
Let y1(t) and y2(t) be the number of grams of salt in tanks A and B, respectively, at
time t . Initially,

Y(0) =
⎧⎪⎩ y1(0)

y2(0)

⎫⎪⎭ =
⎧⎪⎩60

0

⎫⎪⎭
The total amount of liquid in each tank will remain at 200 liters, since the amount being
pumped in equals the amount being pumped out. The rate of change in the amount of
salt for each tank is equal to the rate at which it is being added minus the rate at which
it is being pumped out. For tank A, the rate at which the salt is added is given by

(5 L/min) ·
(

y2(t)

200
g/L

)
= y2(t)

40
g/min

Tank A Tank B

Mixture
5 L/min

Water
15 L/min

Mixture
20 L/min

Mixture
15 L/min

Figure 6.2.1.
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and the rate at which the salt is being pumped out is

(20 L/min) ·
(

y1(t)

200
g/L

)
= y1(t)

10
g/min

Thus, the rate of change for tank A is given by

y′
1(t) = y2(t)

40
− y1(t)

10

Similarly, for tank B, the rate of change is given by

y′
2(t) = 20y1(t)

200
− 20y2(t)

200
= y1(t)

10
− y2(t)

10

To determine y1(t) and y2(t), we must solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎪⎪⎪⎪⎩− 1

10
1
40

1
10 − 1

10

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎩60

0

⎫⎪⎭
The eigenvalues of A are λ1 = − 3

20 and λ2 = − 1
20 , with corresponding eigenvectors

x1 =
⎧⎪⎩ 1

−2

⎫⎪⎭ and x2 =
⎧⎪⎩1

2

⎫⎪⎭
The solution must then be of the form

Y = c1e−3t/20x1 + c2e−t/20x2

When t = 0, Y = Y0. Thus,

c1x1 + c2x2 = Y0

and we can find c1 and c2 by solving⎧⎪⎩ 1 1
−2 2

⎫⎪⎭⎧⎪⎩c1

c2

⎫⎪⎭ =
⎧⎪⎩60

0

⎫⎪⎭
The solution of this system is c1 = c2 = 30. Therefore, the solution of the initial value
problem is

Y(t) =
⎧⎪⎩ y1(t)

y2(t)

⎫⎪⎭ =
⎧⎪⎪⎩ 30e−3t/20 + 30e−t/20

−60e−3t/20 + 60e−t/20

⎫⎪⎪⎭
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Complex Eigenvalues

Let A be a real n × n matrix with a complex eigenvalue λ = a + bi , and let x be an
eigenvector belonging to λ. The vector x can be split up into its real and imaginary
parts:

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1 + i Im x1

Re x2 + i Im x2
...

Re xn + i Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1

Re x2
...

Re xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im x1

Im x2
...

Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = Re x + i Im x

Since the entries of A are all real, it follows that λ = a − bi is also an eigenvalue of A
with eigenvector

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1 − i Im x1

Re x2 − i Im x2
...

Re xn − i Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = Re x − i Im x

and hence eλt x and eλt x are both solutions of the first-order system Y′ = AY. Any
linear combination of these two solutions will also be a solution. Thus, if we set

Y1 = 1

2
(eλt x + eλt x) = Re(eλt x)

and

Y2 = 1

2i
(eλt x − eλt x) = Im(eλt x)

then the vector functions Y1 and Y2 are real-valued solutions of Y′ = AY. Taking the
real and imaginary parts of

eλt x = e(a+ib)t x

= eat(cos bt + i sin bt)(Re x + i Im x)

we see that

Y1 = eat [(cos bt) Re x − (sin bt) Im x]

Y2 = eat [(cos bt) Im x + (sin bt) Re x]

EXAMPLE 2 Solve the system

y′
1 = y1 + y2

y′
2 = −2y1 + 3y2

Solution
Let

A =
⎧⎪⎩ 1 1

−2 3

⎫⎪⎭



6.2 Systems of Linear Differential Equations 301

The eigenvalues of A are λ = 2 + i and λ = 2 − i , with eigenvectors x = (1, 1 + i)T

and x = (1, 1 − i)T , respectively.

eλt x =
⎧⎪⎪⎩ e2t(cos t + i sin t)

e2t(cos t + i sin t)(1 + i)

⎫⎪⎪⎭
=
⎧⎪⎪⎩ e2t cos t + ie2t sin t

e2t(cos t − sin t) + ie2t(cos t + sin t)

⎫⎪⎪⎭
Let

Y1 = Re(eλt x) =
⎧⎪⎪⎩ e2t cos t

e2t(cos t − sin t)

⎫⎪⎪⎭
and

Y2 = Im(eλt x) =
⎧⎪⎪⎩ e2t sin t

e2t(cos t + sin t)

⎫⎪⎪⎭
Any linear combination

Y = c1Y1 + c2Y2

will be a solution of the system.

If the n×n coefficient matrix A of the system Y′ = AY has n linearly independent
eigenvectors, the general solution can be obtained by the methods that have been pre-
sented. The case when A has fewer than n linearly independent eigenvectors is more
complicated; consequently, we will defer discussion of this case to Section 3.

Higher Order Systems

Given a second-order system of the form

Y′′ = A1Y + A2Y′

we may translate it into a first-order system by setting

yn+1(t) = y′
1(t)

yn+2(t) = y′
2(t)

...

y2n(t) = y′
n(t)

If we let
Y1 = Y = (y1, y2, . . . , yn)

T

and
Y2 = Y′ = (yn+1, . . . , y2n)

T

then
Y′

1 = OY1 + I Y2

and
Y′

2 = A1Y1 + A2Y2
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The equations can be combined to give the 2n × 2n first-order system⎧⎪⎩Y′
1

Y′
2

⎫⎪⎭ =
⎧⎪⎩ O I

A1 A2

⎫⎪⎭⎧⎪⎩Y1

Y2

⎫⎪⎭
If the values of Y1 = Y and Y2 = Y′ are specified when t = 0, then the initial value
problem will have a unique solution.

EXAMPLE 3 Solve the initial value problem

y′′
1 = 2y1 + y2 + y′

1 + y′
2

y′′
2 = −5y1 + 2y2 + 5y′

1 − y′
2

y1(0) = y2(0) = y′
1(0) = 4, y′

2(0) = −4

Solution
Set y3 = y′

1 and y4 = y′
2. This gives the first-order system

y′
1 = y3

y′
2 = y4

y′
3 = 2y1 + y2 + y3 + y4

y′
4 = −5y1 + 2y2 + 5y3 − y4

The coefficient matrix for this system,

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0
0 0 0 1
2 1 1 1

−5 2 5 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
has eigenvalues

λ1 = 1, λ2 = −1, λ3 = 3, λ4 = −3

Corresponding to these eigenvalues are the eigenvectors

x1 = (1, −1, 1, −1)T , x2 = (1, 5, −1, −5)T

x3 = (1, 1, 3, 3)T , x4 = (1, −5, −3, 15)T

Thus, the solution will be of the form

c1x1et + c2x2e−t + c3x3e3t + c4x4e−3t

We can use the initial conditions to find c1, c2, c3, and c4. For t = 0, we have

c1x1 + c2x2 + c3x3 + c4x4 = (4, 4, 4, −4)T

or, equivalently, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

−1 5 1 −5
1 −1 3 −3

−1 −5 3 15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

c2

c3

c4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
4
4

−4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The solution of this system is c = (2, 1, 1, 0)T , and hence the solution to the initial
value problem is

Y = 2x1et + x2e−t + x3e3t

Therefore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2

y′
1

y′
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2et + e−t + e3t

−2et + 5e−t + e3t

2et − e−t + 3e3t

−2et − 5e−t + 3e3t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In general, if we have an mth-order system of the form

Y(m) = A1Y + A2Y′ + · · · + AmY(m−1)

where each Ai is an n × n matrix, we can transform it into a first-order system by
setting

Y1 = Y, Y2 = Y′
1, . . . , Ym = Y′

m−1

We will end up with a system of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y′
1

Y′
2
...

Y′
m−1

Y′
m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O I O · · · O
O O I · · · O
...

O O O · · · I
A1 A2 A3 · · · Am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1

Y2
...

Ym−1

Ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If, in addition, we require that Y, Y′, . . . , Y(m−1) take on specific values when t = 0,
there will be exactly one solution to the problem.

If the system is simply of the form Y(m) = AY, it is usually not necessary to
introduce new variables. In this case, we need only calculate the mth roots of the
eigenvalues of A. If λ is an eigenvalue of A, x is an eigenvector belonging to λ, σ is
an mth root of λ, and Y = eσ t x, then

Y(m) = σ meσ t x = λY
and

AY = eσ t Ax = λeσ t x = λY

Therefore, Y = eσ t x is a solution of the system.

APPLICATION 2 Harmonic Motion

In Figure 6.2.2, two masses are joined by springs and the ends A and B are fixed. The
masses are free to move horizontally. We will assume that the three springs are uniform
and that initially the system is in the equilibrium position. A force is exerted on the
system to set the masses in motion. The horizontal displacements of the masses at time
t will be denoted by x1(t) and x2(t), respectively. We will assume that there are no
retarding forces such as friction. Then the only forces acting on mass m1 at time t will
be from the springs 1 and 2. The force from spring 1 will be −kx1 and the force from
spring 2 will be k(x2 − x1). By Newton’s second law,

m1x ′′
1 (t) = −kx1 + k(x2 − x1)
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A B

x1 x2

m2m11 2 3

Figure 6.2.2.

Similarly, the only forces acting on the second mass will be from springs 2 and 3.
Using Newton’s second law again, we get

m2x ′′
2 (t) = −k(x2 − x1) − kx2

Thus, we end up with the second-order system

x ′′
1 = − k

m1
(2x1 − x2)

x ′′
2 = − k

m2
(−x1 + 2x2)

Suppose now that m1 = m2 = 1, k = 1, and the initial velocity of both masses is
+2 units per second. To determine the displacements x1 and x2 as functions of t , we
write the system in the form

X′′ = AX (2)

The coefficient matrix

A =
⎧⎪⎩−2 1

1 −2

⎫⎪⎭
has eigenvalues λ1 = −1 and λ2 = −3. Corresponding to λ1, we have the eigenvector
v1 = (1, 1)T and σ1 = ±i . Thus, eit v1 and e−i t v1 are both solutions of (2). It follows
that

1

2
(eit + e−i t)v1 = (Re eit)v1 = (cos t)v1

and
1

2i
(eit − e−i t)v1 = (Im eit)v1 = (sin t)v1

are also both solutions of (2). Similarly, for λ2 = −3, we have the eigenvector v2 =
(1, −1)T and σ2 = ±√

3i . It follows that

(Re e
√

3i t)v2 = (cos
√

3t)v2

and
(Im e

√
3i t)v2 = (sin

√
3t)v2

are also solutions of (2). Thus, the general solution will be of the form

X(t) = c1(cos t)v1 + c2(sin t)v1 + c3(cos
√

3t)v2 + c4(sin
√

3t)v2

=
⎧⎪⎪⎩c1 cos t + c2 sin t + c3 cos

√
3t + c4 sin

√
3t

c1 cos t + c2 sin t − c3 cos
√

3t − c4 sin
√

3t

⎫⎪⎪⎭
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At time t = 0, we have

x1(0) = x2(0) = 0 and x ′
1(0) = x ′

2(0) = 2

It follows that
c1 + c3 = 0
c1 − c3 = 0

and
c2 + √

3c4 = 2
c2 − √

3c4 = 2

and hence
c1 = c3 = c4 = 0 and c2 = 2

Therefore, the solution to the initial value problem is simply

X(t) =
⎧⎪⎩2 sin t

2 sin t

⎫⎪⎭
The masses will oscillate with frequency 1 and amplitude 2.

APPLICATION 3 Vibrations of a Building

For another example of a physical system, we consider the vibrations of a building.
If the building has k stories, we can represent the horizontal deflections of the stories
at time t by the vector function Y(t) = (y1(t), y2(t), . . . , yk(t))T . The motion of
a building can be modeled by a second-order system of differential equations of the
form

MY′′(t) = K Y(t)

The mass matrix M is a diagonal matrix whose entries correspond to the concentrated
weights at each story. The entries of the stiffness matrix K are determined by the
spring constants of the supporting structures. Solutions of the equation are of the form
Y(t) = eiσ t x, where x is an eigenvector of A = M−1 K belonging to an eigenvalue λ

and σ is a square root of λ.

SECTION 6.2 EXERCISES
1. Find the general solution of each of the following

systems:

(a) y′
1 = y1 + y2

y′
2 = −2y1 + 4y2

(b) y′
1 = 2y1 + 4y2

y′
2 = −y1 − 3y2

(c) y′
1 = y1 − 2y2

y′
2 = −2y1 + 4y2

(d) y′
1 = y1 − y2

y′
2 = y1 + y2

(e) y′
1 = 3y1 − 2y2

y′
2 = 2y1 + 3y2

(f) y′
1 = y1 + y3

y′
2 = 2y2 + 6y3

y′
3 = y2 + 3y3

2. Solve each of the following initial value problems:

(a) y′
1 = −y1 + 2y2

y′
2 = 2y1 − y2

y1(0) = 3, y2(0) = 1

(b) y′
1 = y1 − 2y2

y′
2 = 2y1 + y2

y1(0) = 1, y2(0) = −2

(c) y′
1 = 2y1 − 6y3

y′
2 = y1 − 3y3

y′
3 = y2 − 2y3

y1(0) = y2(0) = y3(0) = 2
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(d) y′
1 = y1 + 2y3

y′
2 = y2 − y3

y′
3 = y1 + y2 + y3

y1(0) = y2(0) = 1, y3(0) = 4

3. Given

Y = c1eλ1t x1 + c2eλ2t x2 + · · · + cneλn t xn

is the solution to the initial value problem:

Y′ = AY, Y(0) = Y0

(a) Show that

Y0 = c1x1 + c2x2 + · · · + cnxn

(b) Let X = (x1, . . . , xn) and c = (c1, . . . , cn)
T .

Assuming that the vectors x1, . . . , xn are lin-
early independent, show that c = X−1Y0.

4. Two tanks each contain 100 liters of a mixture. Ini-
tially, the mixture in tank A contains 40 grams of
salt while tank B contains 20 grams of salt. Liq-
uid is pumped in and out of the tanks as shown in
the accompanying figure. Determine the amount of
salt in each tank at time t .

Mixture
16 L/min

Mixture
12 L/min

Mixture
4 L/min

Water
12 L/min

B
100 L

A
100 L

5. Find the general solution of each of the following
systems:

(a) y′′
1 = −2y2

y′′
2 = y1 + 3y2

(b) y′′
1 = 2y1 + y′

2

y′′
2 = 2y2 + y′

1

6. Solve the initial value problem

y′′
1 = −2y2 + y′

1 + 2y′
2

y′′
2 = 2y1 + 2y′

1 − y′
2

y1(0) = 1, y2(0) = 0, y′
1(0) = −3, y′

2(0) = 2

7. In Application 2, assume that the solutions are of
the form x1 = a1 sin σ t , x2 = a2 sin σ t . Substitute
these expressions into the system and solve for the
frequency σ and the amplitudes a1 and a2.

8. Solve the the problem in Application 2, using the
initial conditions

x1(0) = x2(0) = 1, x ′
1(0) = 4, and x ′

2(0) = 2

9. Two masses are connected by springs as shown in
the accompanying diagram. Both springs have the
same spring constant, and the end of the first spring
is fixed. If x1 and x2 represent the displacements
from the equilibrium position, derive a system of
second-order differential equations that describes
the motion of the system.

m1

m2

x1

x2

10. Three masses are connected by a series of springs
between two fixed points as shown in the accom-
panying figure. Assume that the springs all have
the same spring constant, and let x1(t), x2(t), and
x3(t) represent the displacements of the respective
masses at time t .

A B
m2 m3m1

(a) Derive a system of second-order differential
equations that describes the motion of this sys-
tem.

(b) Solve the system if m1 = m3 = 1
3 , m2 = 1

4 ,
k = 1, and

x1(0) = x2(0) = x3(0) = 1

x ′
1(0) = x ′

2(0) = x ′
3(0) = 0

11. Transform the nth-order equation

y(n) = a0 y + a1 y′ + · · · + an−1 y(n−1)

into a system of first-order equations by setting
y1 = y and y j = y′

j−1 for j = 2, . . . , n. Determine
the characteristic polynomial of the coefficient ma-
trix of this system.
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6.3 Diagonalization

In this section, we consider the problem of factoring an n × n matrix A into a product
of the form XDX−1, where D is diagonal. We will give a necessary and sufficient
condition for the existence of such a factorization and look at a number of examples.
We begin by showing that eigenvectors belonging to distinct eigenvalues are linearly
independent.

Theorem 6.3.1 If λ1, λ2, . . . , λk are distinct eigenvalues of an n × n matrix A with corresponding
eigenvectors x1, x2, . . . , xk , then x1, . . . , xk are linearly independent.

Proof Let r be the dimension of the subspace of R
n spanned by x1, . . . , xk and suppose that

r < k. We may assume (reordering the xi ’s and λi ’s if necessary) that x1, . . . , xr

are linearly independent. Since x1, x2, . . . , xr , xr+1 are linearly dependent, there exist
scalars c1, . . . , cr , cr+1, not all zero, such that

c1x1 + · · · + cr xr + cr+1xr+1 = 0 (1)

Note that cr+1 must be nonzero; otherwise, x1, . . . , xr would be dependent. So
cr+1xr+1 �= 0 and hence c1, . . . , cr cannot all be zero. Multiplying (1) by A, we get

c1 Ax1 + · · · + cr Axr + cr+1 Axr+1 = 0

or

c1λ1x1 + · · · + crλr xr + cr+1λr+1xr+1 = 0 (2)

Subtracting λr+1 times (1) from (2) gives

c1(λ1 − λr+1)x1 + · · · + cr (λr − λr+1)xr = 0

This contradicts the independence of x1, . . . , xr . Therefore, r must equal k.

Definition An n × n matrix A is said to be diagonalizable if there exists a nonsingular matrix
X and a diagonal matrix D such that

X−1 AX = D

We say that X diagonalizes A.

Theorem 6.3.2 An n × n matrix A is diagonalizable if and only if A has n linearly independent eigen-
vectors.

Proof Suppose that the matrix A has n linearly independent eigenvectors x1, x2, . . . , xn . Let
λi be the eigenvalue of A corresponding to xi for each i . (Some of the λi ’s may be
equal.) Let X be the matrix whose j th column vector is x j for j = 1, . . . , n. It follows
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that Ax j = λ j x j is the j th column vector of AX . Thus,

AX = (Ax1, Ax2, . . . , Axn)

= (λ1x1, λ2x2, . . . , λnxn)

= (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= XD

Since X has n linearly independent column vectors, it follows that X is nonsingular
and hence

D = X−1 XD = X−1 AX

Conversely, suppose that A is diagonalizable. Then there exists a nonsingular matrix
X such that AX = XD. If x1, x2, . . . , xn are the column vectors of X , then

Ax j = λ j x j (λ j = d j j )

for each j . Thus, for each j , λ j is an eigenvalue of A and x j is an eigenvector belonging
to λ j . Since the column vectors of X are linearly independent, it follows that A has n
linearly independent eigenvectors.

Remarks

1. If A is diagonalizable, then the column vectors of the diagonalizing matrix X
are eigenvectors of A and the diagonal elements of D are the corresponding
eigenvalues of A.

2. The diagonalizing matrix X is not unique. Reordering the columns of a given
diagonalizing matrix X or multiplying them by nonzero scalars will produce a
new diagonalizing matrix.

3. If A is n × n and A has n distinct eigenvalues, then A is diagonalizable. If the
eigenvalues are not distinct, then A may or may not be diagonalizable, depend-
ing on whether A has n linearly independent eigenvectors.

4. If A is diagonalizable, then A can be factored into a product XDX−1.

It follows from remark 4 that

A2 = (XDX−1)(XDX−1) = XD2 X−1

and, in general,

Ak = XDk X−1 = X

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(λ1)

k

(λ2)
k

. . .

(λn)
k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ X−1

Once we have a factorization A = XDX−1, it is easy to compute powers of A.
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EXAMPLE 1 Let

A =
⎧⎪⎩2 −3

2 −5

⎫⎪⎭
The eigenvalues of A are λ1 = 1 and λ2 = −4. Corresponding to λ1 and λ2, we have
the eigenvectors x1 = (3, 1)T and x2 = (1, 2)T . Let

X =
⎧⎪⎩3 1

1 2

⎫⎪⎭
It follows that

X−1 AX = 1

5

⎧⎪⎩ 2 −1
−1 3

⎫⎪⎭⎧⎪⎩2 −3
2 −5

⎫⎪⎭⎧⎪⎩3 1
1 2

⎫⎪⎭
=
⎧⎪⎩1 0

0 −4

⎫⎪⎭
and

XDX−1 =
⎧⎪⎩3 1

1 2

⎫⎪⎭⎧⎪⎩1 0
0 −4

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2
5 − 1

5

− 1
5

3
5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩2 −3

2 −5

⎫⎪⎭ = A

EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
It is easily seen that the eigenvalues of A are λ1 = 0, λ2 = 1, and λ3 = 1. Corre-
sponding to λ1 = 0, we have the eigenvector (1, 1, 1)T , and corresponding to λ = 1,
we have the eigenvectors (1, 2, 0)T and (1, 0, 1)T . Let

X =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 2 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭
It follows that

X DX−1 =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 2 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

−2 1 2
1 0 −1
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
= A

Even though λ = 1 is a multiple eigenvalue, the matrix can still be diagonalized since
there are three linearly independent eigenvectors. Note also that

Ak = XDk X−1 = XDX−1 = A

for any k ≥ 1.
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If an n × n matrix A has fewer than n linearly independent eigenvectors, we say
that A is defective. It follows from Theorem 6.3.2 that a defective matrix is not diago-
nalizable.

EXAMPLE 3 Let

A =
⎧⎪⎩1 1

0 1

⎫⎪⎭
The eigenvalues of A are both equal to 1. Any eigenvector corresponding to λ = 1
must be a multiple of x1 = (1, 0)T . Thus, A is defective and cannot be diagonalized.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
0 4 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
−1 4 0
−3 6 2

⎫⎪⎪⎪⎪⎪⎭
A and B both have the same eigenvalues,

λ1 = 4, λ2 = λ3 = 2

The eigenspace of A corresponding to λ1 = 4 is spanned by e2 and the eigenspace
corresponding to λ = 2 is spanned by e3. Since A has only two linearly indepen-
dent eigenvectors, it is defective. On the other hand, the matrix B has eigenvector
x1 = (0, 1, 3)T corresponding to λ1 = 4 and eigenvectors x2 = (2, 1, 0)T and e3

corresponding to λ = 2. Thus, B has three linearly independent eigenvectors and con-
sequently is not defective. Even though λ = 2 is an eigenvalue of multiplicity 2, the
matrix B is nondefective, since the corresponding eigenspace has dimension 2.

Geometrically, the matrix B has the effect of stretching two linearly independent
vectors by a factor of 2. We can think of the eigenvalue λ = 2 as having geometric
multiplicity 2, since the dimension of the eigenspace N (B − 2I ) is 2. By contrast,
the matrix A stretches only vectors along the z-axis, by a factor of 2. In this case, the
eigenvalue λ = 2 has algebraic multiplicity 2, but dim N (A−2I ) = 1, so its geometric
multiplicity is only 1 (see Figure 6.3.1).

z

x

y

e3

z

x

y

2e3

A
z

x

y y

e3

x2

2e3

2x2

B
z

x

Figure 6.3.1.
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APPLICATION 1 Markov Chains

In Section 1, we studied a simple matrix model for predicting the number of married
and single women in a certain town each year. Given an initial vector x0 whose co-
ordinates represent the current number of married and single women, we were able to
predict the number of married and single women in future years by computing

x1 = Ax0, x2 = Ax1, x3 = Ax2, . . .

If we scale the initial vector so that its entries indicate the proportions of the population
that are married and single, then the coordinates of xn will indicate the proportions of
married and single women after n years. The sequence of vectors that we generate in
this manner is an example of a Markov chain. Markov chain models occur in a wide
variety of applied fields.

Definition A stochastic process is any sequence of experiments for which the outcome at
any stage depends on chance. A Markov process is a stochastic process with the
following properties:

I. The set of possible outcomes or states is finite.
II. The probability of the next outcome depends only on the previous out-

come.
III. The probabilities are constant over time.

The following is an example of a Markov process:

EXAMPLE 5 Automobile Leasing An automobile dealer leases four types of vehicles: four-
door sedans, sports cars, minivans, and sport utility vehicles. The term of the lease is 2
years. At the end of the term, customers must renegotiate the lease and choose a new
vehicle.

The automobile leasing can be viewed as a process with four possible outcomes.
The probability of each outcome can be estimated by reviewing records of previous
leases. The records indicate that 80 percent of the customers currently leasing sedans
will continue doing so in the next lease. Furthermore, 10 percent of the customers cur-
rently leasing sports cars will switch to sedans. In addition, 5 percent of the customers
driving minivans or sport utility vehicles will also switch to sedans. These results are
summarized in the first row of Table 1. The second row indicates the percentages of
customers that will lease sports cars the next time, and the final two rows give the
percentages that will lease minivans and sport utility vehicles, respectively.

Table 1 Transition Probabilities for Vehicle Leasing

Current Lease

Sedan Sports Car Minivan SUV Next Lease

0.80 0.10 0.05 0.05 Sedan
0.10 0.80 0.05 0.05 Sports Car

0.05 0.05 0.80 0.10 Minivan

0.05 0.05 0.10 0.80 SUV
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Suppose that initially there are 200 sedans leased and 100 of each of the other three
types of vehicles. If we set

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ x0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
200
100
100
100

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
then we can determine how many people will lease each type of vehicle two years later
by setting

x1 = Ax0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

200
100
100
100

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
180
110
105
105

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can predict the numbers for future leases by setting

xn+1 = Axn for n = 1, 2, . . .

The vectors xi produced in this manner are referred to as state vectors, and the sequence
of state vectors is called a Markov chain. The matrix A is referred to as a transition
matrix. The entries of each column of A are nonnegative numbers that add up to 1.
Each column can be viewed as a probability vector. For example, the first column of
A corresponds to individuals currently leasing sedans. The entries in this column are
the probabilities of choosing each type of vehicle when the lease is renewed.

In general, a matrix is said to be stochastic if its entries are nonnegative and the
entries in each column add up to 1. The columns of a stochastic matrix can be viewed
as probability vectors.

If we divide the entries of the initial vector by 500 (the total number of customers),
then the entries of the new initial state vector

x0 = (0.40, 0.20, 0.20, 0.20)T

represent the proportions of the population that rent each type of vehicle. The entries
of x1 will represent the proportions for the next lease. Thus, x0 and x1 are probability
vectors, and it is easily seen that the succeeding state vectors in the chain will all be
probability vectors.

The long-range behavior of the process is determined by the eigenvalues and eigen-
vectors of the transition matrix A. The eigenvalues of A are λ1 = 1, λ2 = 0.8, and
λ3 = λ4 = 0.7. Even though A has a multiple eigenvalue, it does have four linearly
independent eigenvectors and hence it can be diagonalized. If the eigenvectors are used
to form a diagonalizing matrix Y , then

A = Y DY −1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 0 1

1 −1 0 −1

1 1 1 0

1 1 −1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0

0 8
10 0 0

0 0 7
10 0

0 0 0 7
10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
4

1
4

1
4

− 1
4 − 1

4
1
4

1
4

0 0 1
2 − 1

2
1
2 − 1

2 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The state vectors are computed by setting

xn = Y DnY −1x0

= Y Dn(0.25, −0.05, 0, 0.10)T

= Y (0.25, −0.05(0.8)n, 0, 0.10(0.7)n)T

= 0.25

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
1
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ − 0.05(0.8)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1
−1

1
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + 0.10(0.7)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
As n increases, xn approaches the steady-state vector

x = (0.25, 0.25, 0.25, 0.25)T

Thus, the Markov chain model predicts that, in the long run, the leases will be divided
equally among the four types of vehicles.

In general, we will assume that the initial vector x0 in a Markov chain is a proba-
bility vector, and this in turn implies that all of the state vectors are probability vectors.
One would expect, then, that if the chain converges to a steady-state vector x, then the
steady-state vector must also be a probability vector. This is indeed the case, as we see
in the next theorem.

Theorem 6.3.3 If a Markov chain with an n × n transition matrix A converges to a steady-state vector
x, then

(i) x is a probability vector.

(ii) λ1 = 1 is an eigenvalue of A and x is an eigenvector belonging to λ1.

Proof of (i) Let us denote the kth state vector in the chain by xk = (x (k)

1 , x (k)

2 , . . . , x (k)
n )T . The

entries of each xk are nonnegative and sum to 1. For each j , the j th entry of the limit
vector x satisfies

x j = lim
k→∞ x (k)

j ≥ 0

and
x1 + x2 + · · · + xn = lim

k→∞(x (k)

1 + x (k)

2 + · · · + x (k)
n ) = 1

Therefore the steady-state vector x is a probability vector.

Proof of (ii) We leave it for the reader to prove that λ1 = 1 is an eigenvalue of A. (See Exercise 25.)
It follows that x is an eigenvector belonging to λ1 = 1, since

Ax = A( lim
k→∞ xk) = lim

k→∞(Axk) = lim
k→∞ xk+1 = x

In general, if A is a n × n stochastic matrix, then λ1 = 1 is an eigenvalue of A and
the remaining eigenvalues satisfy

|λ j | ≤ 1 j = 2, 3, . . . , n
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(See Exercise 24 of Chapter 7, Section 4.) The existence of a steady state for a Markov
chain is guaranteed whenever λ1 = 1 is a dominant eigenvalue of the transition matrix
A. An eigenvalue λ1 of a matrix A is said to be a dominant eigenvalue if the remaining
eigenvalues of A satisfy

|λ j | < |λ1| for j = 2, 3, . . . , n

Theorem 6.3.4 If λ1 = 1 is a dominant eigenvalue of a stochastic matrix A, then the Markov chain
with transition A will converge to a steady-state vector.

Proof In the case that A is diagonalizable, let y1 be an eigenvector belonging to λ1 = 1 and
let Y = (y1, y2, . . . , yn) be a matrix that diagonalizes A. If E is the n × n matrix
whose (1, 1) entry is 1 and whose remaining entries are all 0, then as k → ∞,

Dk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λk

1
λk

2
. . .

λk
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = E

If x0 is any initial probability vector and c = Y −1x0, then

xk = Akx0 = Y DkY −1x0 = Y Dkc → Y Ec = Y (c1e1) = c1y1

Thus, the vector c1y1 is the steady-state vector for the Markov chain.
In the case that the transition matrix A is defective with dominant eigenvalue λ1 =

1, one can still prove the result by using a special matrix J that is referred to as the
Jordan canonical form of A. This topic is covered in detail in the supplemental Web
chapter (Chapter 9) that accompanies this book. In that chapter, it is shown that any
n × n matrix A can be factored into a product A = Y JY −1, where J is an upper
bidiagonal matrix with the eigenvalues of A on its main diagonal and 0’s and 1’s on
the diagonal directly above the main diagonal. It turns out that if A is stochastic with
dominant eigenvalue λ1 = 1, then J k will converge to E as k → ∞. So the proof in
the case where A is defective is the same as before, but with the diagonal matrix D
replaced by the bidiagonal matrix J .

Not all Markov chains converge to a steady-state vector. However, it can be shown
that if all the entries of the transition matrix A are positive, then there is a unique
steady-state vector x and that Anx0 will converge to x for any initial probability vector
x0. In fact, this result will hold if Ak has strictly positive entries, even though A may
have some 0 entries. A Markov process with transition matrix A is said to be regular
if all the entries of some power of A are positive.

In Section 8, we will study positive matrices, that is, matrices whose entries are
all positive. One of the main results in that section is a theorem due to Perron. The
Perron theorem can be used to show that if the transition matrix A of a Markov process
is positive, then λ1 = 1 is a dominant eigenvalue of A.
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APPLICATION 2 Web Searches and Page Ranking

A common way to locate information on the Web is to do a key word search using one
of the many search engines available. Generally, the search engine will find all pages
that contain the key search words and rank the pages in order of importance. Typically,
there are more than 20 billion pages being searched, and it is not uncommon to find as
many as 20,000 pages that match all of the key words. Often in such cases, the page
ranked first or second by the search engine is exactly the one with the information you
are seeking. How do the search engines rank the pages? In this application, we will
describe the technique used by the search engine GoogleTM.

The Google PageRankTM algorithm for ranking pages is actually a gigantic Markov
process based on the link structure of the Web. The algorithm was initially conceived
by two graduate students at Stanford University. The students, Larry Page and Sergey
Brin, used the algorithm to develop the most successful and widely used search engine
on the Internet.

The PageRank algorithm views Web surfing as a random process. The transition
matrix A for the Markov process will be n × n, where n is the total number of sites
that are searched. The page rank computation has been referred to as the “world’s
largest matrix computation” since current values of n are greater than 20 billion. (See
Reference 1.) The (i, j) entry of A represents the probability that a random Web surfer
will link from Web site j to Web site i . The page rank model assumes that the surfer
will always follow a link on the current page a certain percentage of the time and
otherwise will randomly link to another page.

For example, assume that the current page is numbered j and it has links to five
other pages. Assume also that the user will follow these five links 85 percent of the
time and will randomly link to another page 15 percent of the time. If there is no link
from page j to page i , then

ai j = 0.15
1

n

If page j does contain a link to page i , then one could follow that link, or one could
get to page i doing a random surf. In this case,

ai j = 0.85
1

5
+ 0.15

1

n

In the case that the current page j has no hyperlinks to any other pages, it is considered
to be a dangling page. In this case, we assume that the Web surfer will connect to any
page on the Web with equal probability, and we set

ai j = 1

n
for 1 ≤ i ≤ n (3)

More generally, let k( j) denote the number of links from page j to other pages on
the Web. If k( j) �= 0 and the person surfing the Web follows only links on the current
Web page and always follows one of the links, then the probability of linking from
page j to i is given by

mi j =
{

1
k( j) if there is a link from page j to page i

0 otherwise
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In the case that page j is a dangling Web page, we assume that the Web surfer will link
to page i with probability

mi j = 1

n
If we make the added assumption that the surfer will follow a link on the current page
with probability p and randomly link to any other page with probability 1 − p, then
the probability of linking from page j to i is given by

ai j = pmi j + (1 − p)
1

n
(4)

Note that in the case that page j is a dangling Web page, equation (4) simplifies to
equation (3).

Because of the random surfing, each entry in the j th column of A is strictly pos-
itive. Since A has strictly positive entries, the Perron theory (Section 8) can be used
to show that the Markov process will converge to a unique steady-state vector x. The
kth entry of x corresponds to the probability that, in the long run, a random surfer will
end up at Web site k. The entries of the steady-state vector provide the page rankings.
The value of xk determines the overall ranking of Web site k. For example, if xk is the
third-largest entry of the vector x, then Web site k will have the third-highest overall
page rank. When a Web search is conducted, the search engine first finds all sites that
match all of the key words. It then lists them in decreasing order of their page ranks.

Let M = (mi j ) and let e be a vector in R
n whose entries are all equal to 1. The

matrix M is sparse; that is, most of its entries are equal to 0. If we set E = eeT , then
E is an n × n matrix of rank 1 and we can write Equation (4) in matrix form:

A = pM + 1 − p

n
eeT = pM + 1 − p

n
E (5)

Thus, A is a sum of two matrices with special structure. To compute the steady-state
vector, we must perform a sequence of multiplications

x j+1 = Ax j , j = 0, 1, 2, . . .

These computations can be simplified dramatically if we take advantage of the special
structure of M and E . (See Exercise 27.)

References
1. Moler, Cleve, “The World’s Largest Matrix Computation,” MATLAB News &

Notes, The Mathworks, Natick, MA, October 2002.
2. Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd, “The
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(dbpubs.stanford.edu/pub/1999-66)

APPLICATION 3 Sex-Linked Genes

Sex-linked genes are genes that are located on the X chromosome. For example, the
gene for blue-green color blindness is a recessive sex-linked gene. To devise a math-
ematical model to describe color blindness in a given population, it is necessary to
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divide the population into two classes: males and females. Let x (0)

1 be the proportion
of genes for color blindness in the male population, and let x (0)

2 be the proportion in the
female population. [Since color blindness is recessive, the actual proportion of color-
blind females will be less than x (0)

2 .] Because the male receives one X chromosome
from the mother and none from the father, the proportion x (1)

1 of color-blind males in
the next generation will be the same as the proportion of recessive genes in the present
generation of females. Because the female receives an X chromosome from each par-
ent, the proportion x (1)

2 of recessive genes in the next generation of females will be the
average of x (0)

1 and x (0)

2 . Thus,

x (0)

2 = x (1)

1

1
2 x (0)

1 + 1
2 x (0)

2 = x (1)

2

If x (0)

1 = x (0)

2 , the proportion will not change in future generations. Let us assume that
x (0)

1 �= x (0)

2 and write the system as a matrix equation:⎧⎪⎪⎪⎩ 0 1
1
2

1
2

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ x (0)

1

x (0)

2

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ x (1)

1

x (1)

2

⎫⎪⎪⎪⎭
Let A denote the coefficient matrix, and let x(n) = (x (n)

1 , x (n)

2 )T denote the proportion
of color-blind genes in the male and female populations of the (n + 1)st generation.
Then

x(n) = Anx(0)

To compute An , we note that A has eigenvalues 1 and − 1
2 and consequently can be

factored into a product:

A =
⎧⎪⎩1 −2

1 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩1 0

0 − 1
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1
3

2
3

− 1
3

1
3

⎫⎪⎪⎪⎪⎪⎭
Thus,

x(n) =
⎧⎪⎩1 −2

1 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩1 0

0 − 1
2

⎫⎪⎪⎪⎪⎪⎭
n ⎧⎪⎪⎪⎪⎪⎩

1
3

2
3

− 1
3

1
3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩ x (0)

1

x (0)

2

⎫⎪⎪⎪⎪⎪⎭
= 1

3

⎧⎪⎪⎪⎪⎪⎩1 − (− 1
2 )n−1 2 + (− 1

2 )n−1

1 − (− 1
2 )n 2 + (− 1

2 )n

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩ x (0)

1

x (0)

2

⎫⎪⎪⎪⎪⎪⎭
and hence

lim
n→∞ x(n) = 1

3

⎧⎪⎩1 2
1 2

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩ x (0)

1

x (0)

2

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x (0)

1 + 2x (0)

2

3

x (0)

1 + 2x (0)

2

3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The proportions of genes for color blindness in the male and female populations will
tend to the same value as the number of generations increases. If the proportion of
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color-blind men is p and, over a number of generations, no outsiders have entered the
population, there is justification for assuming that the proportion of genes for color
blindness in the female population is also p. Since color blindness is recessive, we
would expect the proportion of color-blind women to be about p2. Thus, if 1 percent
of the male population is color blind, we would expect about 0.01 percent of the female
population to be color blind.

The Exponential of a Matrix

Given a scalar a, the exponential ea can be expressed in terms of a power series

ea = 1 + a + 1

2!a
2 + 1

3!a
3 + · · ·

Similarly, for any n × n matrix A, we can define the matrix exponential eA in terms of
the convergent power series

eA = I + A + 1

2! A2 + 1

3! A3 + · · · (6)

The matrix exponential (6) occurs in a wide variety of applications. In the case of a
diagonal matrix

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
the matrix exponential is easy to compute:

eD = lim
m→∞

(
I + D + 1

2! D2 + · · · + 1

m! Dm

)

= lim
m→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
k=1

1

k!λ
k
1

. . .
m∑

k=1

1

k!λ
k
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
eλ1

eλ2

. . .

eλn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is more difficult to compute the matrix exponential for a general n × n matrix A. If,
however, A is diagonalizable, then

Ak = XDk X−1 for k = 1, 2, . . .

eA = X

(
I + D + 1

2! D2 + 1

3! D3 + · · ·
)

X−1

= XeD X−1

EXAMPLE 6 Compute eA for

A =
⎧⎪⎩−2 −6

1 3

⎫⎪⎭
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Solution
The eigenvalues of A are λ1 = 1 and λ2 = 0, with eigenvectors x1 = (−2, 1)T and
x2 = (−3, 1)T . Thus,

A = XDX−1 =
⎧⎪⎩−2 −3

1 1

⎫⎪⎭⎧⎪⎩1 0
0 0

⎫⎪⎭⎧⎪⎩ 1 3
−1 −2

⎫⎪⎭
and

eA = XeD X−1 =
⎧⎪⎩−2 −3

1 1

⎫⎪⎭⎧⎪⎪⎩e1 0
0 e0

⎫⎪⎪⎭⎧⎪⎩ 1 3
−1 −2

⎫⎪⎭
=
⎧⎪⎩3 − 2e 6 − 6e

e − 1 3e − 2

⎫⎪⎭
The matrix exponential can be applied to the initial value problem

Y′ = AY, Y(0) = Y0 (7)

studied in Section 2. In the case of one equation in one unknown,

y′ = ay, y(0) = y0

the solution is
y = eat y0 (8)

We can generalize this and express the solution of (7) in terms of the matrix exponential
et A. In general, a power series can be differentiated term by term within its radius of
convergence. Since the expansion of et A has infinite radius of convergence, we have

d

dt
et A = d

dt

(
I + tA + 1

2! t
2 A2 + 1

3! t
3A3 + · · ·

)

=
(

A + tA2 + 1

2! t
2A3 + · · ·

)

= A

(
I + tA + 1

2! t
2A2 + · · ·

)
= Aet A

If, as in (8), we set
Y(t) = et AY0

then
Y′ = Aet AY0 = AY

and
Y(0) = Y0

Thus, the solution of
Y′ = AY, Y(0) = Y0

is simply
Y = et AY0 (9)
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Although the form of this solution looks different from the solutions in Section 2, there
is really no difference. In Section 2, the solution was expressed in the form

c1eλ1t x1 + c2eλ2t x2 + · · · + cneλn t xn

where xi was an eigenvector belonging to λi for i = 1, . . . , n. The ci ’s that satisfied
the initial conditions were determined by solving a system

Xc = Y0

with coefficient matrix X = (x1, . . . , xn).
If A is diagonalizable, we can write (9) in the form

Y = Xet D X−1Y0

Thus,

Y = Xet Dc

= (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1eλ1t

c2eλ2t

...

cneλn t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= c1eλ1t x1 + · · · + cneλn t xn

To summarize, the solution to the initial value problem (7) is given by

Y = et AY0

If A is diagonalizable, this solution can be written in the form

Y = Xet D X−1Y0

= c1eλ1t x1 + c2eλ2t x2 + · · · + cneλn t xn (c = X−1Y0)

EXAMPLE 7 Use the matrix exponential to solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎩3 4

3 2

⎫⎪⎭ , Y0 =
⎧⎪⎩6

1

⎫⎪⎭
(This problem was solved in Example 1 of Section 2.)

Solution
The eigenvalues of A are λ1 = 6 and λ2 = −1, with eigenvectors x1 = (4, 3)T and
x2 = (1, −1)T . Thus,

A = XDX−1 =
⎧⎪⎩4 1

3 −1

⎫⎪⎭⎧⎪⎩6 0
0 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1
7

1
7

3
7 − 4

7

⎫⎪⎪⎪⎪⎪⎭
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and the solution is given by

Y = et AY0

= Xet D X−1Y0

=
⎧⎪⎩4 1

3 −1

⎫⎪⎭⎧⎪⎩e6t 0
0 e−t

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1
7

1
7

3
7 − 4

7

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩6

1

⎫⎪⎭
=
⎧⎪⎪⎩4e6t + 2e−t

3e6t − 2e−t

⎫⎪⎪⎭
Compare this solution to the one obtained in Example 1 in Section 2.

EXAMPLE 8 Use the matrix exponential to solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

2
1
4

⎫⎪⎪⎪⎪⎪⎭
Solution
Since the matrix A is defective, we will use the definition of the matrix exponential to
compute et A. Note that A3 = O , so

et A = I + t A + 1

2! t
2A2

=
⎧⎪⎪⎪⎪⎪⎩

1 t t2/2
0 1 t
0 0 1

⎫⎪⎪⎪⎪⎪⎭
The solution to the initial value problem is given by

Y = et AY0

=
⎧⎪⎪⎪⎪⎪⎩

1 t t2/2
0 1 t
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2
1
4

⎫⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

2 + t + 2t2

1 + 4t
4

⎫⎪⎪⎪⎪⎪⎭
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SECTION 6.3 EXERCISES
1. In each of the following, factor the matrix A into a

product XDX−1, where D is diagonal:

(a) A =
⎧⎪⎩0 1

1 0

⎫⎪⎭ (b) A =
⎧⎪⎩ 5 6

−2 −2

⎫⎪⎭
(c) A =

⎧⎪⎩2 −8
1 −4

⎫⎪⎭ (d) A =
⎧⎪⎪⎪⎪⎪⎩

2 2 1
0 1 2
0 0 −1

⎫⎪⎪⎪⎪⎪⎭
(e) A =

⎧⎪⎪⎪⎪⎪⎩
1 0 0

−2 1 3
1 1 −1

⎫⎪⎪⎪⎪⎪⎭
(f) A =

⎧⎪⎪⎪⎪⎪⎩
1 2 −1
2 4 −2
3 6 −3

⎫⎪⎪⎪⎪⎪⎭
2. For each of the matrices in Exercise 1, use the

XDX−1 factorization to compute A6.

3. For each of the nonsingular matrices in Exercise 1,
use the XDX−1 factorization to compute A−1.

4. For each of the following, find a matrix B such that
B2 = A:

(a) A =
⎧⎪⎩ 2 1

−2 −1

⎫⎪⎭ (b) A =
⎧⎪⎪⎪⎪⎪⎩

9 −5 3
0 4 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭
5. Let A be a nondefective n×n matrix with diagonal-

izing matrix X . Show that the matrix Y = (X−1)T

diagonalizes AT .

6. Let A be a diagonalizable matrix whose eigenval-
ues are all either 1 or −1. Show that A−1 = A.

7. Show that any 3 × 3 matrix of the form⎧⎪⎪⎪⎪⎪⎩
a 1 0
0 a 1
0 0 b

⎫⎪⎪⎪⎪⎪⎭
is defective.

8. For each of the following, find all possible values of
the scalar α that make the matrix defective or show
that no such values exist:

(a)

⎧⎪⎪⎪⎪⎪⎩
1 1 0
1 1 0
0 0 α

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 1 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 2 0
2 1 0
2 −1 α

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
4 6 −2

−1 −1 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
3α 1 0
0 α 0
0 0 α

⎫⎪⎪⎪⎪⎪⎭

(f)

⎧⎪⎪⎪⎪⎪⎩
3α 0 0
0 α 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
α + 2 1 0

0 α + 2 0
0 0 2α

⎫⎪⎪⎪⎪⎪⎭
(h)

⎧⎪⎪⎪⎪⎪⎩
α + 2 0 0

0 α + 2 1
0 0 2α

⎫⎪⎪⎪⎪⎪⎭
9. Let A be a 4×4 matrix and let λ be an eigenvalue of

multiplicity 3. If A −λI has rank 1, is A defective?
Explain.

10. Let A be an n × n matrix with positive real eigen-
values λ1 > λ2 > · · · > λn . Let xi be an eigen-
vector belonging to λi for each i , and let x =
α1x1 + · · · + αnxn .

(a) Show that Amx =
n∑

i=1

αiλ
m
i xi .

(b) Show that if λ1 = 1, then lim
m→∞ Amx = α1x1.

11. Let A be a n × n matrix with real entries and let
λ1 = a + bi (where a and b are real and b �= 0) be
an eigenvalue of A. Let z1 = x+ i y (where x and y
both have real entries) be an eigenvector belonging
to λ1 and let z2 = x − i y.
(a) Explain why z1 and z2 must be linearly inde-

pendent.
(b) Show that y �= 0 and that x and y are linearly

independent.

12. Let A be an n × n matrix with an eigenvalue λ of
multiplicity n. Show that A is diagonalizable if and
only if A = λI .

13. Show that a nonzero nilpotent matrix is defective.

14. Let A be a diagonalizable matrix and let X be the
diagonalizing matrix. Show that the column vec-
tors of X that correspond to nonzero eigenvalues of
A form a basis for R(A).

15. It follows from Exercise 14 that, for a diagonal-
izable matrix, the number of nonzero eigenvalues
(counted according to multiplicity) equals the rank
of the matrix. Give an example of a defective
matrix whose rank is not equal to the number of
nonzero eigenvalues.

16. Let A be an n × n matrix and let λ be an eigen-
value of A whose eigenspace has dimension k,
where 1 < k < n. Any basis {x1, . . . , xk} for the
eigenspace can be extended to a basis {x1, . . . , xn}
for R

n . Let X = (x1, . . . , xn) and B = X−1AX .
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(a) Show that B is of the form⎧⎪⎩λI B12

O B22

⎫⎪⎭
where I is the k × k identity matrix.

(b) Use Theorem 6.1.1 to show that λ is an eigen-
value of A with multiplicity at least k.

17. Let x, y be nonzero vectors in R
n , n ≥ 2, and let

A = xyT . Show that
(a) λ = 0 is an eigenvalue of A with n − 1

linearly independent eigenvectors and conse-
quently has multiplicity at least n−1 (see Exer-
cise 16).

(b) the remaining eigenvalue of A is

λn = tr A = xT y

and x is an eigenvector belonging to λn .

(c) if λn = xT y �= 0, then A is diagonalizable.

18. Let A be a diagonalizable n × n matrix. Prove that
if B is any matrix that is similar to A, then B is
diagonalizable.

19. Show that if A and B are two n × n matrices with
the same diagonalizing matrix X , then AB = BA.

20. Let T be an upper triangular matrix with distinct
diagonal entries (i.e., tii �= t j j whenever i �= j).
Show that there is an upper triangular matrix R that
diagonalizes T .

21. Each year, employees at a company are given the
option of donating to a local charity as part of a pay-
roll deduction plan. In general, 80 percent of the
employees enrolled in the plan in any one year will
choose to sign up again the following year, and 30
percent of the unenrolled will choose to enroll the
following year. Determine the transition matrix for
the Markov process and find the steady-state vector.
What percentage of employees would you expect to
find enrolled in the program in the long run?

22. The city of Mawtookit maintains a constant pop-
ulation of 300,000 people from year to year. A
political science study estimated that there were
150,000 Independents, 90,000 Democrats, and
60,000 Republicans in the town. It was also esti-
mated that each year 20 percent of the Independents
become Democrats and 10 percent become Repub-
licans. Similarly, 20 percent of the Democrats be-
come Independents and 10 percent become Repub-
licans, while 10 percent of the Republicans defect

to the Democrats and 10 percent become Indepen-
dents each year. Let

x =
⎧⎪⎪⎪⎪⎪⎩

150,000
90,000
60,000

⎫⎪⎪⎪⎪⎪⎭
and let x(1) be a vector representing the number of
people in each group after one year.
(a) Find a matrix A such that Ax = x(1).
(b) Show that λ1 = 1.0, λ2 = 0.5, and λ3 = 0.7

are the eigenvalues of A, and factor A into a
product XDX−1, where D is diagonal.

(c) Which group will dominate in the long run?
Justify your answer by computing lim

n→∞ Anx.

23. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2

1
3

1
5

1
4

1
3

2
5

1
4

1
3

2
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
be a transition matrix for a Markov process.
(a) Compute det(A) and trace(A) and make use of

those values to determine the eigenvalues of A.
(b) Explain why the Markov process must con-

verge to a steady-state vector.
(c) Show that y = (16, 15, 15)T is an eigenvector

of A. How is the steady-state vector related to
y?

24. Consider a Web network consisting of only four
sites that are linked together as shown in the ac-
companying diagram. If the Google PageRank al-
gorithm is used to rank these pages, determine the
transition matrix A. Assume that the Web surfer
will follow a link on the current page 85 percent of
the time.

S1

S4

S2

S3

25. Let A be an n × n stochastic matrix and let e be
the vector in R

n whose entries are all equal to 1.
Show that e is an eigenvector of AT . Explain why
a stochastic matrix must have λ = 1 as an eigen-
value.
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26. The transition matrix in Example 5 has the property
that both its rows and its columns add up to 1. In
general, a matrix A is said to be doubly stochastic
if both A and AT are stochastic. Let A be an n × n
doubly stochastic matrix whose eigenvalues satisfy

λ1 = 1 and |λ j | < 1 for j = 2, 3, . . . , n

Show that if e is the vector in R
n whose entries

are all equal to 1, then the Markov chain will con-
verge to the steady-state vector x = 1

n e for any
starting vector x0. Thus, for a doubly stochastic
transition matrix, the steady-state vector will assign
equal probabilities to all possible outcomes.

27. Let A be the PageRank transition matrix and let xk

be a vector in the Markov chain with starting prob-
ability vector x0. Since n is very large, the direct
multiplication xk+1 = Axk is computationally in-
tensive. However, the computation can be simpli-
fied dramatically if we take advantage of the struc-
tured components of A given in equation (5). Be-
cause M is sparse, the multiplication wk = Mxk is
computationally much simpler. Show that if we set

b = 1 − p

n
e

then

Exk = e and xk+1 = pwk + b

where M , E , e, and p are as defined in equation (5).

28. Use the definition of the matrix exponential to com-
pute eA for each of the following matrices:

(a) A =
⎧⎪⎩ 1 1

−1 −1

⎫⎪⎭ (b) A =
⎧⎪⎩1 1

0 1

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 0 −1
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
29. Compute eA for each of the following matrices:

(a) A =
⎧⎪⎩−2 −1

6 3

⎫⎪⎭ (b) A =
⎧⎪⎩ 3 4

−2 −3

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1

−1 −1 −1
1 1 1

⎫⎪⎪⎪⎪⎪⎭
30. In each of the following, solve the initial value

problem Y′ = AY, Y(0) = Y0, by computing
et AY0:

(a) A =
⎧⎪⎩1 −2

0 −1

⎫⎪⎭ , Y0 =
⎧⎪⎩1

1

⎫⎪⎭
(b) A =

⎧⎪⎩ 2 3
−1 −2

⎫⎪⎭ , Y0 =
⎧⎪⎩−4

2

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 0 1
0 0 −1

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
(d) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 0 1

−1 −1 −1

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

1
1

−1

⎫⎪⎪⎪⎪⎪⎭
31. Let λ be an eigenvalue of an n × n matrix A and let

x be an eigenvector belonging to λ. Show that eλ

is an eigenvalue of eA and x is an eigenvector of eA

belonging to eλ.

32. Show that eA is nonsingular for any diagonalizable
matrix A.

33. Let A be a diagonalizable matrix with characteristic
polynomial

p(λ) = a1λ
n + a2λ

n−1 + · · · + an+1

(a) Show that if D is a diagonal matrix whose di-
agonal entries are the eigenvalues of A, then

p(D) = a1 Dn + a2 Dn−1 + · · · + an+1 I = O

(b) Show that p(A) = O .
(c) Show that if an+1 �= 0, then A is nonsingular

and A−1 = q(A) for some polynomial q of de-
gree less than n.

6.4 Hermitian Matrices

Let C
n denote the vector space of all n-tuples of complex numbers. The set C of all

complex numbers will be taken as our field of scalars. We have already seen that a
matrix A with real entries may have complex eigenvalues and eigenvectors. In this
section, we study matrices with complex entries and look at the complex analogues of
symmetric and orthogonal matrices.
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Complex Inner Products

If α = a + bi is a complex scalar, the length of α is given by

|α| = √
αα =

√
a2 + b2

The length of a vector z = (z1, z2, . . . , zn)
T in C

n is given by

‖z‖ = (|z1|2 + |z2|2 + · · · + |zn|2
)1/2

= (z1z1 + z2z2 + · · · + znzn)
1/2

= (
zT z

)1/2

As a notational convenience, we write zH for the transpose of z. Thus

zT = zH and ‖z‖ = (zH z)1/2

Definition Let V be a vector space over the complex numbers. An inner product on V is
an operation that assigns, to each pair of vectors z and w in V , a complex number
〈z, w〉 satisfying the following conditions:

I. 〈z, z〉 ≥ 0, with equality if and only if z = 0.
II. 〈z, w〉 = 〈w, z〉 for all z and w in V .

III. 〈αz + βw, u〉 = α〈z, u〉 + β〈w, u〉.

Note that for a complex inner product space, 〈z, w〉 = 〈w, z〉, rather than 〈w, z〉.
If we make the proper modifications to allow for this difference, the theorems on real
inner product spaces in Chapter 5, Section 5, will all be valid for complex inner product
spaces. In particular, let us recall Theorem 5.5.2: If {u1, . . . , un} is an orthonormal
basis for a real inner product space V and

x =
n∑

i=1

ci ui

then

ci = 〈ui , x〉 = 〈x, ui 〉 and ‖x‖2 =
n∑

i=1

c2
i

In the case of a complex inner product space, if {w1, . . . , wn} is an orthonormal basis
and

z =
n∑

i=1

ci wi

then

ci = 〈z, wi 〉, ci = 〈wi , z〉 and ‖z‖2 =
n∑

i=1

ci ci

We can define an inner product on C
n by

〈z, w〉 = wH z (1)
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for all z and w in C
n . We leave it to the reader to verify that (1) actually does define an

inner product on C
n . The complex inner product space C

n is similar to the real inner
product space R

n . The main difference is that in the complex case it is necessary to
conjugate before transposing when taking an inner product.

R
n

C
n

〈x, y〉 = yT x 〈z, w〉 = wH z

xT y = yT x zH w = wH z

‖x‖2 = xT x ‖z‖2 = zH z

EXAMPLE 1 If

z =
⎧⎪⎩ 5 + i

1 − 3i

⎫⎪⎭ and w =
⎧⎪⎩ 2 + i

−2 + 3i

⎫⎪⎭
then

wH z = (2 − i, −2 − 3i)
⎧⎪⎩ 5 + i

1 − 3i

⎫⎪⎭ = (11 − 3i) + (−11 + 3i) = 0

zH z = |5 + i |2 + |1 − 3i |2 = 36

wH w = |2 + i |2 + | − 2 + 3i |2 = 18

It follows that z and w are orthogonal and

‖z‖ = 6, ‖w‖ = 3
√

2

Hermitian Matrices

Let M = (mi j ) be an m × n matrix with mi j = ai j + ibi j for each i and j . We may
write M in the form

M = A + iB

where A = (ai j ) and B = (bi j ) have real entries. We define the conjugate of M by

M = A − iB

Thus, M is the matrix formed by conjugating each of the entries of M . The transpose
of M will be denoted by M H . The vector space of all m × n matrices with complex
entries is denoted by C

m×n . If A and B are elements of C
m×n and C ∈ C

n×r , then the
following rules are easily verified (see Exercise 9):

I. (AH )H = A
II. (αA + β B)H = αAH + β B H

III. (AC)H = C HAH
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Definition A matrix M is said to be Hermitian if M = M H .

EXAMPLE 2 The matrix

M =
⎧⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎭
is Hermitian, since

M H =
⎧⎪⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎪⎭T

=
⎧⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎭ = M

If M is a matrix with real entries, then M H = MT . In particular, if M is a real
symmetric matrix, then M is Hermitian. Thus, we may view Hermitian matrices as
the complex analogue of real symmetric matrices. Hermitian matrices have many nice
properties, as we shall see in the next theorem.

Theorem 6.4.1 The eigenvalues of a Hermitian matrix are all real. Furthermore, eigenvectors belong-
ing to distinct eigenvalues are orthogonal.

Proof Let A be a Hermitian matrix. Let λ be an eigenvalue of A and let x be an eigenvector
belonging to λ. If α = xHAx, then

α = αH = (xHAx)H = xHAx = α

Thus, α is real. It follows that

α = xHAx = xHλx = λ‖x‖2

and hence
λ = α

‖x‖2

is real. If x1 and x2 are eigenvectors belonging to distinct eigenvalues λ1 and λ2,
respectively, then

(Ax1)
H x2 = xH

1 AH x2 = xH
1 Ax2 = λ2xH

1 x2

and
(Ax1)

H x2 = (xH
2 Ax1)

H = (λ1xH
2 x1)

H = λ1xH
1 x2

Consequently,
λ1xH

1 x2 = λ2xH
1 x2

and since λ1 �= λ2, it follows that

〈x2, x1〉 = xH
1 x2 = 0

Definition An n × n matrix U is said to be unitary if its column vectors form an orthonormal
set in C

n .
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Thus, U is unitary if and only if U H U = I . If U is unitary, then, since the column
vectors are orthonormal, U must have rank n. It follows that

U−1 = IU−1 = U H UU−1 = U H

A real unitary matrix is an orthogonal matrix.

Corollary 6.4.2 If the eigenvalues of a Hermitian matrix A are distinct, then there exists a unitary
matrix U that diagonalizes A.

Proof Let xi be an eigenvector belonging to λi for each eigenvalue λi of A. Let ui =
(1/‖xi‖)xi . Thus, ui is a unit eigenvector belonging to λi for each i . It follows from
Theorem 6.4.1 that {u1, . . . , un} is an orthonormal set in C

n . Let U be the matrix
whose i th column vector is ui for each i ; then U is unitary and U diagonalizes A.

EXAMPLE 3 Let

A =
⎧⎪⎩ 2 1 − i

1 + i 1

⎫⎪⎭
Find a unitary matrix U that diagonalizes A.

Solution
The eigenvalues of A are λ1 = 3 and λ2 = 0, with corresponding eigenvectors x1 =
(1 − i, 1)T and x2 = (−1, 1 + i)T . Let

u1 = 1

‖x1‖x1 = 1√
3
(1 − i, 1)T

and

u2 = 1

‖x2‖x2 = 1√
3
(−1, 1 + i)T

Thus

U = 1√
3

⎧⎪⎩1 − i −1
1 1 + i

⎫⎪⎭
and

U H AU = 1

3

⎧⎪⎩1 + i 1
−1 1 − i

⎫⎪⎭⎧⎪⎩ 2 1 − i
1 + i 1

⎫⎪⎭⎧⎪⎩1 − i −1
1 1 + i

⎫⎪⎭
=
⎧⎪⎩3 0

0 0

⎫⎪⎭
Actually, Corollary 6.4.2 is valid even if the eigenvalues of A are not distinct. To

show this, we will first prove the following theorem:

Theorem 6.4.3 Schur's Theorem
For each n × n matrix A, there exists a unitary matrix U such that U H AU is upper
triangular.
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Proof The proof is by induction on n. The result is obvious if n = 1. Assume that the
hypothesis holds for k × k matrices, and let A be a (k + 1) × (k + 1) matrix. Let λ1 be
an eigenvalue of A, and let w1 be a unit eigenvector belonging to λ1. Using the Gram–
Schmidt process, construct w2, . . . , wk+1 such that {w1, . . . , wk+1} is an orthonormal
basis for C

k+1. Let W be the matrix whose i th column vector is wi for i = 1, . . . , k+1.
Then, by construction, W is unitary. The first column of W HAW will be W HAw1.

W HAw1 = λ1W H w1 = λ1e1

Thus, W HAW is a matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × × · · · ×
0
... M
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where M is a k × k matrix. By the induction hypothesis, there exists a k × k unitary
matrix V1 such that V H

1 MV1 = T1, where T1 is upper triangular. Let

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 · · · 0
0
... V1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

V H W H AW V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × · · · ×
0
... V H

1 MV1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × · · · ×
0
... T1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = T

Let U = W V . The matrix U is unitary, since

U H U = (W V )H W V = V H W H W V = I

and U HAU = T .

The factorization A = U T U H is often referred to as the Schur decomposition of
A. In the case that A is Hermitian, the matrix T will be diagonal.

Theorem 6.4.4 Spectral Theorem
If A is Hermitian, then there exists a unitary matrix U that diagonalizes A.

Proof By Theorem 6.4.3, there is a unitary matrix U such that U HAU = T , where T is upper
triangular. Furthermore,

T H = (U HAU )H = U HAH U = U HAU = T

Therefore, T is Hermitian and consequently must be diagonal.
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In the case of a real symmetric matrix, the diagonalizing matrix U will be an or-
thogonal matrix. The following example shows how to determine the matrix U . Later
in this section we give a formal proof that all real symmetric matrices have orthogonal
diagonalizing matrices.

EXAMPLE 4 Given

A =
⎧⎪⎪⎪⎪⎪⎩

0 2 −1
2 3 −2

−1 −2 0

⎫⎪⎪⎪⎪⎪⎭
find an orthogonal matrix U that diagonalizes A.

Solution
The characteristic polynomial

p(λ) = −λ3 + 3λ2 + 9λ + 5 = (1 + λ)2(5 − λ)

has roots λ1 = λ2 = −1 and λ3 = 5. Computing eigenvectors in the usual way,
we see that x1 = (1, 0, 1)T and x2 = (−2, 1, 0)T form a basis for the eigenspace
N (A + I ). We can apply the Gram–Schmidt process to obtain an orthonormal basis
for the eigenspace corresponding to λ1 = λ2 = −1:

u1 = 1

‖x1‖x1 = 1√
2
(1, 0, 1)T

p = (
xT

2 u1
)

u1 = −√
2u1 = (−1, 0, 1)T

x2 − p = (−1, 1, 1)T

u2 = 1

‖x2 − p‖ (x2 − p) = 1√
3
(−1, 1, 1)T

The eigenspace corresponding to λ3 = 5 is spanned by x3 = (−1, −2, 1)T . Since x3

must be orthogonal to u1 and u2 (Theorem 6.4.1), we need only normalize

u3 = 1

‖x3‖x3 = 1√
6
(−1, −2, 1)T

Thus, {u1, u2, u3} is an orthonormal set and

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

− 1√
3

− 1√
6

0
1√
3

− 2√
6

1√
2

1√
3

1√
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
diagonalizes A.
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It follows from Theorem 6.4.4 that each Hermitian matrix A can be factored into a
product UDU H , where U is unitary and D is diagonal. Since U diagonalizes A, it fol-
lows that the diagonal elements of D are the eigenvalues of A and the column vectors
of U are eigenvectors of A. Thus, A cannot be defective. It has a complete set of eigen-
vectors that form an orthonormal basis for C

n . This is, in a sense, the ideal situation.
We have seen how to express a vector as a linear combination of orthonormal basis
elements (Theorem 5.5.2), and the action of A on any linear combination of eigen-
vectors can easily be determined. Thus, if A has an orthonormal set of eigenvectors
{u1, . . . , un} and x = c1u1 + · · · + cnun , then

Ax = c1λ1u1 + · · · + cnλnun

Furthermore,
ci = 〈x, ui 〉 = uH

i x

or, equivalently, c = U H x. Hence,

Ax = λ1(uH
1 x)u1 + · · · + λn(uH

n x)un

The Real Schur Decomposition
If A is a real n × n matrix, then it is possible to obtain a factorization that resembles the
Schur decomposition of A, but involves only real matrices. In this case, A = QT QT ,
where Q is an orthogonal matrix and T is a real matrix of the form

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 × · · · ×

B2 ×
O

. . .

B j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (2)

where the Bi ’s are either 1 × 1 or 2 × 2 matrices. Each 2 × 2 block will correspond to
a pair of complex conjugate eigenvalues of A. The matrix T is referred to as the real
Schur form of A. The proof that every real n × n matrix A has such a factorization
depends on the property that, for each pair of complex conjugate eigenvalues of A,
there is a two-dimensional subspace of R

n that is invariant under A.

Definition A subspace S of R
n is said to be invariant under a matrix A if, for each x ∈ S,

Ax ∈ S.

Lemma 6.4.5 Let A be a real n × n matrix with eigenvalue λ1 = a + bi (where a and b are real
and b �= 0), and let z1 = x + iy (where x and y are vectors in R

n) be an eigenvector
belonging to λ1. If S = Span(x, y), then dim S = 2 and S is invariant under A.

Proof Since λ is complex, y must be nonzero; otherwise we would have Az = Ax (a real
vector) equal to λz = λx (a complex vector). Since A is real, λ2 = a − bi is also an
eigenvalue of A and z2 = x − iy is an eigenvector belonging to λ2. If there were a
scalar c such that x = cy, then z1 and z2 would both be multiples of y and could not
be independent. However, z1 and z2 belong to distinct eigenvalues, so they must be



332 Chapter 6 Eigenvalues

linearly independent. Therefore, x cannot be a multiple of y and hence S = Span(x, y)

has dimension 2.
To show the invariance of S, note that since Az1 = λ1z1, the real and imaginary

parts of both sides must agree. Thus,

Az1 = Ax + i Ay
λ1z1 = (a + bi)(x + iy) = (ax − by) + i(bx + ay)

and it follows that
Ax = ax − by and Ay = bx + ay

If w = c1x + c2y is any vector in S, then

Aw = c1 Ax + c2 Ay = c1(ax − by) + c2(bx + ay) = (c1a + c2b)x + (c2a − c1b)y

So Aw is in S, and hence S is invariant under A.

Using this lemma, we can a prove version of Schur’s theorem for matrices with
real entries. As before, the proof will be by induction.

Theorem 6.4.6 The Real Schur Decomposition
If A is an n × n matrix with real entries, then A can be factored into a product QT QT ,
where Q is an orthogonal matrix and T is in Schur form (2).

Proof In the case that n = 2, if the eigenvalues of A are real, we can take q1 to be a unit
eigenvector belonging to the first eigenvalue λ1 and let q2 be any unit vector that is
orthogonal to q1. If we set Q = (q1, q2), then Q is an orthogonal matrix. If we set
T = QT AQ, then the first column of T is

QT Aq1 = λ1 QT q1 = λ1e1

So T is upper triangular and A = QT QT . If the eigenvalues of A are complex,
then we simply set T = A and Q = I . So every 2 × 2 real matrix has a real Schur
decomposition.

Now let A be a k × k matrix where k ≥ 3 and assume that, for 2 ≤ m < k,
every m × m real matrix has a Schur decomposition of the form (2). Let λ1 be an
eigenvalue of A. If λ1 is real, let q1 be a unit eigenvector belonging to λ1 and choose
q2, q3,. . . ,qn so that Q1 = (q1, q2, . . . , qn) is an orthogonal matrix. As in the proof
of Schur’s theorem, it follows that the first column of QT

1 AQ1 will be λ1e1. In the
case that λ1 is complex, let z = x + iy (where x and y are real) be an eigenvector
belonging to λ1 and let S = Span(x, y). By Lemma 6.4.5, dim S = 2 and S is invariant
under A. Let {q1, q2} be an orthonormal basis for S. Choose q3, q4,. . . ,qn so that
Q1 = (q1, q2, . . . , qn) is an orthogonal matrix. Since S is invariant under A, it follows
that

Aq1 = b11q1 + b21q2 and Aq2 = b12q1 + b22q2

for some scalars b11, b21, b12, b22 and hence the first two columns of QT
1 AQ1 will be

(QT
1 Aq1, QT

1 Aq2) = (b11e1 + b21e2, b12e1 + b22e2)
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So, in general, QT
1 AQ1 will be a matrix of block form

QT
1 AQ1 =

⎧⎪⎩ B1 X
O A1

⎫⎪⎭
where

B1 = (λ1) and A1 is (k − 1) × (k − 1) if λ1 is real

B1 is 2 × 2 and A1 is (k − 2) × (k − 2) if λ1 is complex.

In either case, we can apply our induction hypothesis to A1 and obtain a Schur decom-
position A1 = U T1U T . Let us assume that the Schur form T1 has j −1 diagonal blocks
B2, B3, . . . , B j . If we set

Q2 =
⎧⎪⎩ I O

O Q1

⎫⎪⎭ and Q = Q1 Q2

then both Q2 and Q are k × k orthogonal matrices. If we then set T = QT AQ,
we will obtain a matrix in the Schur form (2), and it follows that A will have Schur
decomposition QT QT .

In the case that all of the eigenvalues of A are real, the real Schur form T will
be upper triangular. In the case that A is real and symmetric, then, since all of the
eigenvalues of A are real, T must be upper triangular; however, in this case T must
also be symmetric. So we end up with a diagonalization of A. Thus, for real symmetric
matrices, we have the following version of the Spectral Theorem:

Corollary 6.4.7 Spectral Theorem—Real Symmetric Matrices
If A is a real symmetric matrix, then there is an orthogonal matrix Q that diagonalizes
A; that is, QTAQ = D, where D is diagonal.

Normal Matrices

There are non-Hermitian matrices that possess complete orthonormal sets of eigenvec-
tors. For example, skew-symmetric and skew-Hermitian matrices have this property.
(A is skew Hermitian if AH = −A.) If A is any matrix with a complete orthonormal
set of eigenvectors, then A = UDU H , where U is unitary and D is a diagonal matrix
(whose diagonal elements may be complex). In general, DH �= D and, consequently,

AH = UDHU H �= A

However,
AAH = U DU H U DH U H = U DDH U H

and
AH A = U DH U H U DU H = U DH DU H
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Since

DH D = DDH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
|λ1|2

|λ2|2
. . .

|λn|2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
it follows that

AAH = AHA

Definition A matrix A is said to be normal if AAH = AH A.

We have shown that if a matrix has a complete orthonormal set of eigenvectors,
then it is normal. The converse is also true.

Theorem 6.4.8 A matrix A is normal if and only if A possesses a complete orthonormal set of eigen-
vectors.

Proof In view of the preceding remarks, we need only show that a normal matrix A has a
complete orthonormal set of eigenvectors. By Theorem 6.4.3, there exists a unitary
matrix U and a triangular matrix T such that T = U H AU . We claim that T is also
normal. To see this, note that

T H T = U HAH UU HAU = U HAHAU

and
T T H = U HAUU HAH U = U HAAHU

Since AHA = AAH , it follows that T H T = T T H . Comparing the diagonal elements
of T T H and T HT , we see that

|t11|2 + |t12|2 + |t13|2 + · · · + |t1n|2 = |t11|2
|t22|2 + |t23|2 + · · · + |t2n|2 = |t12|2 + |t22|2

...

|tnn|2 = |t1n|2 + |t2n|2 + |t3n|2 + · · · + |tnn|2

It follows that ti j = 0 whenever i �= j . Thus, U diagonalizes A and the column vectors
of U are eigenvectors of A.

SECTION 6.4 EXERCISES
1. For each of the following pairs of vectors z and w

in C
2, compute (i) ‖z‖, (ii) ‖w‖, (iii) 〈z, w〉, and

(iv) 〈w, z〉:
(a) z =

⎧⎪⎩4 + 2i
4i

⎫⎪⎭ , w =
⎧⎪⎩ −2

2 + i

⎫⎪⎭
(b) z =

⎧⎪⎪⎪⎪⎪⎩
1 + i

2i
3 − i

⎫⎪⎪⎪⎪⎪⎭ , w =
⎧⎪⎪⎪⎪⎪⎩

2 − 4i
5
2i

⎫⎪⎪⎪⎪⎪⎭
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2. Let

z1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 + i

2

1 − i

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and z2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that {z1, z2} is an orthonormal set in C

2.

(b) Write the vector z =
⎧⎪⎩2 + 4i

−2i

⎫⎪⎭ as a linear

combination of z1 and z2.

3. Let {u1, u2} be an orthonormal basis for C
2, and let

z = (4 + 2i)u1 + (6 − 5i)u2.
(a) What are the values of uH

1 z, zH u1, uH
2 z, and

zH u2?

(b) Determine the value of ‖z‖.

4. Which of the matrices that follow are Hermitian?
Normal?

(a)
⎧⎪⎩1 − i 2

2 3

⎫⎪⎭ (b)
⎧⎪⎩ 1 2 − i

2 + i −1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

i
1√
2

1√
2

− 1√
2

i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 i 1
i 0 −2 + i

−1 2 + i 0

⎫⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
3 1 + i i

1 − i 1 3
−i 3 1

⎫⎪⎪⎪⎪⎪⎭
5. Find an orthogonal or unitary diagonalizing matrix

for each of the following:

(a)
⎧⎪⎩2 1

1 2

⎫⎪⎭ (b)
⎧⎪⎩ 1 3 + i

3 − i 4

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 i 0

−i 2 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
1 3 −2
1 −2 3

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 1 1
1 1 1

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
4 2 −2
2 1 −1

−2 −1 1

⎫⎪⎪⎪⎪⎪⎭

6. Show that the diagonal entries of a Hermitian ma-
trix must be real.

7. Let A be a Hermitian matrix and let x be a vector
in C

n . Show that if c = xAxH , then c is real.

8. Let A be a Hermitian matrix and let B = i A. Show
that B is skew Hermitian.

9. Let A and C be matrices in C
m×n and let B ∈ C

n×r .
Prove each of the following rules:
(a) (AH )H = A
(b) (αA + βC)H = αAH + βC H

(c) (AB)H = B HAH

10. Let A and B be Hermitian matrices. Answer true
or false for each of the statements that follow. In
each case, explain or prove your answer.
(a) The eigenvalues of AB are all real.
(b) The eigenvalues of AB A are all real.

11. Show that
〈z, w〉 = wH z

defines an inner product on C
n .

12. Let x, y, and z be vectors in C
n and let α and β be

complex scalars. Show that

〈z, αx + βy〉 = α〈z, x〉 + β〈z, y〉
13. Let {u1, . . . , un} be an orthonormal basis for a com-

plex inner product space V , and let

z = a1u1 + a2u2 + · · · + anun

w = b1u1 + b2u2 + · · · + bnun

Show that

〈z, w〉 =
n∑

i=1

bi ai

14. Given that

A =
⎧⎪⎪⎪⎪⎪⎩

4 0 0
0 1 i
0 −i 1

⎫⎪⎪⎪⎪⎪⎭
find a matrix B such that B H B = A.

15. Let U be a unitary matrix. Prove that
(a) U is normal.
(b) ‖Ux‖ = ‖x‖ for all x ∈ C

n .
(c) if λ is an eigenvalue of U , then |λ| = 1.

16. Let u be a unit vector in C
n and define U =

I − 2uuH . Show that U is both unitary and Her-
mitian and, consequently, is its own inverse.

17. Show that if a matrix U is both unitary and Hermi-
tian, then any eigenvalue of U must equal either 1
or −1.

18. Let A be a 2 × 2 matrix with Schur decomposition
U T U H and suppose that t12 �= 0. Show that
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(a) the eigenvalues of A are λ1 = t11 and λ2 = t22.
(b) u1 is an eigenvector of A belonging to λ1 = t11.
(c) u2 is not an eigenvector of A belonging to

λ2 = t22.
19. Let A be a 5 × 5 matrix with real entries. Let

A = QT QT be the real Schur decomposition of
A, where T is a block matrix of the form given in
equation (2). What are the possible block structures
for T in each of the following cases?
(a) All of the eigenvalues of A are real.
(b) A has three real eigenvalues and two complex

eigenvalues.
(c) A has one real eigenvalue and four complex

eigenvalues.
20. Let A be a n × n matrix with Schur decomposition

U T U H . Show that if the diagonal entries of T are
all distinct, then there is an upper triangular matrix
R such that X = U R diagonalizes A.

21. Show that M = A + i B (where A and B real ma-
trices) is skew Hermitian if and only if A is skew
symmetric and B is symmetric.

22. Show that if A is skew Hermitian and λ is an eigen-
value of A, then λ is purely imaginary (i.e., λ = bi ,
where b is real).

23. Show that if A is a normal matrix, then each of the
following matrices must also be normal:
(a) AH (b) I + A (c) A2

24. Let A be a real 2 × 2 matrix with the property that
a21a12 > 0, and let

r = √
a21/a12 and S =

⎧⎪⎩ r 0
0 1

⎫⎪⎭
Compute B = S AS−1. What can you conclude
about the eigenvalues and eigenvectors of B? What
can you conclude about the eigenvalues and eigen-
vectors of A? Explain.

25. Let p(x) = −x3 + cx2 + (c + 3)x + 1, where c is
a real number. Let

C =
⎧⎪⎪⎪⎪⎪⎩

c c + 3 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
and let

A =
⎧⎪⎪⎪⎪⎪⎩

−1 2 −c − 3
1 −1 c + 2

−1 1 −c − 1

⎫⎪⎪⎪⎪⎪⎭
(a) Compute A−1C A.
(b) Show that C is the companion matrix of p(x)

and use the result from part (a) to prove that
p(x) will have only real roots, regardless of the
value of c.

26. Let A be a Hermitian matrix with eigen-
values λ1, . . . , λn and orthonormal eigenvectors
u1, . . . , un . Show that

A = λ1u1uH
1 + λ2u2uH

2 + · · · + λnunuH
n

27. Let

A =
⎧⎪⎩0 1

1 0

⎫⎪⎭
Write A as a sum λ1u1uT

1 + λ2u2uT
2 , where λ1 and

λ2 are eigenvalues and u1 and u2 are orthonormal
eigenvectors.

28. Let A be a Hermitian matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn and orthonormal eigenvectors
u1, . . . , un . For any nonzero vector x in R

n , the
Rayleigh quotient ρ(x) is defined by

ρ(x) = 〈Ax, x〉
〈x, x〉 = xHAx

xH x

(a) If x = c1u1 + · · · + cnun , show that

ρ(x) = |c1|2λ1 + |c2|2λ2 + · · · + |cn|2λn

‖c‖2

(b) Show that
λn ≤ ρ(x) ≤ λ1

(c) Show that

max
x�=0

ρ(x) = λ1 and min
x�=0

ρ(x) = λn

29. Given A ∈ R
m×m , B ∈ R

n×n , C ∈ R
m×n , the equa-

tion
AX − X B = C (3)

is known as Sylvester’s equation. An m × n matrix
X is said to be a solution if it satisfies (3).
(a) Show that if B has Schur decomposition

B = U T U H , then Sylvester’s equation can
be transformed into an equation of the form
AY −Y T = G, where Y = XU and G = CU .

(b) Show that

(A − t11 I )y1 = g1

(A − t j j I )y j = g j +
j−1∑
i=1

ti j y j , j = 2, . . . , n

(c) Show that if A and B have no common eigen-
values, then Sylvester’s equation has a solu-
tion.
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6.5 The Singular Value Decomposition

In many applications, it is necessary either to determine the rank of a matrix or to
determine whether the matrix is deficient in rank. Theoretically, we can use Gaussian
elimination to reduce the matrix to row echelon form and then count the number of
nonzero rows. However, this approach is not practical in finite-precision arithmetic.
If A is rank deficient and U is the computed echelon form, then, because of rounding
errors in the elimination process, it is unlikely that U will have the proper number of
nonzero rows. In practice, the coefficient matrix A usually involves some error. This
may be due to errors in the data or to the finite number system. Thus, it is generally
more practical to ask whether A is “close” to a rank-deficient matrix. However, it may
well turn out that A is close to being rank deficient and the computed row echelon form
U is not.

In this section, we assume throughout that A is an m ×n matrix with m ≥ n. (This
assumption is made for convenience only; all the results will also hold if m < n.) We
will present a method for determining how close A is to a matrix of smaller rank. The
method involves factoring A into a product U�V T , where U is an m × m orthogonal
matrix, V is an n × n orthogonal matrix, and � is an m × n matrix whose off-diagonal
entries are all 0’s and whose diagonal elements satisfy

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2
. . .

σn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The σi ’s determined by this factorization are unique and are called the singular values
of A. The factorization U�V T is called the singular value decomposition of A or, for
short, the svd of A. We will show that the rank of A equals the number of nonzero sin-
gular values and that the magnitudes of the nonzero singular values provide a measure
of how close A is to a matrix of lower rank.

We begin by showing that such a decomposition is always possible.

Theorem 6.5.1 The SVD Theorem
If A is an m × n matrix, then A has a singular value decomposition.

Proof ATA is a symmetric n × n matrix. Therefore, its eigenvalues are all real and it has an
orthogonal diagonalizing matrix V . Furthermore, its eigenvalues must all be nonneg-
ative. To see this, let λ be an eigenvalue of ATA and x be an eigenvector belonging to
λ. It follows that

‖Ax‖2 = xTATAx = λxT x = λ‖x‖2

Hence,

λ = ‖Ax‖2

‖x‖2
≥ 0
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We may assume that the columns of V have been ordered so that the corresponding
eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

The singular values of A are given by

σ j = √
λ j j = 1, . . . , n

Let r denote the rank of A. The matrix ATA will also have rank r . Since ATA is
symmetric, its rank equals the number of nonzero eigenvalues. Thus,

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λr+1 = λr+2 = · · · = λn = 0

The same relation holds for the singular values:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = σr+2 = · · · = σn = 0

Now let
V1 = (v1, . . . , vr ) , V2 = (vr+1, . . . , vn)

and

�1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
σ1

σ2
. . .

σr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

Hence, �1 is an r × r diagonal matrix whose diagonal entries are the nonzero singular
values σ1, . . . , σr . The m × n matrix � is then given by

� =
⎧⎪⎩�1 O

O O

⎫⎪⎭
The column vectors of V2 are eigenvectors of ATA belonging to λ = 0. Thus,

ATAv j = 0 j = r + 1, . . . , n

and, consequently, the column vectors of V2 form an orthonormal basis for N (ATA) =
N (A). Therefore,

AV2 = O

and since V is an orthogonal matrix, it follows that

I = V V T = V1V T
1 + V2V T

2

A = AI = AV1V T
1 + AV2V T

2 = AV1V T
1 (2)

So far we have shown how to construct the matrices V and � of the singular value
decomposition. To complete the proof, we must show how to construct an m × m
orthogonal matrix U such that

A = U�V T

or, equivalently,
AV = U� (3)
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Comparing the first r columns of each side of (3), we see that

Av j = σ j u j j = 1, . . . , r

Thus, if we define

u j = 1

σ j
Av j j = 1, . . . , r (4)

and
U1 = (u1, . . . , ur )

then it follows that
AV1 = U1�1 (5)

The column vectors of U1 form an orthonormal set, since

uT
i u j =

(
1

σi
vT

i AT

)(
1

σ j
Av j

)
1 ≤ i ≤ r, 1 ≤ j ≤ r

= 1

σiσ j
vT

i

(
ATAv j

)
= σ j

σi
vT

i v j

= δi j

It follows from (4) that each u j , 1 ≤ j ≤ r , is in the column space of A. The dimension
of the column space is r , so u1, . . . , ur form an orthonormal basis for R(A). The
vector space R(A)⊥ = N (AT ) has dimension m − r . Let {ur+1, ur+2, . . . , um} be an
orthonormal basis for N (AT ) and set

U2 = (ur+1, ur+2, . . . , um)

U =
⎧⎩U1 U2

⎫⎭
It follows from Theorem 5.2.2 that u1, . . . , um form an orthonormal basis for R

m .
Hence, U is an orthogonal matrix. We still must show that U�V T actually equals
A. This follows from (5) and (2), since

U�V T =
⎧⎩U1 U2

⎫⎭⎧⎪⎩�1 O
O O

⎫⎪⎭⎧⎪⎪⎩V T
1

V T
2

⎫⎪⎪⎭
= U1�1V T

1

= AV1V T
1

= A

Observations

Let A be an m × n matrix with a singular value decomposition U�V T .

1. The singular values σ1, . . . , σn of A are unique; however, the matrices U and
V are not unique.
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2. Since V diagonalizes ATA, it follows that the v j ’s are eigenvectors of ATA.
3. Since AAT = U��T U T , it follows that U diagonalizes AAT and that the u j ’s

are eigenvectors of AAT .
4. Comparing the j th columns of each side of the equation

AV = U�

we get

Av j = σ j u j j = 1, . . . , n

Similarly,

AT U = V �T

and hence

AT u j = σ j v j for j = 1, . . . , n

AT u j = 0 for j = n + 1, . . . , m

The v j ’s are called the right singular vectors of A, and the u j ’s are called the
left singular vectors of A.

5. If A has rank r , then

(i) v1, . . . , vr form an orthonormal basis for R(AT ).

(ii) vr+1, . . . , vn form an orthonormal basis for N (A).

(iii) u1, . . . , ur form an orthonormal basis for R(A).

(iv) ur+1, . . . , um form an orthonormal basis for N (AT ).

6. The rank of the matrix A is equal to the number of its nonzero singular val-
ues (where singular values are counted according to multiplicity). The reader
should be careful not to make a similar assumption about eigenvalues. The
matrix

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
for example, has rank 3 even though all of its eigenvalues are 0.

7. In the case that A has rank r < n, if we set

U1 = (u1, u2, . . . , ur ) V1 = (v1, v2, . . . , vr )

and define �1 as in equation (1), then

A = U1�1V T
1 (6)

The factorization (6) is called the compact form of the singular value decom-
position of A. This form is useful in many applications.
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EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
Compute the singular values and the singular value decomposition of A.

Solution
The matrix

ATA =
⎧⎪⎩2 2

2 2

⎫⎪⎭
has eigenvalues λ1 = 4 and λ2 = 0. Consequently, the singular values of A are
σ1 = √

4 = 2 and σ2 = 0. The eigenvalue λ1 has eigenvectors of the form α(1, 1)T ,
and λ2 has eigenvectors β(1, −1)T . Therefore, the orthogonal matrix

V = 1√
2

⎧⎪⎩1 1
1 −1

⎫⎪⎭
diagonalizes ATA. From observation 4, it follows that

u1 = 1

σ1
Av1 = 1

2

⎧⎪⎪⎪⎪⎪⎩
1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The remaining column vectors of U must form an orthonormal basis for N (AT ). We
can compute a basis {x2, x3} for N (AT ) in the usual way:

x2 = (1, −1, 0)T and x3 = (0, 0, 1)T

Since these vectors are already orthogonal, it is not necessary to use the Gram–Schmidt
process to obtain an orthonormal basis. We need only set

u2 = 1

‖x2‖x2 =
(

1√
2
, − 1√

2
, 0

)T

u3 = x3 = (0, 0, 1)T

It then follows that

A = U�V T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

0

1√
2

− 1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎩
2 0
0 0
0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

1√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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If A is an m × n matrix of rank r and 0 < k < r , we can use the singular value
decomposition to find a matrix in R

m×n of rank k that is closest to A with respect to
the Frobenius norm. Let M be the set of all m × n matrices of rank k or less. It can be
shown that there is a matrix X in M such that

‖A − X‖F = min
S∈M ‖A − S‖F (7)

We will not prove this result, since the proof is beyond the scope of this book. Assum-
ing that the minimum is achieved, we will show how such a matrix X can be derived
from the singular value decomposition of A. The following lemma will be useful:

Lemma 6.5.2 If A is an m × n matrix and Q is an m × m orthogonal matrix, then

‖Q A‖F = ‖A‖F

Proof

‖Q A‖2
F = ‖(Qa1, Qa2, . . . , Qan)‖2

F

=
n∑

i=1

‖Qai‖2
2

=
n∑

i=1

‖ai‖2
2

= ‖A‖2
F

If A has singular value decomposition U�V T , then it follows from the lemma that

‖A‖F = ‖�V T ‖F

Since
‖�V T ‖F = ‖(�V T )T ‖F = ‖V �T ‖F = ‖�T ‖F

it follows that

‖A‖F = (
σ 2

1 + σ 2
2 + · · · + σ 2

n

)1/2

Theorem 6.5.3 Let A = U�V T be an m × n matrix, and let M denote the set of all m × n matrices
of rank k or less, where 0 < k < rank(A). If X is a matrix in M satisfying (7), then

‖A − X‖F = (
σ 2

k+1 + σ 2
k+2 + · · · + σ 2

n

)1/2

In particular, if A′ = U�′V T , where

�′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
σ1

. . . O
σk

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩�k O

O O

⎫⎪⎭
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then
‖A − A′‖F = (

σ 2
k+1 + · · · + σ 2

n

)1/2 = min
S∈M ‖A − S‖F

Proof Let X be a matrix in M satisfying (7). Since A′ ∈ M, it follows that

‖A − X‖F ≤ ‖A − A′‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2
(8)

We will show that
‖A − X‖F ≥ (

σ 2
k+1 + · · · + σ 2

n

)1/2

and hence that equality holds in (8). Let Q�PT be the singular value decomposition
of X , where

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1

ω2
. . . O

ωk

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎩�k O

O O

⎫⎪⎭

If we set B = QT AP , then A = Q PT , and it follows that

‖A − X‖F = ‖Q(B − �)PT ‖F = ‖B − �‖F

Let us partition B in the same manner as �:

B =
⎧⎪⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎪⎭
k×k︷ ︸︸ ︷ k×(n−k)︷ ︸︸ ︷

︸ ︷︷ ︸
(m−k)×k

︸ ︷︷ ︸
(m−k)×(n−k)

It follows that

‖A − X‖2
F = ‖B11 − �k‖2

F + ‖B12‖2
F + ‖B21‖2

F + ‖B22‖2
F

We claim that B12 = O . If not, then define

Y = Q
⎧⎪⎩ B11 B12

O O

⎫⎪⎭ PT

The matrix Y is in M and

‖A − Y‖2
F = ‖B21‖2

F + ‖B22‖2
F < ‖A − X‖2

F

But this contradicts the definition of X . Therefore, B12 = O . In a similar manner, it
can be shown that B21 must equal O . If we set

Z = Q
⎧⎪⎩ B11 O

O O

⎫⎪⎭ PT
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then Z ∈ M and

‖A − Z‖2
F = ‖B22‖2

F ≤ ‖B11 − �k‖2
F + ‖B22‖2

F = ‖A − X‖2
F

It follows from the definition of X that B11 must equal �k . If B22 has singular value
decomposition U1�V T

1 , then

‖A − X‖F = ‖B22‖F = ‖�‖F

Let

U2 =
⎧⎪⎩ Ik O

O U1

⎫⎪⎭ and V2 =
⎧⎪⎩ Ik O

O V1

⎫⎪⎭
Now,

U T
2 QT APV2 =

⎧⎪⎩�k O
O �

⎫⎪⎭
A = (QU2)

⎧⎪⎩�k O
O �

⎫⎪⎭ (PV2)
T

and hence it follows that the diagonal elements of � are singular values of A. Thus,

‖A − X‖F = ‖�‖F ≥ (
σ 2

k+1 + · · · + σ 2
n

)1/2

It then follows from (8) that

‖A − X‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2 = ‖A − A′‖F

If A has singular value decomposition U�V T , then we can think of A as the
product of U� times V T . If we partition U� into columns and V T into rows, then

U� = (σ1u1, σ2u2, . . . , σun)

and we can represent A by an outer product expansion

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n (9)

If A is of rank n, then

A′ = U

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2
. . .

σn−1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
V T

= σ1u1vT
1 + σ2u2vT

2 + · · · + σn−1un−1vT
n−1

will be the matrix of rank n − 1 that is closest to A with respect to the Frobenius norm.
Similarly,

A′′ = σ1u1vT
1 + σ2u2vT

2 · · · + σn−2un−2vT
n−2
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will be the nearest matrix of rank n − 2, and so on. In particular, if A is a nonsingular
n × n matrix, then A′ is singular and ‖A − A′‖F = σn . Thus σn may be taken as a
measure of how close a square matrix is to being singular.

The reader should be careful not to use the value of det(A) as a measure of how
close A is to being singular. If, for example, A is the 100 × 100 diagonal matrix whose
diagonal entries are all 1

2 , then det(A) = 2−100; however, σ100 = 1
2 . By contrast, the

matrix in the next example is very close to being singular even though its determinant
is 1 and all its eigenvalues are equal to 1.

EXAMPLE 2 Let A be an n ×n upper triangular matrix whose diagonal elements are all 1 and whose
entries above the main diagonal are all −1:

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Notice that det(A) = det(A−1) = 1 and all the eigenvalues of A are 1. However, if n
is large, then A is close to being singular. To see this, let

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1
...

0 0 0 · · · 1 −1
−1

2n−2
0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix B must be singular, since the system Bx = 0 has a nontrivial solution
x = (2n−2, 2n−3, . . . , 20, 1)T . Since the matrices A and B differ only in the (n, 1)

position, we have

‖A − B‖F = 1

2n−2

It follows from Theorem 6.5.3 that

σn = min
X singular

‖A − X‖F ≤ ‖A − B‖F = 1

2n−2

Thus, if n = 100, then σn ≤ 1/298 and, consequently, A is very close to singular.

APPLICATION 1 Numerical Rank

In most practical applications, matrix computations are carried out by computers using
finite-precision arithmetic. If the computations involve a nonsingular matrix that is
very close to be being singular, then the matrix will behave computationally exactly
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like a singular matrix. In this case, computed solutions of linear systems may have no
digits of accuracy whatsoever. More generally, if an m × n matrix A is close enough
to a matrix of rank r , where r < min(m, n), then A will behave like a rank r matrix
in finite-precision arithmetic. The singular values provide a way of measuring how
close a matrix is to matrices of lower rank; however, we must clarify what we mean by
“very close.” We must decide how close is close enough. The answer depends on the
machine precision of the computer that is being used.

Machine precision can be measured in terms of the unit round off error for the
machine. Another name for unit round off is machine epsilon. To understand this
concept, we need to know how computers represent numbers. If the computer uses
the number base β and keeps track of n digits, then it will represent a real number x
by a floating-point number, denoted f l(x), of the form ±0.d1d2 . . . dn × βk , where
the digits di are integers with 0 ≤ di < β. For example, −0.54321469 × 1025 is
an 8-digit, base-10, floating-point number, and 0.110100111001 × 2−9 is a 12-digit,
base-2 floating-point number. In Section 1 of Chapter 7, we will discuss floating-point
numbers in more detail and give a precise definition of the machine epsilon. It turns out
that the machine epsilon, ε, is the smallest floating-point number that will serve as a
bound for the relative error whenever we approximate a real number by a floating-point
number; that is, for any real number x ,∣∣∣∣ f l(x) − x

x

∣∣∣∣ < ε (10)

For 8-digit, base 10, floating-point arithmetic, the machine epsilon is 5×10−8. For 12-
digit, base 2, floating-point arithmetic, the machine epsilon is ( 1

2 )−12, and, in general,
for n-digit base β arithmetic, the machine epsilon is 1

2 × β−n+1.
In light of (10) the machine epsilon is the natural choice as a basic unit for measur-

ing rounding errors. Suppose that A is a matrix of rank n, but k of its singular values
are less than a “small” multiple of the machine epsilon. Then A is close enough to
matrices of rank n − k, so that for floating point computations, it is impossible to tell
the difference. In this case, we would say that A has numerical rank n − k. The mul-
tiple of the machine epsilon that we use to determine numerical rank depends on the
dimensions of the matrix and on its largest singular value. The definition of numerical
rank that follows is one that is commonly used.

Definition The numerical rank of an m × n matrix is the number of singular values of the
matrix that are greater than σ1 max(m, n)ε, where σ1 is the largest singular value of
A and ε is the machine epsilon.

Often in the context of finite precision computations, the term “rank” will be used
with the understanding that it actually refers to the numerical rank. For example, the
MATLAB command rank(A) will compute the numerical rank of A, rather than the
exact rank.

EXAMPLE 3 Suppose that A is a 5 × 5 matrix with singular values

σ1 = 4, σ2 = 1, σ3 = 10−12, σ4 = 3.1 × 10−14, σ5 = 2.6 × 10−15
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and suppose that the machine epsilon is 5 × 10−15. To determine the numerical rank,
we compare the singular values to

σ1 max(m, n)ε = 4 · 5 · 5 × 10−15 = 10−13

Since three of the singular values are greater than 10−13, the matrix has numerical
rank 3.

APPLICATION 2 Digital Image Processing

A video image or photograph can be digitized by breaking it up into a rectangular
array of cells (or pixels) and measuring the gray level of each cell. This information
can be stored and transmitted as an m × n matrix A. The entries of A are nonnegative
numbers corresponding to the measures of the gray levels. Because the gray levels of
any one cell generally turn out to be close to the gray levels of its neighboring cells,
it is possible to reduce the amount of storage necessary from mn to a relatively small
multiple of m + n + 1. Generally, the matrix A will have many small singular values.
Consequently, A can be approximated by a matrix of much lower rank.

Original 176 by 260 Image Rank 5 Approximation to Image

Rank 15 Approximation to Image Rank 30 Approximation to Image

Figure 6.5.1. Courtesy Oakridge National Laboratory
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If A has singular value decomposition U�V T , then A can be represented by the
outer product expansion

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n

The closest matrix of rank k is obtained by truncating this sum after the first k terms:

Ak = σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k

The total storage for Ak is k(m + n + 1). We can choose k to be considerably less
than n and still have the digital image corresponding to Ak very close to the original.
For typical choices of k, the storage required for Ak will be less than 20 percent of the
amount of storage necessary for the entire matrix A.

Figure 6.5.1 shows an image corresponding to a 176 × 260 matrix A and three
images corresponding to lower rank approximations of A. The gentlemen in the picture
are (left to right) James H. Wilkinson, Wallace Givens, and George Forsythe (three
pioneers in the field of numerical linear algebra).

APPLICATION 3 Information Retrieval—Latent Semantic Indexing

We return again to the information retrieval application discussed in Chapter 1, Sec-
tion 3, and Chapter 5, Section 1. In this application a database of documents is repre-
sented by a database matrix Q. To search the database, we form a unit search vector x
and set y = QT x. The documents that best match the search criteria are those corre-
sponding to the entries of y that are closest to 1.

Because of the problems of polysemy and synonymy, we can think of our database
as an approximation. Some of the entries of the database matrix may contain extrane-
ous components due to multiple meanings of words, and some may miss including
components because of synonymy. Suppose that it were possible to correct for these
problems and come up with a perfect database matrix P . If we set E = Q − P , then,
since Q = P + E , we can think of E as a matrix representing the errors in our database
matrix Q. Unfortunately, E is unknown, so we cannot determine P exactly. However,
if we can find a simpler approximation Q1 for Q, then Q1 will also be an approxima-
tion for P . Thus, Q1 = P + E1 for some error matrix E1. In the method of latent
semantic indexing (LSI), the database matrix Q is approximated by a matrix Q1 with
lower rank. The idea behind the method is that the lower rank matrix may still provide
a good approximation to P and, because of its simpler structure, may actually involve
less error; that is, ‖E1‖ < ‖E‖.

The lower rank approximation can be obtained by truncating the outer product
expansion of the singular value decomposition of Q. This approach is equivalent to
setting

σr+1 = σr+2 = · · · = σn = 0

and then setting Q1 = U1�1V T
1 , the compact form of the singular value decomposi-

tion of the rank r matrix. Furthermore, if r < min(m, n)/2, then this factorization is
computationally more efficient to use and the searches will be speeded up. The speed
of computation is proportional to the amount of arithmetic involved. The matrix vector
multiplication QT x requires a total of mn scalar multiplications (m multiplications for
each of the n entries of the product). In contrast, QT

1 = V1�1U T
1 , and the multiplica-

tion QT
1 x = V1(�1(U1xT )) requires a total of r(m + n + 1) scalar multiplications. For
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example, if m = n = 1000 and r = 200, then

mn = 106 and r(m + n + 1) = 200 · 2001 = 400,200

The search with the lower rank matrix should be more than twice as fast.

APPLICATION 4 Psychology—Principal Component Analysis

In Section 1 of Chapter 5, we saw how psychologist Charles Spearman used a correla-
tion matrix to compare scores on a series of aptitude tests. On the basis of the observed
correlations, Spearman concluded that the test results provided evidence of common
basic underlying functions. Further work by psychologists to identify the common
factors that make up intelligence has led to development of an area of study known as
factor analysis.

Predating Spearman’s work by a few years is a 1901 paper by Karl Pearson ana-
lyzing a correlation matrix derived from measuring seven physical variables for each
of 3000 criminals. This study contains the roots of a method popularized by Harold
Hotelling in a well-known paper published in 1933. The method is known as principal
component analysis.

To see the basic idea of this method, assume that a series of n aptitude tests is
administered to a group of m individuals and that the deviations from the mean for the
tests form the columns of an m × n matrix X . Although, in practice, column vectors of
X are positively correlated, the hypothetical factors that account for the scores should
be uncorrelated. Thus, we wish to introduce mutually orthogonal vectors y1, y2, . . . , yr

corresponding to the hypothetical factors. We require that the vectors span R(X), and
hence the number of vectors, r , should be equal to the rank of X . Furthermore, we
wish to number these vectors in decreasing order of variance.

The first principal component vector, y1, should account for the most variance.
Since y1 is in the column space of X , we can represent it as a product Xv1 for some
v1 ∈ R

n . The covariance matrix is

S = 1

n − 1
X T X

and the variance of y1 is given by

var(y1) = (Xv1)
T Xv1

n − 1
= vT

1 Sv1

The vector v1 is chosen to maximize vT Sv over all unit vectors v. This can be accom-
plished by choosing v1 to be a unit eigenvector of X T X belonging to its maximum
eigenvalue λ1. (See Exercise 28 of Section 4.) The eigenvectors of X T X are the right
singular vectors of X . Thus, v1 is the right singular vector of X corresponding to the
largest singular value σ1 = √

λ1. If u1 is the corresponding left singular vector, then

y1 = Xv1 = σ1u1

The second principal component vector must be of the form y2 = Xv2. It can be
shown that the vector which maximizes vT Sv over all unit vectors that are orthogonal
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to v1 is just the second right singular vector v2 of X . If we choose v2 in this way and
u2 is the corresponding left singular vector, then

y2 = Xv2 = σ2u2

and since
yT

1 y2 = σ1σ2uT
1 u2 = 0

it follows that y1 and y2 are orthogonal. The remaining yi ’s are determined in a similar
manner.

In general, the singular value decomposition solves the principal component prob-
lem. If X has rank r and singular value decomposition X = U1�1V T

1 (in compact
form), then the principal component vectors are given by

y1 = σ1u1, y2 = σ2u2, . . . , yr = σr ur

The left singular vectors u1, . . . , un are the normalized principal component vectors.
If we set W = �1V T

1 , then

X = U1�1V T
1 = U1W

The columns of the matrix U1 correspond to the hypothetical intelligence factors. The
entries in each column measure how well the individual students exhibit that particular
intellectual ability. The matrix W measures to what extent each test depends on the
hypothetical factors.

SECTION 6.5 EXERCISES
1. Show that A and AT have the same nonzero singu-

lar values. How are their singular value decompo-
sitions related?

2. Use the method of Example 1 to find the singular
value decomposition of each of the following ma-
trices:

(a)
⎧⎪⎩1 1

2 2

⎫⎪⎭ (b)
⎧⎪⎩2 −2

1 2

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 3
3 1
0 0
0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0
0 2 1
0 1 2
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. For each of the matrices in Exercise 2,

(a) determine the rank.

(b) find the closest (with respect to the Frobenius
norm) matrix of rank 1.

4. Let

A =
⎧⎪⎪⎪⎪⎪⎩

−2 8 20
14 19 10

2 −2 1

⎫⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 − 4

5 0
4
5

3
5 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

30 0 0
0 15 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

2
3

2
3

2
3

1
3 − 2

3

2
3 − 2

3
1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Find the closest (with respect to the Frobenius norm) matrices of rank 1 and rank 2 to A.



6.6 Quadratic Forms 351

5. The matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 5 4
6 3 0
6 3 0
2 5 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
has singular value decomposition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2

1
2

1
2 − 1

2 − 1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
12 0 0

0 6 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

2
3

1
3

− 2
3

1
3

2
3

1
3 − 2

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use the singular value decomposition to find orthonormal bases for R(AT ) and N (A).
(b) Use the singular value decomposition to find orthonormal bases for R(A) and N (AT ).

6. Prove that if A is a symmetric matrix with eigenval-
ues λ1, λ2, . . . , λn , then the singular values of A are
|λ1|, |λ2|, . . . , |λn|.

7. Let A be an m × n matrix with singular value de-
composition U�V T , and suppose that A has rank r ,
where r < n. Show that {v1, . . . , vr } is an orthonor-
mal basis for R(AT ).

8. Let A be an n × n matrix. Show that AT A and AAT

are similar.

9. Let A be an n × n matrix with singular values
σ1, σ2, . . . , σn and eigenvalues λ1, λ2, . . . , λn . Show
that

|λ1λ2 · · · λn| = σ1σ2 · · · σn

10. Let A be an n × n matrix with singular value de-
composition U�V T and let

B =
⎧⎪⎩O AT

A O

⎫⎪⎭
Show that if

xi =
⎧⎪⎩ vi

ui

⎫⎪⎭ , yi =
⎧⎪⎩−vi

ui

⎫⎪⎭ , i = 1, . . . , n

then the xi ’s and yi ’s are eigenvectors of B. How do
the eigenvalues of B relate to the singular values of
A?

11. Show that if σ is a singular value of A, then there
exists a nonzero vector x such that

σ = ‖Ax‖2

‖x‖2

12. Let A be an m × n matrix of rank n with singu-
lar value decomposition U�V T . Let �+ denote the
n × m matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ1
1

σ2
. . .

1

σn

O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define A+ = V �+U T . Show that x̂ = A+b
satisfies the normal equations ATAx = AT b.

13. Let A+ be defined as in Exercise 12 and let
P = AA+. Show that P2 = P and PT = P .

6.6 Quadratic Forms

By this time, the reader should be well aware of the important role that matrices play
in the study of linear equations. In this section, we will see that matrices also play
an important role in the study of quadratic equations. With each quadratic equation,
we can associate a vector function f (x) = xTAx. Such a vector function is called a
quadratic form. Quadratic forms arise in a wide variety of applied problems. They are
particularly important in the study of optimization theory.



352 Chapter 6 Eigenvalues

Definition A quadratic equation in two variables x and y is an equation of the form

ax2 + 2bxy + cy2 + dx + ey + f = 0 (1)

Equation (1) may be rewritten in the form⎧⎩ x y
⎫⎭⎧⎪⎩a b

b c

⎫⎪⎭⎧⎪⎩ x
y

⎫⎪⎭ +
⎧⎩d e

⎫⎭⎧⎪⎩ x
y

⎫⎪⎭ + f = 0 (2)

Let

x =
⎧⎪⎩ x

y

⎫⎪⎭ and A =
⎧⎪⎩a b

b c

⎫⎪⎭
The term

xTAx = ax2 + 2bxy + cy2

is called the quadratic form associated with (1).

Conic Sections

The graph of an equation of the form (1) is called a conic section. [If there are no
ordered pairs (x, y) which satisfy (1), we say that the equation represents an imaginary
conic.] If the graph of (1) consists of a single point, a line, or a pair of lines, we
say that (1) represents a degenerate conic. Of more interest are the nondegenerate
conics. Graphs of nondegenerate conics turn out to be circles, ellipses, parabolas, or
hyperbolas (see Figure 6.6.1). The graph of a conic is particularly easy to sketch when
its equation can be put into one of the following standard forms:

(i) x2 + y2 = r2 (circle)

(ii)
x2

α2
+ y2

β2
= 1 (ellipse)

(iii)
x2

α2
− y2

β2
= 1 or

y2

α2
− x2

β2
= 1 (hyperbola)

(iv) x2 = αy or y2 = αx (parabola)

Here, α, β, and r are nonzero real numbers. Note that the circle is a special case of the
ellipse (α = β = r ). A conic section is said to be in standard position if its equation
can be put into one of these four standard forms. The graphs of (i), (ii), and (iii) in
Figure 6.6.1 will all be symmetric to both coordinate axes and the origin. We say that
these curves are centered at the origin. A parabola in standard position will have its
vertex at the origin and will be symmetric to one of the axes.

What about the conics that are not in standard position? Let us consider the fol-
lowing cases:

Case 1. The conic section has been translated horizontally from the standard position.
This occurs when the x2 and x terms in (1) both have nonzero coefficients.

Case 2. The conic section has been translated vertically from the standard position.
This occurs when the y2 and y terms in (1) have nonzero coefficients (i.e., c �= 0 and
e �= 0).
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y

x

(i)  Circle

y

x

(ii)  Ellipse

y

x

(iii)  Hyperbola

y

x

(iv)  Parabola

Figure 6.6.1.

Case 3. The conic section has been rotated from the standard position by an angle θ

that is not a multiple of 90.◦ This occurs when the coefficient of the xy term is nonzero
(i.e., b �= 0).

In general, we may have any one or any combination of these three cases. To graph
a conic section that is not in standard position, we usually find a new set of axes x ′ and
y′ such that the conic section is in standard position with respect to the new axes. This
is not difficult if the conic has only been translated horizontally or vertically, in which
case the new axes can be found by completing the squares. The following example
illustrates how this is done:

EXAMPLE 1 Sketch the graph of the equation

9x2 − 18x + 4y2 + 16y − 11 = 0

Solution
To see how to choose our new axis system, we complete the squares:

9(x2 − 2x + 1) + 4(y2 + 4y + 4) − 11 = 9 + 16

This equation can be simplified to the form

(x − 1)2

22
+ (y + 2)2

32
= 1

If we let
x ′ = x − 1 and y′ = y + 2

the equation becomes
(x ′)2

22
+ (y′)2

32
= 1

which is in standard form with respect to the variables x ′ and y′. Thus, the graph, as
shown in Figure 6.6.2, will be an ellipse that is in standard position in the x ′y′-axis
system. The center of the ellipse will be at the origin of the x ′y′-plane [i.e., at the point
(x, y) = (1, −2)]. The equation of the x ′-axis is simply y′ = 0, which is the equation
of the line y = −2 in the xy-plane. Similarly, the y′-axis coincides with the line x = 1.
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Figure 6.6.2.

There is little problem if the center or vertex of the conic section has been trans-
lated. If, however, the conic section has also been rotated from the standard position, it
is necessary to change coordinates so that the equation in terms of the new coordinates
x ′ and y′ involves no x ′y′ term. Let x = (x, y)T and x′ = (x ′, y′)T . Since the new
coordinates differ from the old coordinates by a rotation, we have

x = Qx′ or x′ = QT x

where

Q =
⎧⎪⎩ cos θ sin θ

− sin θ cos θ

⎫⎪⎭ or QT =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
If 0 < θ < π , then the matrix Q corresponds to a rotation of θ radians in the clockwise
direction and QT corresponds to a rotation of θ radians in the counterclockwise direc-
tion (see Example 2 in Section 2 of Chapter 4). With this change of variables, (2)
becomes

(x′)T(QTAQ)x′ +
⎧⎩d ′ e′

⎫⎭ x′ + f = 0 (3)

where
⎧⎩d ′ e′

⎫⎭ =
⎧⎩d e

⎫⎭ Q. This equation will involve no x ′y′ term if and only

if QTAQ is diagonal. Since A is symmetric, it is possible to find a pair of orthonormal
eigenvectors q1 = (x1, −y1)

T and q2 = (y1, x1)
T . Thus, if we set cos θ = x1 and

sin θ = y1, then

Q =
⎧⎩q1 q2

⎫⎭ =
⎧⎪⎩ x1 y1

−y1 x1

⎫⎪⎭
diagonalizes A and (3) simplifies to

λ1(x ′)2 + λ2(y′)2 + d ′x ′ + e′y′ + f = 0

EXAMPLE 2 Consider the conic section

3x2 + 2xy + 3y2 − 8 = 0

This equation can be written in the form⎧⎩ x y
⎫⎭⎧⎪⎩3 1

1 3

⎫⎪⎭⎧⎪⎩ x
y

⎫⎪⎭ = 8
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The matrix ⎧⎪⎩3 1
1 3

⎫⎪⎭
has eigenvalues λ = 2 and λ = 4, with corresponding unit eigenvectors

(
1√
2
, − 1√

2

)T

and

(
1√
2
,

1√
2

)T

Let

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ cos 45◦ sin 45◦

− sin 45◦ cos 45◦
⎫⎪⎭

and set

⎧⎪⎩ x
y

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩ x ′

y′
⎫⎪⎭

Thus,

QTAQ =
⎧⎪⎩2 0

0 4

⎫⎪⎭
and the equation of the conic becomes

2(x ′)2 + 4(y′)2 = 8

or
(x ′)2

4
+ (y′)2

2
= 1

In the new coordinate system, the direction of the x ′-axis is determined by the point
x ′ = 1, y′ = 0. To translate this to the xy-coordinate system, we multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩1

0

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = q1

The x ′-axis will be in the direction of q1. Similarly, to find the direction of the y′-axis,
we multiply

Qe2 = q2

The eigenvectors that form the columns of Q tell us the directions of the new coordinate
axes (see Figure 6.6.3).
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Figure 6.6.3.

EXAMPLE 3 Given the quadratic equation

3x2 + 2xy + 3y2 + 8
√

2y − 4 = 0

find a change of coordinates so that the resulting equation represents a conic in standard
position.

Solution
The xy term is eliminated in the same manner as in Example 2. In this case we use the
matrix

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
to rotate the axis system. The equation with respect to the new axis system is

2(x ′)2 + 4(y′)2 +
⎧⎩0 8

√
2
⎫⎭ Q

⎧⎪⎩ x ′
y′
⎫⎪⎭ = 4

or
(x ′)2 − 4x ′ + 2(y′)2 + 4y′ = 2

If we complete the square, we get

(x ′ − 2)2 + 2(y′ + 1)2 = 8

If we set x ′′ = x ′ − 2 and y′′ = y′ + 1 (see Figure 6.6.4), the equation simplifies to

(x ′′)2

8
+ (y′′)2

4
= 1

To summarize, a quadratic equation in the variables x and y can be written in the
form

xTAx + Bx + f = 0
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Figure 6.6.4.

where x = (x, y)T , A is a 2 × 2 symmetric matrix, B is a 1 × 2 matrix, and f is a
scalar. If A is nonsingular, then, by rotating and translating the axes, it is possible to
rewrite the equation in the form

λ1(x ′)2 + λ2(y′)2 + f ′ = 0 (4)

where λ1 and λ2 are the eigenvalues of A. If (4) represents a real nondegenerate conic,
it will be either an ellipse or a hyperbola, depending on whether λ1 and λ2 agree in
sign or differ in sign. If A is singular and exactly one of its eigenvalues is zero, the
quadratic equation can be reduced to either

λ1(x ′)2 + e′y′ + f ′ = 0 or λ2(y′)2 + d ′x ′ + f ′ = 0

These equations will represent parabolas, provided that e′ and d ′ are nonzero.
There is no reason to limit ourselves to two variables. We could just as well

have quadratic equations and quadratic forms in any number of variables. Indeed, a
quadratic equation in n variables x1, . . . , xn is one of the form

xTAx + Bx + α = 0 (5)

where x = (x1, . . . , xn)
T , A is an n × n symmetric matrix, B is a 1 × n matrix, and α

is a scalar. The vector function

f (x) = xTAx =
n∑

i=1

(
n∑

j=1

ai j x j

)
xi

is the quadratic form in n variables associated with the quadratic equation.
In the case of three unknowns, if

x =
⎧⎪⎪⎪⎪⎪⎩

x
y
z

⎫⎪⎪⎪⎪⎪⎭ , A =
⎧⎪⎪⎪⎪⎪⎩

a d e
d b f
e f c

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

g
h
i

⎫⎪⎪⎪⎪⎪⎭
then (5) becomes

ax2 + by2 + cz2 + 2dxy + 2exz + 2 f yz + gx + hy + i z + α = 0

The graph of a quadratic equation in three variables is called a quadric surface.
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There are four basic types of nondegenerate quadric surfaces:

1. Ellipsoids
2. Hyperboloids (of one or two sheets)
3. Cones
4. Paraboloids (either elliptic or hyperbolic)

As in the two-dimensional case, we can use translations and rotations to transform the
equation into the standard form

λ1(x ′)2 + λ2(y′)2 + λ3(z
′)2 + α = 0

where λ1, λ2, λ3 are the eigenvalues of A. For the general n-dimensional case, the
quadratic form can always be translated to a simpler diagonal form. More precisely,
we have the following theorem:

Theorem 6.6.1 Principal Axes Theorem
If A is a real symmetric n × n matrix, then there is a change of variables u = QT x
such that xT Ax = uT Du, where D is a diagonal matrix.

Proof If A is a real symmetric matrix, then, by Corollary 6.4.7, there is an orthogonal matrix
Q that diagonalizes A; that is, QT AQ = D (diagonal). If we set u = QT x, then
x = Qu and

xT Ax = uT QT AQu = uT Du

Optimization: An Application to the Calculus

Let us consider the problem of maximizing and minimizing functions of several vari-
ables. In particular, we would like to determine the nature of the critical points of a
real-valued vector function w = F(x). If the function is a quadratic form, w = xTAx,
then 0 is a critical point. Whether it is a maximum, minimum, or saddle point depends
on the eigenvalues of A. More generally, if the function to be maximized or minimized
is sufficiently differentiable, it behaves locally like a quadratic form. Thus, each criti-
cal point can be tested by determining the signs of the eigenvalues of the matrix of an
associated quadratic form.

Definition Let F(x) be a real-valued vector function on R
n . A point x0 in R

n is said to be a
stationary point of F if all the first partial derivatives of F at x0 exist and are zero.

If F(x) has either a local maximum or a local minimum at a point x0 and the
first partials of F exist at x0, they will all be zero. Thus, if F(x) has first partials
everywhere, its local maxima and minima will occur at stationary points.

Consider the quadratic form

f (x, y) = ax2 + 2bxy + cy2
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The first partials of f are

fx = 2ax + 2by

fy = 2bx + 2cy

Setting these equal to zero, we see that (0, 0) is a stationary point. Moreover, if the
matrix

A =
⎧⎪⎩a b

b c

⎫⎪⎭
is nonsingular, this will be the only critical point. Thus, if A is nonsingular, f will
have either a global minimum, a global maximum, or a saddle point at (0, 0).

Let us write f in the form

f (x) = xTAx where x =
⎧⎪⎩ x

y

⎫⎪⎭
Since f (0) = 0, it follows that f will have a global minimum at 0 if and only if

xTAx > 0 for all x �= 0

and f will have a global maximum at 0 if and only if

xTAx < 0 for all x �= 0

If xTAx changes sign, then 0 is a saddle point.
In general, if f is a quadratic form in n variables, then, for each x ∈ R

n ,

f (x) = xTAx

where A is a symmetric n × n matrix.

Definition A quadratic form f (x) = xTAx is said to be definite if it takes on only one sign as
x varies over all nonzero vectors in R

n . The form is positive definite if xTAx > 0
for all nonzero x in R

n and negative definite if xTAx < 0 for all nonzero x in R
n .

A quadratic form is said to be indefinite if it takes on values that differ in sign. If
f (x) = xTAx ≥ 0 and assumes the value 0 for some x �= 0, then f (x) is said to be
positive semidefinite. If f (x) ≤ 0 and assumes the value 0 for some x �= 0, then
f (x) is said to be negative semidefinite.

Whether the quadratic form is positive definite or negative definite depends on the
matrix A. If the quadratic form is positive definite, we say simply that A is positive
definite. The preceding definition can then be restated as follows:

Definition A real symmetric matrix A is said to be

I. positive definite if xTAx > 0 for all nonzero x in R
n .

II. negative definite if xTAx < 0 for all nonzero x in R
n .

III. positive semidefinite if xTAx ≥ 0 for all nonzero x in R
n .

IV. negative semidefinite if xTAx ≤ 0 for all nonzero x in R
n .

V. indefinite if xTAx takes on values that differ in sign.
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If A is nonsingular, then 0 will be the only stationary point of f (x) = xTAx. It will
be a global minimum if A is positive definite and a global maximum if A is negative
definite. If A is indefinite, then 0 is a saddle point. To classify the stationary point, we
must then classify the matrix A. There are a number of ways of determining whether
a matrix is positive definite. We will study some of these methods in the next section.
The following theorem gives perhaps the most important characterization of positive
definite matrices:

Theorem 6.6.2 Let A be a real symmetric n × n matrix. Then A is positive definite if and only if all
its eigenvalues are positive.

Proof If A is positive definite and λ is an eigenvalue of A, then, for any eigenvector x belong-
ing to λ,

xTAx = λxT x = λ‖x‖2

Hence,

λ = xTAx
‖x‖2

> 0

Conversely, suppose that all the eigenvalues of A are positive. Let {x1, . . . , xn} be an
orthonormal set of eigenvectors of A. If x is any nonzero vector in R

n , then x can be
written in the form

x = α1x1 + α2x2 + · · · + αnxn

where

αi = xT xi for i = 1, . . . , n and
n∑

i=1

α2
i = ‖x‖2 > 0

It follows that

xTAx = xT (α1λ1x1 + · · · + αnλnxn)

=
n∑

i=1

α2
i λi

≥ (min λi )‖x‖2 > 0

and hence A is positive definite.

If the eigenvalues of A are all negative, then −A must be positive definite and,
consequently, A must be negative definite. If A has eigenvalues that differ in sign, then
A is indefinite. Indeed, if λ1 is a positive eigenvalue of A and x1 is an eigenvector
belonging to λ1, then

xT
1Ax1 = λ1xT

1 x1 = λ1‖x1‖2 > 0

and if λ2 is a negative eigenvalue with eigenvector x2, then

xT
2Ax2 = λ2xT

2 x2 = λ2‖x2‖2 < 0
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EXAMPLE 4 The graph of the quadratic form f (x, y) = 2x2 −4xy +5y2 is pictured in Figure 6.6.5.
It is not entirely clear from the graph if the stationary point (0, 0) is a global minimum
or a saddle point. We can use the matrix A of the quadratic form to decide the issue:

A =
⎧⎪⎩ 2 −2

−2 5

⎫⎪⎭
The eigenvalues of A are λ1 = 6 and λ2 = 1. Since both eigenvalues are positive,
it follows that A is positive definite and hence the stationary point (0, 0) is a global
minimum.

−1−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
0

2

4

6

8

10

12

Figure 6.6.5.

Suppose now that we have a function F(x, y) with a stationary point (x0, y0). If
F has continuous third partials in a neighborhood of (x0, y0), it can be expanded in a
Taylor series about that point.

F(x0 + h, y0 + k) = F(x0, y0) + [
hFx(x0, y0) + k Fy(x0, y0)

]
+ 1

2

[
h2 Fxx(x0, y0) + 2hk Fxy(x0, y0) + k2 Fyy(x0, y0)

] + R

= F(x0, y0) + 1
2 (ah2 + 2bhk + ck2) + R

where
a = Fxx(x0, y0), b = Fxy(x0, y0), c = Fyy(x0, y0)

and the remainder R is given by

R = 1
6

[
h3 Fxxx(z) + 3h2k Fxxy(z) + 3hk2 Fxyy(z) + k3 Fyyy(z)

]
z = (x0 + θh, y0 + θk), 0 < θ < 1

If h and k are sufficiently small, |R| will be less than 1
2 |ah2 + 2bhk + ck2|, and hence

[F(x0 + h, y0 + k) − F(x0, y0)] will have the same sign as (ah2 + 2bhk + ck2). The
expression

f (h, k) = ah2 + 2bhk + ck2

is a quadratic form in the variables h and k. Thus, F(x, y) will have a local minimum
(maximum) at (x0, y0) if and only if f (h, k) has a minimum (maximum) at (0, 0). Let

H =
⎧⎪⎩a b

b c

⎫⎪⎭ =
⎧⎪⎩ Fxx(x0, y0) Fxy(x0, y0)

Fxy(x0, y0) Fyy(x0, y0)

⎫⎪⎭
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and let λ1 and λ2 be the eigenvalues of H . If H is nonsingular, then λ1 and λ2 are
nonzero and we can classify the stationary points as follows:

(i) F has a minimum at (x0, y0) if λ1 > 0, λ2 > 0.

(ii) F has a maximum at (x0, y0) if λ1 < 0, λ2 < 0.

(iii) F has a saddle point at (x0, y0) if λ1 and λ2 differ in sign.

EXAMPLE 5 The graph of the function

F(x, y) = 1
3 x3 + xy2 − 4xy + 1

is pictured in Figure 6.6.6. Although all the stationary points lie in the region shown, it
is difficult to distinguish them just by looking at the graph. However, we can solve for
the stationary points analytically and then classify each stationary point by examining
the corresponding matrix of second partial derivatives.

–3 –2 –1 0 1 2 3

–2

0

2

4

6
–180
–160
–140
–120
–100
–80
–60
–40

Figure 6.6.6.

Solution
The first partials of F are

Fx = x2 + y2 − 4y

Fy = 2xy − 4x = 2x(y − 2)

Setting Fy = 0, we get x = 0 or y = 2. Setting Fx = 0, we see that if x = 0, then
y must either be 0 or 4, and if y = 2, then x = ±2. Thus, (0, 0), (0, 4), (2, 2), and
(−2, 2) are the stationary points of F . To classify the stationary points, we compute
the second partials:

Fxx = 2x, Fxy = 2y − 4, Fyy = 2x

For each stationary point (x0, y0), we determine the eigenvalues of the matrix⎧⎪⎩ 2x0 2y0 − 4
2y0 − 4 2x0

⎫⎪⎭
These values are summarized in Table 1.
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Table 1

Stationary Point (x0, y0) λ1 λ2 Description

(0, 0) 4 −4 Saddle point

(0, 4) 4 −4 Saddle point

(2, 2) 4 4 Local minimum

(−2, 2) −4 −4 Local maximum

We can now generalize our method of classifying stationary points to functions of
more than two variables. Let F(x) = F(x1, . . . , xn) be a real-valued function whose
third partial derivatives are all continuous. Let x0 be a stationary point of F and define
the matrix H = H(x0) by

hi j = Fxi x j (x0)

H(x0) is called the Hessian of F at x0.
The stationary point can be classified as follows:

(i) x0 is a local minimum of F if H(x0) is positive definite.

(ii) x0 is a local maximum of F if H(x0) is negative definite.

(iii) x0 is a saddle point of F if H(x0) is indefinite.

EXAMPLE 6 Find the local maxima and minima and all saddle points of the function

F(x, y, z) = x2 + xz − 3 cos y + z2

Solution
The first partials of F are

Fx = 2x + z

Fy = 3 sin y

Fz = x + 2z

It follows that (x, y, z) is a stationary point of F if and only if x = z = 0 and y = nπ ,
where n is an integer. Let x0 = (0, 2kπ, 0)T . The Hessian of F at x0 is given by

H(x0) =
⎧⎪⎪⎪⎪⎪⎩

2 0 1
0 3 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭
The eigenvalues of H(x0) are 3, 3, and 1. Since the eigenvalues are all positive, it
follows that H(x0) is positive definite and hence F has a local minimum at x0. At a
stationary point of the form x1 = (0, (2k − 1)π, 0)T , the Hessian will be

H(x1) =
⎧⎪⎪⎪⎪⎪⎩

2 0 1
0 −3 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭
The eigenvalues of H(x1) are −3, 3, and 1. It follows that H(x1) is indefinite and
hence x1 is a saddle point of F .
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SECTION 6.6 EXERCISES
1. Find the matrix associated with each of the follow-

ing quadratic forms:
(a) 3x2 − 5xy + y2

(b) 2x2 + 3y2 + z2 + xy − 2xz + 3yz

(c) x2 + 2y2 + z2 + xy − 2xz + 3yz

2. Reorder the eigenvalues in Example 2 so that λ1 =
4 and λ2 = 2, and rework the example. In
what quadrants will the positive x ′ and y′ axes lie?
Sketch the graph and compare it with Figure 6.6.3.

3. In each of the following, (i) find a suitable change
of coordinates (i.e., a rotation and/or a translation)
so that the resulting conic section is in standard
form, (ii) identify the curve, and (iii) sketch the
graph:
(a) x2 + xy + y2 − 6 = 0

(b) 3x2 + 8xy + 3y2 + 28 = 0

(c) −3x2 + 6xy + 5y2 − 24 = 0

(d) x2 + 2xy + y2 + 3x + y − 1 = 0

4. Let λ1 and λ2 be the eigenvalues of

A =
⎧⎪⎩a b

b c

⎫⎪⎭
What kind of conic section will the equation

ax2 + 2bxy + cy2 = 1

represent if λ1λ2 < 0? Explain.

5. Let A be a symmetric 2 × 2 matrix and let α be a
nonzero scalar for which the equation xTAx = α

is consistent. Show that the corresponding conic
section will be nondegenerate if and only if A is
nonsingular.

6. Which of the matrices that follow are positive defi-
nite? Negative definite? Indefinite?

(a)
⎧⎪⎩3 2

2 2

⎫⎪⎭ (b)
⎧⎪⎩3 4

4 1

⎫⎪⎭
(c)

⎧⎪⎪⎩ 3
√

2√
2 4

⎫⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
−2 0 1

0 −1 0
1 0 −2

⎫⎪⎪⎪⎪⎪⎭

(e)

⎧⎪⎪⎪⎪⎪⎩
1 2 1
2 1 1
1 1 2

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
2 0 0
0 5 3
0 3 5

⎫⎪⎪⎪⎪⎪⎭
7. For each of the following functions, determine

whether the given stationary point corresponds to
a local minimum, local maximum, or saddle point:
(a) f (x, y) = 3x2 − xy + y2 (0, 0)

(b) f (x, y) = sin x +y3+3xy+2x −3y (0, −1)

(c) f (x, y) = 1
3 x3− 1

3 y3+3xy+2x−2y (1, −1)

(d) f (x, y) = y

x2
+ x

y2
+ xy (1, 1)

(e) f (x, y, z) = x3 + xyz + y2 − 3x (1, 0, 0)

(f) f (x, y, z) = − 1
4 (x−4 + y−4 + z−4)+ yz − x −

2y − 2z (1, 1, 1)

8. Show that if A is symmetric positive definite, then
det(A) > 0. Give an example of a 2×2 matrix with
positive determinant that is not positive definite.

9. Show that if A is a symmetric positive definite ma-
trix, then A is nonsingular and A−1 is also positive
definite.

10. Let A be a singular n × n matrix. Show that ATA is
positive semidefinite, but not positive definite.

11. Let A be a symmetric n×n matrix with eigenvalues
λ1, . . . , λn . Show that there exists an orthonormal
set of vectors {x1, . . . , xn} such that

xTAx =
n∑

i=1

λi

(
xT xi

)2

for each x ∈ R
n .

12. Let A be a symmetric positive definite matrix.
Show that the diagonal elements of A must all be
positive.

13. Let A be a symmetric positive definite n ×n matrix
and let S be a nonsingular n × n matrix. Show that
STAS is positive definite.

14. Let A be a symmetric positive definite n×n matrix.
Show that A can be factored into a product Q QT ,
where Q is an n ×n matrix whose columns are mu-
tually orthogonal. [Hint: See Corollary 6.4.7.]

6.7 Positive Definite Matrices

In Section 6, we saw that a symmetric matrix is positive definite if and only if its
eigenvalues are all positive. These types of matrices occur in a wide variety of applica-
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tions. They frequently arise in the numerical solution of boundary value problems by
finite difference methods or by finite element methods. Because of their importance in
applied mathematics, we devote this section to studying their properties.

Recall that a symmetric n × n matrix A is positive definite if xTAx > 0 for all
nonzero vectors x in R

n . In Theorem 6.6.2, symmetric positive definite matrices were
characterized by the condition that all their eigenvalues are positive. This characteri-
zation can be used to establish the following properties:

Property I If A is a symmetric positive definite matrix, then A is nonsingular.
Property II If A is a symmetric positive definite matrix, then det(A) > 0.

If A were singular, λ = 0 would be an eigenvalue of A. However, since all the
eigenvalues of A are positive, A must be nonsingular. The second property also follows
from Theorem 6.6.2, since

det(A) = λ1 · · · λn > 0

Given an n ×n matrix A, let Ar denote the matrix formed by deleting the last n −r
rows and columns of A. Ar is called the leading principal submatrix of A of order r .
We can now state a third property of positive definite matrices:

Property III If A is a symmetric positive definite matrix, then the leading prin-
cipal submatrices A1, A2, . . . , An of A are all positive definite.

Proof To show that Ar is positive definite, 1 ≤ r ≤ n, let xr = (x1, . . . , xr )
T be any nonzero

vector in R
r and set

x = (x1, . . . , xr , 0, . . . , 0)T

Since
xT

r Ar xr = xTAx > 0

it follows that Ar is positive definite.

An immediate consequence of properties I, II, and III is that if Ar is a leading
principal submatrix of a symmetric positive definite matrix A, then Ar is nonsingular
and det(Ar ) > 0. This has significance in relation to the Gaussian elimination process.
In general, if A is an n × n matrix whose leading principal submatrices are all nonsin-
gular, then A can be reduced to upper triangular form using only row operation III; that
is, the diagonal elements will never be 0 in the elimination process, so the reduction
can be completed without interchanging rows.

Property IV If A is a symmetric positive definite matrix, then A can be reduced
to upper triangular form using only row operation III, and the pivot elements will
all be positive.

Let us illustrate property IV in the case of a 4 × 4 symmetric positive definite
matrix A. Note first that

a11 = det(A1) > 0

so a11 can be used as a pivot element and row 1 is the first pivot row. Let a(1)

22 denote
the entry in the (2, 2) position after the last three elements of column 1 have been
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eliminated (see Figure 6.7.1). At this step, the submatrix A2 has been transformed into
a matrix: ⎧⎪⎪⎪⎩a11 a12

0 a(1)

22

⎫⎪⎪⎪⎭
Since the transformation was accomplished using only row operation III, the value of
the determinant remains unchanged. Thus,

det(A2) = a11a(1)

22

and hence

a(1)

22 = det(A2)

a11
= det(A2)

det(A1)
> 0

Since a(1)

22 �= 0, it can be used as a pivot in the second step of the elimination process.
After step 2, the matrix A3 has been transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 a13

0 a(1)

22 a(1)

23

0 0 a(2)

33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Because only row operation III was used,

det(A3) = a11a(1)

22 a(2)

33

and hence

a(2)

33 = det(A3)

a11a(1)

22

= det(A3)

det(A2)
> 0

Thus, a(2)

33 can be used as a pivot in the last step. After step 3, the remaining diagonal
entry will be

a(3)

44 = det(A4)

det(A3)
> 0

In general, if an n × n matrix A can be reduced to an upper triangular form U
without any interchanges of rows, then A can be factored into a product LU , where L
is lower triangular with 1’s on the diagonal. The (i, j) entry of L below the diagonal
will be the multiple of the i th row that was subtracted from the j th row during the
elimination process. We illustrate with a 3 × 3 example:
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EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭
The matrix L is determined as follows: At the first step of the elimination process,
1
2 times the first row is subtracted from the second row and − 1

2 times the first row
is subtracted from the third. Corresponding to these operations, we set l21 = 1

2 and
l31 = − 1

2 . After step 1, we obtain the matrix

A(1) =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 3 4

⎫⎪⎪⎪⎪⎪⎭
The final elimination is carried out by subtracting 1

3 times the second row from the
third row. Corresponding to this step, we set l32 = 1

3 . After step 2, we end up with the
upper triangular matrix

U = A(2) =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
The matrix L is given by

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and we can verify that the product LU = A.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭
To see why this factorization works, let us view that process in terms of elementary
matrices. Row operation III was applied three times during the process. This is equiv-
alent to multiplying A on the left by three elementary matrices E1, E2, and E3. Thus,
E3 E2 E1 A = U :

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 1

3 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
1
2 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

− 1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
Since the elementary matrices are nonsingular, it follows that

A = (E−1
1 E−1

2 E−1
3 )U

When the inverse elementary matrices are multiplied in this order, the result is a lower
triangular matrix L with 1’s on the diagonal. The entries below the diagonal of L will
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just be the multiples that were subtracted during the elimination process:

E−1
1 E−1

2 E−1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0

− 1
2 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 1

3 1

⎫⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Given an LU factorization of a matrix A, it is possible to go one step further and

factor U into a product DU1, where D is diagonal and U1 is upper triangular with 1’s
on the diagonal:

DU1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
u11

u22
. . .

unn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
u12

u11

u13

u11
· · · u1n

u11

1
u23

u22
· · · u2n

u22

...

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It follows, then, that A = L DU1. In general, if A can be factored into a product of the
form L DU , where L is lower triangular, D is diagonal, U is upper triangular, and L
and U both have 1’s along the diagonal, then such a factorization will be unique (see
Exercise 7).

If A is a symmetric positive definite matrix, then A can be factored into a product
LU = L DU1. The diagonal elements of D are the entries u11, . . . , unn , which were
the pivot elements in the elimination process. By property IV, these elements are all
positive. Furthermore, since A is symmetric,

L DU1 = A = AT = (L DU1)
T = U T

1 DTLT

It follows from the uniqueness of the L DU factorization that LT = U1. Thus,

A = L DLT

This important factorization is often used in numerical computations. There are effi-
cient algorithms that make use of the factorization in solving symmetric positive defi-
nite linear systems.

Property V If A is a symmetric positive definite matrix, then A can be factored
into a product L DLT , where L is lower triangular with 1’s along the diagonal and
D is a diagonal matrix whose diagonal entries are all positive.
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EXAMPLE 2 We saw in Example 1 that

A =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭ = LU

Factoring out the diagonal entries of U , we get

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 0 0
0 9 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2 − 1

2

0 1 1
3

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = L DLT

Since the diagonal elements u11, . . . , unn are positive, it is possible to go one step
further with the factorization. Let

D1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
√

u11 √
u22

. . . √
unn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and set L1 = L D1/2. Then

A = L DLT = L D1/2(D1/2)TLT = L1LT
1

This factorization is known as the Cholesky decomposition of A.

Property VI (Cholesky Decomposition) If A is a symmetric positive definite
matrix, then A can be factored into a product L LT , where L is lower triangular
with positive diagonal elements.

EXAMPLE 3 Let A be the matrix from Examples 1 and 2. If we set

L1 = L D1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 0 0
0 3 0
0 0

√
3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
1 3 0

−1 1
√

3

⎫⎪⎪⎪⎪⎪⎭
then

L1LT
1 =

⎧⎪⎪⎪⎪⎪⎩
2 0 0
1 3 0

−1 1
√

3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 1 −1
0 3 1
0 0

√
3

⎫⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭ = A
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The matrix A = L LT could also be written in terms of the upper triangular matrix
R = LT . Indeed, if R = LT , then A = L LT = RTR. Furthermore, it is not difficult
to show that any product BTB will be positive definite, provided that B is nonsingular.
Putting all these results together, we have the following theorem:

Theorem 6.7.1 Let A be a symmetric n × n matrix. The following are equivalent:

(a) A is positive definite.

(b) The leading principal submatrices A1, . . . , An all have positive determinants.

(c) A can be reduced to upper triangular form using only row operation III, and the
pivot elements will all be positive.

(d) A has a Cholesky factorization L LT (where L is lower triangular with positive
diagonal entries).

(e) A can be factored into a product BTB for some nonsingular matrix B.

Proof We have already shown that (a) implies (b), (b) implies (c), and (c) implies (d). To see
that (d) implies (e), assume that A = L LT . If we set B = LT , then B is nonsingular
and

A = L LT = BTB

Finally, to show that (e) ⇒ (a), assume that A = BTB, where B is nonsingular. Let
x be any nonzero vector in R

n and set y = Bx. Since B is nonsingular, y �= 0 and it
follows that

xTAx = xT BTBx = yT y = ‖y‖2 > 0

Thus, A is positive definite.

Analogous results to Theorem 6.7.1 are not valid for positive semidefiniteness. For
example, consider the matrix

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
1 1 −3

−3 −3 5

⎫⎪⎪⎪⎪⎪⎭
The leading principal submatrices all have nonnegative determinants:

det(A1) = 1, det(A2) = 0, det(A3) = 0

However, A is not positive semidefinite, since it has a negative eigenvalue λ = −1.
Indeed, x = (1, 1, 1)T is an eigenvector belonging to λ = −1 and

xTAx = −3
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SECTION 6.7 EXERCISES
1. For each of the following matrices, compute the de-

terminants of all the leading principal submatrices
and use them to determine whether the matrix is
positive definite:

(a)
⎧⎪⎩ 2 −1

−1 2

⎫⎪⎭ (b)
⎧⎪⎩3 4

4 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
6 4 −2
4 5 3

−2 3 6

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
4 2 1
2 3 −2
1 −2 5

⎫⎪⎪⎪⎪⎪⎭
2. Let A be a 3 × 3 symmetric positive definite matrix

and suppose that det(A1) = 3, det(A2) = 6, and
det(A3) = 8. What would the pivot elements be
in the reduction of A to triangular form, assuming
that only row operation III is used in the reduction
process?

3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Compute the LU factorization of A.

(b) Explain why A must be positive definite.

4. For each of the following, factor the given matrix
into a product L DLT , where L is lower triangular
with 1’s on the diagonal and D is a diagonal matrix:

(a)
⎧⎪⎩4 2

2 10

⎫⎪⎭ (b)
⎧⎪⎩ 9 −3

−3 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
16 8 4

8 6 0
4 0 7

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
9 3 −6
3 4 1

−6 1 9

⎫⎪⎪⎪⎪⎪⎭
5. Find the Cholesky decomposition L LT for each of

the matrices in Exercise 4.

6. Let A be an n × n symmetric positive definite ma-
trix. For each x, y ∈ R

n , define

〈x, y〉 = xTAy

Show that 〈 , 〉 defines an inner product on R
n .

7. Let A be a nonsingular n × n matrix, and suppose
that A = L1 D1U1 = L2 D2U2, where L1 and L2

are lower triangular, D1 and D2 are diagonal, U1

and U2 are upper triangular, and L1, L2, U1, U2 all
have 1’s along the diagonal. Show that L1 = L2,
D1 = D2, and U1 = U2. [Hint: L−1

2 is lower tri-
angular and U−1

1 is upper triangular. Compare both
sides of the equation D−1

2 L−1
2 L1 D1 = U2U−1

1 .]

8. Let A be a symmetric positive definite matrix and
let Q be an orthogonal diagonalizing matrix. Use
the factorization A = Q DQT to find a nonsingular
matrix B such that BTB = A.

9. Let B be an m ×n matrix of rank n. Show that BTB
is positive definite.

10. Let A be a symmetric n × n matrix. Show that eA

is symmetric and positive definite.

11. Show that if B is a symmetric nonsingular matrix,
then B2 is positive definite.

12. Let

A =
⎧⎪⎪⎪⎩ 1 − 1

2

− 1
2 1

⎫⎪⎪⎪⎭ and B =
⎧⎪⎩1 −1

0 1

⎫⎪⎭
(a) Show that A is positive definite and that

xTAx = xTBx for all x ∈ R
2.

(b) Show that B is positive definite, but B2 is not
positive definite.

13. Let A be an n × n symmetric negative definite ma-
trix.
(a) What will the sign of det(A) be if n is even? If

n is odd?

(b) Show that the leading principal submatrices of
A are negative definite.

(c) Show that the determinants of the leading prin-
cipal submatrices of A alternate in sign.

14. Let A be a symmetric positive definite n×n matrix.
(a) If k < n, then the leading principal subma-

trices Ak and Ak+1 are both positive definite
and, consequently, have Cholesky factoriza-
tions Lk LT

k and Lk+1 LT
k+1. If Ak+1 is expressed

in the form

Ak+1 =
⎧⎪⎪⎪⎩ Ak yk

yT
k βk

⎫⎪⎪⎪⎭
where yk ∈ R

k and βk is a scalar, show that
Lk+1 is of the form

Lk+1 =
⎧⎪⎪⎪⎩ Lk 0

xT
k αk

⎫⎪⎪⎪⎭
and determine xk and αk in terms of Lk , yk , and
βk .
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(b) The leading principal submatrix A1 has
Cholesky decomposition L1 LT

1 , where L1 =
(
√

a11 ). Explain how part (a) can be used
to compute successively the Cholesky factor-
izations of A2, . . . , An . Devise an algorithm
that computes L2, L3, . . . , Ln in a single loop.

Since A = An , the Cholesky decomposition
of A will be Ln LT

n . (This algorithm is efficient
in that it uses approximately half the amount of
arithmetic that would generally be necessary to
compute an LU factorization.)

6.8 Nonnegative Matrices

In many of the types of linear systems that occur in applications, the entries of the
coefficient matrix represent nonnegative quantities. This section deals with the study
of such matrices and some of their properties.

Definition An n × n matrix A with real entries is said to be nonnegative if ai j ≥ 0 for each i
and j and positive if ai j > 0 for each i and j .

Similarly, a vector x = (x1, . . . , xn)
T is said to be nonnegative if each xi ≥ 0

and positive if each xi > 0.

For an example of one of the applications of nonnegative matrices, we consider
the Leontief input–output models.

APPLICATION 1 The Open Model

Suppose that there are n industries producing n different products. Each industry re-
quires input of the products from the other industries and possibly even of its own
product. In the open model, it is assumed that there is an additional demand for each
of the products from an outside sector. The problem is to determine the output of each
of the industries that is necessary to meet the total demand.

We will show that this problem can be represented by a linear system of equations
and that the system has a unique nonnegative solution. Let ai j denote the amount of
input from the i th industry necessary to produce one unit of output in the j th industry.
By a unit of input or output, we mean one dollar’s worth of the product. Thus, the total
cost of producing one dollar’s worth of the j th product will be

a1 j + a2 j + · · · + anj

Since the entries of A are all nonnegative, this sum is equal to ‖a j‖1. Clearly, pro-
duction of the j th product will not be profitable unless ‖a j‖1 < 1. Let di denote the
demand of the open sector for the i th product. Finally, let xi represent the amount of
output of the i th product necessary to meet the total demand. If the j th industry is to
have an output of x j , it will need an input of ai j x j units from the i th industry. Thus,
the total demand for the i th product will be

ai1x1 + ai2x2 + · · · + ainxn + di

and hence we require that

xi = ai1x1 + ai2x2 + · · · + ainxn + di
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for i = 1, . . . , n. This leads to the system

(1 − a11)x1 + (−a12)x2 + · · · + (−a1n)xn = d1

(−a21)x1 + (1 − a22)x2 + · · · + (−a2n)xn = d2
...

(−an1)x1 + (−an2)x2 + · · · + (1 − ann)xn = dn

which may be written in the form

(I − A)x = d (1)

The entries of A have two important properties:

(i) ai j ≥ 0 for each i and j .

(ii) ‖a j‖1 =
n∑

i=1

ai j < 1 for each j .

The vector x must not only be a solution of (1); it must also be nonnegative. (It would
not make any sense to have a negative output.)

To show that the system has a unique nonnegative solution, we need to make use of
a matrix norm that is related to the 1-norm for vectors that was introduced in Section 4
of Chapter 5. The matrix norm is also referred to as the 1-norm and is denoted by
‖ · ‖1. The definition and properties of the 1-norm for matrices are studied in Section 4
of Chapter 7. In that section, we will show that, for any m × n matrix B,

‖B‖1 = max
1≤ j≤n

(
m∑

i=1

|bi j |
)

= max(‖b1‖1, ‖b2‖1, . . . , ‖bn‖1) (2)

It will also be shown that the 1-norm satisfies the following multiplicative properties:

‖BC‖1 ≤ ‖B‖1‖C‖1 for any matrix C ∈ R
n×r (3)

‖Bx‖1 ≤ ‖B‖1‖x‖1 for any x ∈ R
n

In particular, if A is an n × n matrix satisfying conditions (i) and (ii), then it fol-
lows from (2) that ‖A‖1 < 1. Furthermore, if λ is any eigenvalue of A and x is an
eigenvector belonging to λ, then

|λ|‖x‖1 = ‖λx‖1 = ‖Ax‖1 ≤ ‖A‖1‖x‖1

and hence
|λ| ≤ ‖A‖1 < 1

Thus, 1 is not an eigenvalue of A. It follows that I − A is nonsingular and hence the
system (1) has a unique solution

x = (I − A)−1d

We would like to show that this solution must be nonnegative. To do this, we will
show that (I − A)−1 is nonnegative. First note that, as a consequence of multiplicative
property (3), we have

‖Am‖1 ≤ ‖A‖m
1
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Since ‖A‖1 < 1, it follows that

‖Am‖1 → 0 as m → ∞
and hence Am approaches the zero matrix as m → ∞.

Because
(I − A)(I + A + · · · + Am) = I − Am+1

it follows that

I + A + · · · + Am = (I − A)−1 − (I − A)−1 Am+1

As m → ∞,
(I − A)−1 − (I − A)−1 Am+1 → (I − A)−1

and hence the series I + A + · · · + Am converges to (I − A)−1 as m → ∞. By
condition (i), I + A + · · · + Am is nonnegative for each m, and therefore (I − A)−1

must be nonnegative. Since d is nonnegative, it follows that the solution x must be
nonnegative. We see, then, that conditions (i) and (ii) guarantee that the system (1)
will have a unique nonnegative solution x.

As you have probably guessed, there is also a closed version of the Leontief input–
output model. In the closed version, it is assumed that each industry must produce
enough output to meet the input needs of only the other industries and itself. The open
sector is ignored. Thus, in place of the system (1), we have

(I − A)x = 0

and we require that x be a positive solution. The existence of such an x in this case
is a much deeper result than in the open version and requires some more advanced
theorems.

Theorem 6.8.1 Perron's Theorem
If A is a positive n×n matrix, then A has a positive real eigenvalue r with the following
properties:

(i) r is a simple root of the characteristic equation.

(ii) r has a positive eigenvector x.

(iii) If λ is any other eigenvalue of A, then |λ| < r .

The Perron theorem may be thought of as a special case of a more general theorem
due to Frobenius. The Frobenius theorem applies to irreducible nonnegative matrices.

Definition A nonnegative matrix A is said to be reducible if there exists a partition of the index
set {1, 2, . . . , n} into nonempty disjoint sets I1 and I2 such that ai j = 0 whenever
i ∈ I1 and j ∈ I2. Otherwise, A is said to be irreducible.
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EXAMPLE 1 Let A be a matrix of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×
× × 0 0 ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Let I1 = {1, 2, 5} and I2 = {3, 4}. Then I1 ∪ I2 = {1, 2, 3, 4, 5} and ai j = 0 whenever
i ∈ I1 and j ∈ I2. Therefore, A is reducible. If P is the permutation matrix formed by
interchanging the third and fifth rows of the identity matrix I , then

PA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × 0 0 ×
× × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

PAPT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × × 0 0
× × × 0 0
× × × 0 0
× × × × ×
× × × × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In general, it can be shown that an n ×n matrix A is reducible if and only if there exists
a permutation matrix P such that P APT is a matrix of the form⎧⎪⎩ B O

X C

⎫⎪⎭
where B and C are square matrices.

Theorem 6.8.2 Frobenius Theorem
If A is an irreducible nonnegative matrix, then A has a positive real eigenvalue r with
the following properties:

(i) r has a positive eigenvector x.

(ii) If λ is any other eigenvalue of A, then |λ| ≤ r . The eigenvalues with absolute
value equal to r are all simple roots of the characteristic equation. Indeed, if
there are m eigenvalues with absolute value equal to r , they must be of the
form

λk = re2kπ i/m k = 0, 1, . . . , m − 1

The proof of this theorem is beyond the scope of the text. We refer the reader to
Gantmacher [4, Vol. 2]. Perron’s theorem follows as a special case of the Frobenius
theorem.
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APPLICATION 2 The Closed Model

In the closed Leontief input–output model, we assume that there is no demand from
the open sector and we wish to find outputs to satisfy the demands of all n industries.
Thus, defining the xi ’s and the ai j ’s as in the open model, we have

xi = ai1x1 + ai2x2 + · · · + ainxn

for i = 1, . . . , n. The resulting system may be written in the form

(A − I )x = 0 (4)

As before, we have the condition
ai j ≥ 0 (i)

Since there is no open sector, the amount of output from the j th industry should be the
same as the total input for that industry. Thus,

x j =
n∑

i=1

ai j x j

and hence we have as our second condition
n∑

i=1

ai j = 1 j = 1, . . . , n (ii)

Condition (ii) implies that A − I is singular, because the sum of its row vectors is
0. Therefore, 1 is an eigenvalue of A, and since ‖A‖1 = 1, it follows that all the
eigenvalues of A have moduli less than or equal to 1. Let us assume that enough of the
coefficients of A are nonzero so that A is irreducible. Then, by Theorem 6.8.2, λ = 1
has a positive eigenvector x. Thus, any positive multiple of x will be a positive solution
of (4).

APPLICATION 3 Markov Chains Revisited

Nonnegative matrices also play an important role in the theory of Markov processes.
Recall that if A is an n × n stochastic matrix, then λ1 = 1 is an eigenvalue of A and
the remaining eigenvalues satisfy

|λ j | ≤ 1 for j = 2, . . . , n

In the case that A is stochastic and all of its entries are positive, it follows from Perron’s
theorem that λ1 = 1 must be a dominant eigenvalue, and this in turn implies that the
Markov chain with transition matrix A will converge to a steady-state vector for any
starting probability vector x0. In fact, if for some k, the matrix Ak is positive, then, by
Perron’s theorem, λ1 = 1 must be a dominant eigenvalue of Ak . One can then show
that λ1 = 1 must also be a dominant eigenvalue of A. (See Exercise 12.) We say
that a Markov process is regular if all of the entries of some power of the transition
matrix are strictly positive. The transition matrix for a regular Markov process will
have λ1 = 1 as a dominant eigenvalue, and hence the Markov chain is guaranteed to
converge to a steady-state vector.
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SECTION 6.8 EXERCISES
1. Find the eigenvalues of each of the following ma-

trices and verify that conditions (i), (ii), and (iii) of
Theorem 6.8.1 hold:

(a)
⎧⎪⎩2 3

2 1

⎫⎪⎭ (b)
⎧⎪⎩4 2

2 7

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 2 4
2 4 1
1 2 4

⎫⎪⎪⎪⎪⎪⎭
2. Find the eigenvalues of each of the following ma-

trices and verify that conditions (i) and (ii) of The-
orem 6.8.2 hold:

(a)
⎧⎪⎩2 3

1 0

⎫⎪⎭ (b)
⎧⎪⎩0 2

2 0

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 8
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
3. Find the output vector x in the open version of the

Leontief input–output model if

A =
⎧⎪⎪⎪⎪⎪⎩

0.2 0.4 0.4
0.4 0.2 0.2
0.0 0.2 0.2

⎫⎪⎪⎪⎪⎪⎭ and d =
⎧⎪⎪⎪⎪⎪⎩

16,000
8,000

24,000

⎫⎪⎪⎪⎪⎪⎭
4. Consider the closed version of the Leontief input–

output model with input matrix

A =
⎧⎪⎪⎪⎪⎪⎩

0.5 0.4 0.1
0.5 0.0 0.5
0.0 0.6 0.4

⎫⎪⎪⎪⎪⎪⎭
If x = (x1, x2, x3)

T is any output vector for this
model, how are the coordinates x1, x2, and x3 re-
lated?

5. Prove: If Am = O for some positive integer m, then
I − A is nonsingular.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

0 1 1
0 −1 1
0 −1 1

⎫⎪⎪⎪⎪⎪⎭
(a) Compute (I − A)−1.
(b) Compute A2 and A3. Verify that

(I − A)−1 = I + A + A2.

7. Which of the matrices that follow are reducible?
For each reducible matrix, find a permutation ma-
trix P such that P APT is of the form⎧⎪⎩ B O

X C

⎫⎪⎭
where B and C are square matrices.

(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 1
1 1 1 1
1 0 1 1
1 0 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 0 0
0 1 1 1 1
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 1
1 1 0 0 1
1 1 1 1 1
1 1 0 0 1
1 1 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
8. Let A be a nonnegative irreducible 3 × 3 matrix

whose eigenvalues satisfy λ1 = 2 = |λ2| = |λ3|.
Determine λ2 and λ3.

9. Let

A =
⎧⎪⎩ B O

O C

⎫⎪⎭
where B and C are square matrices.
(a) If λ is an eigenvalue of B with eigenvector

x = (x1, . . . , xk)
T , show that λ is also an

eigenvalue of A with eigenvector
x̃ = (x1, . . . , xk, 0, . . . , 0)T .

(b) If B and C are positive matrices, show that A
has a positive real eigenvalue r with the prop-
erty that |λ| < r for any eigenvalue λ �= r .
Show also that the multiplicity of r is at most
2 and that r has a nonnegative eigenvector.

(c) If B = C , show that the eigenvalue r in
part (b) has multiplicity 2 and possesses a pos-
itive eigenvector.

10. Prove that a 2 × 2 matrix A is reducible if and only
if a12a21 = 0.

11. Prove the Frobenius theorem in the case where A is
a 2 × 2 matrix.

12. We can show that, for an n × n stochastic matrix,
λ1 = 1 is an eigenvalue and the remaining eigen-
values must satisfy

|λ j | ≤ 1 j = 2, . . . , n

(See Exercise 24 of Chapter 7, Section 4.) Show
that if A is an n × n stochastic matrix with the
property that Ak is a positive matrix for some posi-
tive integer k, then

|λ j | < 1 j = 2, . . . , n
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13. Let A be an n × n positive stochastic matrix with
dominant eigenvalue λ1 = 1 and linearly indepen-
dent eigenvectors x1, x2, . . . , xn , and let y0 be an
initial probability vector for a Markov chain

y0, y1 = Ay0, y2 = Ay1, . . .

(a) Show that λ1 = 1 has a positive eigenvector x1.
(b) Show that ‖y j‖1 = 1, j = 0, 1, . . . .
(c) Show that if

y0 = c1x1 + c2x2 + · · · + cnxn

then the component c1 in the direction of the
positive eigenvector x1 must be nonzero.

(d) Show that the state vectors y j of the Markov
chain converge to a steady-state vector.

(e) Show that

c1 = 1

‖x1‖1

and hence the steady-state vector is indepen-
dent of the initial probability vector y0.

14. Would the results of parts (c) and (d) in Exercise 13
be valid if the stochastic matrix A was not a posi-
tive matrix? Answer this same question in the case
when A is a nonnegative stochastic matrix and, for
some positive integer k, the matrix Ak is positive.
Explain your answers.

Chapter Six Exercises

MATLAB EXERCISES

Visualizing Eigenvalues
MATLAB has a utility for visualizing the actions of lin-
ear operators that map the plane into itself. The utility
is invoked by the command eigshow. This command
opens a figure window that shows a unit vector x and
also Ax, the image of x under A. The matrix A can be
specified as an input argument of the eigshow com-
mand or selected from the menu at the top of the figure
window. To see the effect of the operator A on other
unit vectors, point your mouse to the tip of the vector x
and use it to drag the vector x around the unit circle in
a counterclockwise direction. As x moves, you will see
how its image Ax changes. In this exercise, we will use
the eigshow utility to investigate the eigenvalues and
eigenvectors of the matrices in the eigshow menu.

1. The top matrix on the menu is the diagonal matrix

A =
⎧⎪⎪⎪⎪⎩

5
4 0

0 3
4

⎫⎪⎪⎪⎪⎭
Initially, when you select this matrix, the vectors
x and Ax should both be aligned along the posi-
tive x-axis. What information about an eigenvalue–
eigenvector pair is apparent from the initial figure
positions? Explain. Rotate x counterclockwise un-
til x and Ax are parallel, that is, until they both
lie along the same line through the origin. What
can you conclude about the second eigenvalue–
eigenvector pair? Repeat this experiment with the
second matrix. How can you determine the eigen-
values and eigenvectors of a 2 × 2 diagonal ma-

trix by inspection without doing any computations?
Does this also work for 3 × 3 diagonal matrices?
Explain.

2. The third matrix on the menu is just the identity ma-
trix I . How do x and I x compare geometrically as
you rotate x around the unit circle? What can you
conclude about the eigenvalues and eigenvectors in
this case?

3. The fourth matrix has 0’s on the diagonal and 1’s
in the off-diagonal positions. Rotate the vector x
around the unit circle and note when x and Ax are
parallel. On the basis of these observations, deter-
mine the eigenvalues and the corresponding unit
eigenvectors. Check your answers by multiply-
ing the matrix times the eigenvector to verify that
Ax = λx.

4. The next matrix in the eigshow menu looks the
same as the previous ones, except that the (2, 1)

entry has been changed to −1. Rotate the vec-
tor x completely around the unit circle. Are x and
Ax ever parallel? Does A have any real eigenvec-
tors? What can you conclude about the nature of
the eigenvalues and eigenvectors of this matrix?

5. Investigate the next three matrices on the menu (the
sixth, seventh, and eighth). In each case, try to es-
timate geometrically the eigenvalues and eigenvec-
tors and make your guesses for the eigenvalues con-
sistent with the trace of the matrix. Use MATLAB
to compute the eigenvalues and eigenvectors of the
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sixth matrix by setting

[X, D] = eig([0.25, 0.75 ; 1, 0.50 ])

The column vectors of X are the eigenvectors of the
matrix and the diagonal entries of D are the eigen-
values. Check the eigenvalues and eigenvectors of
the other two matrices in the same way.

6. Investigate the ninth matrix on the menu. What
can you conclude about the nature of its eigenval-
ues and eigenvectors? Check your conclusions by
computing the eigenvalues and eigenvectors with
the eig command.

7. Investigate the next three matrices on the menu.
You should note that, for the last two of these matri-
ces, the two eigenvalues are equal. For each matrix,
how are the eigenvectors related? Use MATLAB to
compute the eigenvalues and eigenvectors of these
matrices.

8. The last item on the eigshow menu will gener-
ate a random 2 × 2 matrix each time that it is in-
voked. Try using the random matrix 10 times, and
in each case determine whether the eigenvalues are
real. What percentage of the 10 random matrices
had real eigenvalues? What is the likelihood that
two real eigenvalues of a random matrix will turn
out to be exactly equal? Explain.

Critical Loads for a Beam

9. Consider the application relating to critical loads for
a beam from Section 1. For simplicity, we will as-
sume that the beam has length 1 and that its flexural
rigidity is also 1. Following the method described
in the application, if the interval [0, 1] is partitioned
into n subintervals, then the problem can be trans-
lated into a matrix equation Ay = λy. The critical
load for the beam can be approximated by setting
P = sn2, where s is the smallest eigenvalue of A.
For n = 100, 200, 400, form the coefficient matrix
by setting

D = diag(ones(n − 1, 1), 1);
A = eye(n) − D − D′

In each case, determine the smallest eigenvalue of A
by setting

s = min(eig(A))

and then compute the corresponding approximation
to the critical load.

Diagonalizable and Defective Matrices

10. Construct a symmetric matrix A by setting

A = round(5 ∗ rand(6)); A = A + A′

Compute the eigenvalues of A by setting
e = eig(A).
(a) The trace of A can be computed with the MAT-

LAB command trace(A), and the sum of
the eigenvalues of A can be computed with
the command sum(e). Compute both of these
quantities and compare the results. Use the
command prod(e) to compute the product of
the eigenvalues of A and compare the result
with det(A).

(b) Compute the eigenvectors of A by setting
[X, D] = eig(A). Use MATLAB to compute
X−1 AX and compare the result with D. Com-
pute also A−1 and X D−1 X−1 and compare the
results.

11. Set
A = ones(10) + eye(10)

(a) What is the rank of A − I ? Why must λ = 1
be an eigenvalue of multiplicity 9? Compute
the trace of A, using the MATLAB function
trace. The remaining eigenvalue λ10 must
equal 11. Why? Explain. Compute the eigen-
values of A by setting e = eig(A). Examine
the eigenvalues, using format long. How
many digits of accuracy are there in the com-
puted eigenvalues?

(b) The MATLAB routine for computing eigenval-
ues is based on the QR algorithm described in
Section 6 of Chapter 7. We can also compute
the eigenvalues of A by computing the roots of
its characteristic polynomial. To determine the
coefficients of the characteristic polynomial of
A, set p = poly(A). The characteristic poly-
nomial of A should have integer coefficients.
Why? Explain. If we set p = round(p), we
should end up with the exact coefficients of the
characteristic polynomial of A. Compute the
roots of p by setting

r = roots(p)

and display the results, using format long.
How many digits of accuracy are there in the
computed results? Which method of comput-
ing eigenvalues is more accurate, using the
eig function or computing the roots of the
characteristic polynomial?
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12. Consider the matrices

A =
⎧⎪⎩5 −3

3 −5

⎫⎪⎭ and B =
⎧⎪⎩5 −3

3 5

⎫⎪⎭
Note that the two matrices are the same except for
their (2, 2) entries.
(a) Use MATLAB to compute the eigenvalues of

A and B. Do they have the same type of eigen-
values? The eigenvalues of the matrices are the
roots of their characteristic polynomials. Use
the following MATLAB commands to form the
polynomials and plot their graphs on the same
axis system:

p = poly(A);
q = poly(B);
x = −8 : 0.1 : 8;
y = polyval(p, x);
z = zeros(size(x));
w = polyval(q, x);
plot(x, y, x, w, x, z)

hold on

The hold on command is used so that sub-
sequent plots in part (b) will be added to the
current figure. How can you use the graph to
estimate the eigenvalues of A? What does the
graph tell you about the eigenvalues of B? Ex-
plain.

(b) To see how the eigenvalues change as the
(2, 2) entry changes, let us construct a matrix
C with a variable (2, 2) entry. Set

t = sym(′t ′) C = [5, −3; 3, t − 5]
As t goes from 0 to 10, the (2, 2) entries
of these matrices go from −5 to 5. Use
the following MATLAB commands to plot the
graphs of the characteristic polynomials for the
intermediate matrices corresponding to t =
1, 2, . . . , 9:

p = poly(C)

for j = 1 : 9
s = subs(p, t, j);
ezplot(s, [−10, 10])
axis([−10, 10, −20, 220])
pause(2)

end

Which of these intermediate matrices
have real eigenvalues and which have complex

eigenvalues? The characteristic polynomial of
the symbolic matrix C is a quadratic poly-
nomial whose coefficients are functions of t .
To find exactly where the eigenvalues change
from real to complex, write the discriminant
of the quadratic as a function of t and then
find its roots. One root should be in the inter-
val (0, 10). Plug that value of t back into the
matrix C and determine the eigenvalues of the
matrix. Explain how these results correspond
to your graph. Solve for the eigenvectors by
hand. Is the matrix diagonalizable?

13. Set

B = toeplitz(0 : − 1 : − 3, 0 : 3)

The matrix B is not symmetric and hence it is not
guaranteed to be diagonalizable. Use MATLAB
to verify that the rank of B equals 2. Explain
why 0 must be an eigenvalue of B and the corre-
sponding eigenspace must have dimension 2. Set
[X, D] = eig(B). Compute X−1 B X and com-
pare the result with D. Compute also XD5 X−1 and
compare the result with B5.

14. Set

C = triu(ones(4), 1) + diag([−1, 1], −2)

and
[X, D] = eig(C)

Compute X−1C X and compare the result with D.
Is C diagonalizable? Compute the rank of X and
the condition number of X . If the condition num-
ber of X is large, the computed values for the eigen-
values may not be accurate. Compute the reduced
row echelon form of C . Explain why 0 must be an
eigenvalue of C and the corresponding eigenspace
must have dimension 1. Use MATLAB to compute
C

4. It should equal the zero matrix. Given that
C

4 = O , what can you conclude about the actual
values of the other three eigenvalues of C? Explain.
Is C defective? Explain.

15. Construct a defective matrix by setting

A = ones(6); A = A−tril(A)−triu(A, 2)

It is easily seen that λ = 0 is the only eigenvalue
of A and that its eigenspace is spanned by e1. Ver-
ify that this is indeed the case by using MATLAB
to compute the eigenvalues and eigenvectors of A.
Examine the eigenvectors, using format long.
Are the computed eigenvectors multiples of e1?
Now perform a similarity transformation on A. Set

Q = orth(rand(6)); and B = Q ′ ∗ A ∗ Q
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If the computations had been done in exact arith-
metic, the matrix B would be similar to A and
hence defective. Use MATLAB to compute the
eigenvalues of B and a matrix X consisting of the
eigenvectors of B. Determine the rank of X . Is the
computed matrix B defective? Because of round-
ing error, a more reasonable question to ask is
whether the computed matrix B is close to being
defective (i.e., are the column vectors of X close
to being linearly dependent?). To answer this ques-
tion, use MATLAB to compute rcond(X), the re-
ciprocal of the condition number of X . A value of
rcond close to zero indicates that X is nearly rank
deficient.

16. Generate a matrix A by setting

B = [ −1, −1; 1, 1 ],
A = [zeros(2), eye(2); eye(2), B]

(a) The matrix A should have eigenvalues λ1 = 1
and λ2 = −1. Use MATLAB to verify that
these are the correct eigenvalues by comput-
ing the reduced row echelon forms of A − I
and A + I . What are the dimensions of the
eigenspaces of λ1 and λ2?

(b) It is easily seen that trace(A) = 0 and
det(A) = 1. Verify these results in MAT-
LAB. Use the values of the trace and determi-
nant to prove that 1 and −1 are actually both
double eigenvalues. Is A defective? Explain.

(c) Set e = eig(A) and examine the eigenvalues,
using format long. How many digits of ac-
curacy are there in the computed eigenvalues?
Set [X, D] = eig(A) and compute the con-
dition number of X . The log of the condition
number gives an estimate of how many digits
of accuracy are lost in the computation of the
eigenvalues of A.

(d) Compute the rank of X . Are the computed
eigenvectors linearly independent? Use MAT-
LAB to compute X−1AX . Does the computed
matrix X diagonalize A?

Application: Sex-Linked Genes

17. Suppose that 10,000 men and 10,000 women set-
tle on an island in the Pacific that has been opened
to development. Suppose also that a medical study
of the settlers finds that 200 of the men are color
blind and only 9 of the women are color blind.
Let x(1) denote the proportion of genes for color
blindness in the male population and let x(2) be

the proportion for the female population. Assume
that x(1) is equal to the proportion of color-blind
males and that x(2)2 is equal to the proportion of
color-blind females. Determine x(1) and x(2) and
enter them in MATLAB as a column vector x. En-
ter also the matrix A from Application 3 of Sec-
tion 3. Set MATLAB to format long, and use
the matrix A to compute the proportions of genes
for color blindness for each sex in generations 5,
10, 20, and 40. What are the limiting percentages
of genes for color blindness for this population? In
the long run, what percentage of males and what
percentage of females will be color blind?

Similarity

18. Set
S = round(10 ∗ rand(5));
S = triu(S, 1) + eye(5)

S = S′ ∗ S

T = inv(S)

(a) The exact inverse of S should have integer
entries. Why? Explain. Check the entries
of T , using format long. Round the en-
tries of T to the nearest integer by setting
T = round(T ). Compute T ∗ S and compare
with eye(5).

(b) Set

A = triu(ones(5), 1) + diag(1 : 5),

B = S ∗ A ∗ T

The matrices A and B both have the eigenval-
ues 1, 2, 3, 4, and 5. Use MATLAB to compute
the eigenvalues of B. How many digits of ac-
curacy are there in the computed eigenvalues?
Use MATLAB to compute and compare each
of the following:

(i) det(A) and det(B)

(ii) trace(A) and trace(B)

(iii) S A2T and B2

(iv) S A−1T and B−1

Hermitian Matrices

19. Construct a complex Hermitian matrix by setting

j = sqrt(−1);
A = rand(5) + j ∗ rand(5);
A = (A + A′)/2
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(a) The eigenvalues of A should be real. Why?
Compute the eigenvalues and examine your re-
sults, using format long. Are the com-
puted eigenvalues real? Compute also the
eigenvectors by setting

[X, D] = eig(A)

What type of matrix would you expect X to
be? Use the MATLAB command X ′ ∗ X to
compute X HX . Do the results agree with your
expectations?

(b) Set

E = D + j ∗ eye(5) and B = X ∗ E/X

What type of matrix would you expect B to
be? Use MATLAB to compute B HB and BB H .
How do these two matrices compare?

Visualizing the Singular Value Decomposition
In some of the earlier exercises, we used MATLAB’s
eigshow command to look at geometric interpreta-
tions of the eigenvalues and eigenvectors of 2 × 2 ma-
trices. The eigshow facility also has an svdshow
mode that we can use to visualize the singular values
and singular vectors of a nonsingular 2 × 2 matrix. Be-
fore using the svdshow facility, we establish some ba-
sic relations between the right and left singular vectors.

20. Let A be a nonsingular 2 × 2 matrix with singular
value decomposition A = U SV T and singular val-
ues s1 = s11 and s2 = s22. Explain why each of the
following are true:
(a) AV = U S

(b) Av1 = s1u1 and Av2 = s2u2.

(c) v1 and v2 are orthogonal unit vectors and the
images Av1 and Av2 are also orthogonal.

(d) ‖Av1‖ = s1 and ‖Av2‖ = s2.

21. Set
A = [1, 1; 0.5, −0.5]

and use MATLAB to verify each of statements
(a)–(d) in Exercise 20. Use the command
eigshow(A) to apply the eigshow utility to the
matrix A. Click on the eig/(svd) button to
switch into the svdshow mode. The display in
the figure window should show a pair of orthogonal
vectors x, y and their images Ax and Ay. Initially,
the images of x and y should not be orthogonal.
Use the mouse to rotate the x and y vectors coun-
terclockwise until their images Ax and Ay become
orthogonal. When the images are orthogonal, x and
y are right singular vectors of A. When x and y are
right singular vectors, how are the singular values
and left singular vectors related to the images Ax
and Ay? Explain. Note that when you rotate a full
360◦, the image of the unit circle traces out as an
ellipse. How do the singular values and singular
vectors relate to the axes of the ellipse?

Optimization

22. Use the following MATLAB commands to construct a symbolic function:

syms x y
f = (y + 1)ˆ3 + x ∗ yˆ2 + yˆ2 − 4 ∗ x ∗ y − 4 ∗ y + 1

Compute the first partials of f and the Hessian of f by setting

f x = diff( f, x), f y = diff( f, y)

H = [diff( f x, x),diff( f x, y); diff( f y, x),diff( f y, y)]

We can use the subs command to evaluate the Hessian for any pair (x, y). For example, to evaluate the Hessian
when x = 3 and y = 5, set

H1 = subs(H,[x,y],[3,5])

Use the MATLAB command solve( f x, f y) to determine vectors x and y containing the x and y coordinates
of the stationary points. Evaluate the Hessian at each stationary point and then determine whether the stationary
point is a local maximum, local minimum, or saddle point.
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Positive Definite Matrices

23. Set
C = ones(6) + 7 ∗ eye(6)

and
[X, D] = eig(C)

(a) Even though λ = 7 is an eigenvalue of mul-
tiplicity 5, the matrix C cannot be defective.
Why? Explain. Check that C is not defective by
computing the rank of X . Compute also X TX .
What type of matrix is X? Explain. Compute
also the rank of C −7I . What can you conclude
about the dimension of the eigenspace corre-
sponding to λ = 7? Explain.

(b) The matrix C should be symmetric positive def-
inite. Why? Explain. Thus, C should have
a Cholesky factorization L LT . The MATLAB
command R = chol(C) will generate an up-
per triangular matrix R that is equal to LT .
Compute R in this manner and set L = R′. Use
MATLAB to verify that

C = L LT = RT R

(c) Alternatively, one can determine the Cholesky
factors from the LU factorization of C . Set

[ L U ] = lu(C)

and

D = diag(sqrt(diag(U )))

and
W = (L ∗ D)′

How do R and W compare? This method of
computing the Cholesky factorization is less ef-
ficient than the method MATLAB uses for its
Chol function.

24. For various values of k, form a k × k matrix A by
setting

D = diag(ones(k − 1, 1), 1);
A = 2 ∗ eye(k) − D − D′;

In each case, compute the LU factorization of A and
the determinant of A. If A is an n × n matrix of this
form, what will its LU factorization be? What will
its determinant be? Why must the matrix be positive
definite?

25. For any positive integer n, the MATLAB command
P = pascal(n) will generate an n × n matrix P
whose entries are given by

pi j =
{

1 if i = 1 or j = 1

pi−1, j + pi, j−1 if i > 1 and j > 1

The name pascal refers to Pascal’s triangle, a tri-
angular array of numbers that is used to generate
binomial coefficients. The entries of the matrix P
form a section of Pascal’s triangle.
(a) Set

P = pascal(6)

and compute the value of its determinant. Now
subtract 1 from the (6, 6) entry of P by setting

P(6, 6) = P(6, 6) − 1

and compute the determinant of the new matrix
P . What is the overall effect of subtracting 1
from the (6, 6) entry of the 6 × 6 Pascal ma-
trix?

(b) In part (a) we saw that the determinant of the
6 × 6 Pascal matrix is 1, but if we subtract 1
from the (6, 6) entry, the matrix becomes sin-
gular. Will this happen in general for n × n
Pascal matrices? To answer this question, con-
sider the cases n = 4, 8, 12. In each case,
set P = pascal(n) and compute its determi-
nant. Next, subtract 1 from the (n, n) entry and
compute the determinant of the resulting ma-
trix. Does the property that we discovered in
part (a) appear to hold for Pascal matrices in
general?

(c) Set

P = pascal(8)

and examine its leading principal submatrices.
Assuming that all Pascal matrices have determi-
nants equal to 1, why must P be positive defi-
nite? Compute the upper triangular Cholesky
factor R of P . How can the nonzero entries of
R be generated as a Pascal triangle? In gen-
eral, how is the determinant of a positive defi-
nite matrix related to the determinant of one of
its Cholesky factors? Why must det(P) = 1?

(d) Set

R(8, 8) = 0 and Q = R′ ∗ R

The matrix Q should be singular. Why? Ex-
plain. Why must the matrices P and Q be the
same except for the (8, 8) entry? Why must
q88 = p88 − 1? Explain. Verify the relation
between P and Q by computing the difference
P − Q.
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CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of
a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. If A is an n × n matrix whose eigenvalues are all
nonzero, then A is nonsingular.

2. If A is an n × n matrix, then A and AT have the
same eigenvectors.

3. If A and B are similar matrices, then they have the
same eigenvalues.

4. If A and B are n × n matrices with the same eigen-
values, then they are similar.

5. If A has eigenvalues of multiplicity greater than 1,
then A must be defective.

6. If A is a 4 × 4 matrix of rank 3 and λ = 0 is an
eigenvalue of multiplicity 3, then A is diagonaliz-
able.

7. If A is a 4 × 4 matrix of rank 1 and λ = 0 is an
eigenvalue of multiplicity 3, then A is defective.

8. The rank of an n × n matrix A is equal to the num-
ber of nonzero eigenvalues of A, where eigenvalues
are counted according to multiplicity.

9. The rank of an m × n matrix A is equal to the num-
ber of nonzero singular values of A, where singular
values are counted according to multiplicity.

10. If A is Hermitian and c is a complex scalar, then cA
is Hermitian.

11. If an n × n matrix A has Schur decomposition
A = U T U H , then the eigenvalues of A are
t11, t22, . . . , tnn .

12. If A is normal, but not Hermitian, then A must have
at least one complex eigenvalue.

13. If A is symmetric positive definite, then A is non-
singular and A−1 is also symmetric positive defi-
nite.

14. If A is symmetric and det(A) > 0, then A is posi-
tive definite.

15. If A is symmetric, then eA is symmetric positive
definite.

CHAPTER TEST B

1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
1 1 −1
1 2 −2

⎫⎪⎪⎪⎪⎪⎭
(a) Find the eigenvalues of A.

(b) For each eigenvalue, find a basis for the corre-
sponding eigenspace.

(c) Factor A into a product X DX−1, where D is a
diagonal matrix, and then use the factorization
to compute A7.

2. Let A be a 4 × 4 matrix with real entries that has
all 1’s on the main diagonal
(i.e., a11 = a22 = a33 = a44 = 1). If A is sin-
gular and λ1 = 3 + 2i is an eigenvalue of A, then
what, if anything, is it possible to conclude about
the values of the remaining eigenvalues λ2, λ3, and
λ4? Explain.

3. Let A be a nonsingular n × n matrix and let λ be an
eigenvalue of A.
(a) Show that λ �= 0.

(b) Show that
1

λ
is an eigenvalue of A−1.

4. Show that if A is a matrix of the form

A =
⎧⎪⎪⎪⎪⎪⎩

a 0 0
0 a 1
0 0 a

⎫⎪⎪⎪⎪⎪⎭
then A must be defective.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

4 2 2
2 10 10
2 10 14

⎫⎪⎪⎪⎪⎪⎭
(a) Without computing the eigenvalues of A, show

that A is positive definite.

(b) Factor A into a product L DLT , where L is unit
lower triangular and D is diagonal.

(c) Compute the Cholesky factorization of A.

6. The function

f (x, y) = x3 y + x2 + y2 − 2x − y + 4

has a stationary point (1, 0). Compute the Hessian
of f at (1, 0), and use it to determine whether the
stationary point is a local maximum, local mini-
mum, or saddle point.

7. Given
Y′(t) = AY(t) Y(0) = Y0
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where

A =
⎧⎪⎩1 −2

3 −4

⎫⎪⎭ Y0 =
⎧⎪⎩1

2

⎫⎪⎭
compute et A and use it to solve the initial value
problem.

8. Let A be a 4 × 4 real symmetric matrix with eigen-
values

λ1 = 1, λ2 = λ3 = λ4 = 0

(a) Explain why the multiple eigenvalue λ = 0
must have three linearly independent eigenvec-
tors x2,x3,x4.

(b) Let x1 be an eigenvector belonging to λ1. How
is x1 related to x2, x3, and x4? Explain.

(c) Explain how to use x1, x2, x3, and x4 to con-
struct an orthogonal matrix U that diagonalizes
A.

(d) What type of matrix is eA? Is it symmetric? Is
it positive definite? Explain your answers.

9. Let {u1, u2} be an orthonormal basis for C
2 and

suppose that a vector z can be written as a linear
combination

z = (5 − 7i)u1 + c2u2

(a) What are the values of uH
1 z and zH u1? If

zH u2 = 1 + 5i , determine the value of c2.

(b) Use the results from part (a) to determine the
value of ‖z‖2.

10. Let A be a 5 × 5 nonsymmetric matrix with rank
equal to 3, let B = AT A, and let C = eB .
(a) What, if anything, can you conclude about the

nature of the eigenvalues of B? Explain. What
words best describe the type of matrix that B
is?

(b) What, if anything, can you conclude about the
nature of the eigenvalues of C? Explain. What
words best describe the type of matrix that C
is?

11. Let A and B be n × n matrices.
(a) If A is real and nonsymmetric with Schur de-

composition U T U H , then what types of matri-
ces are U and T ? How are the eigenvalues of
A related to U and T ? Explain your answers.

(b) If B is Hermitian with Schur decomposition
W SW H , then what types of matrices are W
and S? How are the eigenvalues and eigenvec-
tors of B related to W and S? Explain your
answers.

12. Let A be a matrix whose singular value decomposition is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5 − 2

5 − 2
5 − 2

5
3
5

2
5 − 2

5 − 2
5

3
5 − 2

5

2
5 − 2

5
3
5 − 2

5 − 2
5

2
5

3
5 − 2

5 − 2
5 − 2

5

3
5

2
5

2
5

2
5

2
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
100 0 0 0

0 10 0 0
0 0 10 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1
2

1
2 − 1

2
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Make use of the singular value decomposition to do each of the following:
(a) Determine the rank of A.
(b) Find an orthonormal basis for R(A).
(c) Find an orthonormal basis for N (A).
(d) Find the matrix B that is the closest matrix of rank 1 to A. (The distance between matrices is measured by

using the Frobenius norm.)
(e) Let B be the matrix asked for in part (d). Use the singular values of A to determine the distance between A

and B (i.e., use the singular values of A to determine the value of ||B − A||F ).
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Numerical Linear Algebra
In this chapter, we consider computer methods for solving linear algebra problems.
To understand these methods, you should be familiar with the type of number system
used by the computer. When data are read into the computer, they are translated into
its finite number system. This translation will usually involve some round off error.
Additional rounding errors will occur when the algebraic operations of the algorithm
are carried out. Because of rounding errors, we cannot expect to get the exact solution
to the original problem. The best we can hope for is a good approximation to a slightly
perturbed problem. Suppose, for example, that we wanted to solve Ax = b. When
the entries of A and b are read into the computer, rounding errors will generally occur.
Thus, the program will actually be attempting to compute a good approximation to the
solution of a system of the form (A + E)x = b̂. An algorithm is said to be stable
if it will produce a good approximation to the exact solution to a slightly perturbed
problem. Algorithms that ordinarily would converge to the solution in exact arithmetic
could very well fail to be stable, owing to the growth of error in the algebraic processes.

Even with a stable algorithm, we may encounter problems that are highly sensitive
to perturbations. For example, if A is “nearly singular,” the exact solutions of Ax = b
and (A + E)x = b may vary greatly, even though all the entries of E are small. The
major part of this chapter is devoted to numerical methods for solving linear systems.
We will pay particular attention to the growth of error and to the sensitivity of systems
to small changes.

Another problem that is very important in numerical applications is the problem of
finding the eigenvalues of a matrix. Two iterative methods for computing eigenvalues
are presented in Section 6. The second of these methods is the powerful Q R algo-
rithm, which makes use of the special types of orthogonal transformations presented
in Section 5.

In Section 7, we will look at numerical methods for solving least squares prob-
lems. In the case where the coefficient matrix is rank deficient, we will make use of
the singular value decomposition to find the particular least squares solution that has
the smallest 2-norm. The Golub–Reinsch algorithm for computing the singular value
decomposition will also be presented in this section.

386
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7.1 Floating-Point Numbers

In solving a numerical problem on a computer, we do not usually expect to get the
exact answer. Some amount of error is inevitable. Rounding errors may occur initially
when the data are represented in the finite number system of the computer. Further
rounding errors may occur whenever arithmetic operations are used. These errors may
grow to such an extent that the computed solution may be completely unreliable. To
avoid this, we must understand how computational errors occur. To do that, we must
be familiar with the type of numbers used by the computer.

Definition A floating-point number in base b is a number of the form

±
(

d1

b
+ d2

b2
+ · · · + dt

bt

)
× be

where t, d1, d2, . . . , dt , b, and e are all integers and

0 ≤ di ≤ b − 1 i = 1, . . . , t

The integer t refers to the number of digits, and this depends on the word length
of the computer. The exponent e is restricted to be within certain bounds, L ≤ e ≤ U ,
which also depend on the particular computer. Most computers use base 2, although
some use other bases, such as 8 or 16. Hand calculators generally use base 10.

EXAMPLE 1 The following are five-digit decimal (base 10) floating-point numbers:

0.53216 × 10−4

−0.81724 × 1021

0.00112 × 108

0.11200 × 106

Note that the numbers 0.00112 × 108 and 0.11200 × 106 are equal. Thus the floating-
point representation of a number need not be unique. Floating-point numbers that are
written with no leading zeros are said to be normalized.

EXAMPLE 2 (0.236)8 × 82 and (0.132)8 × 84 are normalized three-digit base 8 floating-point num-
bers. Here, (0.236)8 represents

2

8
+ 3

82
+ 6

83

Hence, (0.236)8 × 82 is the base 8 floating-point representation of the decimal number
19.75. Similarly,

(0.132)8 × 84 =
(

1

8
+ 3

82
+ 2

83

)
× 84 = 720

To better understand the type of number system that we are working with, it may
help to look at a very simple example.
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EXAMPLE 3 Suppose that t = 1, L = −1, U = 1, and b = 10. There are altogether 55 one-digit
floating-point numbers in this system. These are

0, ±0.1 × 10−1, ±0.2 × 10−1, . . . , ±0.9 × 10−1

±0.1 × 100, ±0.2 × 100, . . . , ±0.9 × 100

±0.1 × 101, ±0.2 × 101, . . . , ±0.9 × 101

Although all these numbers lie in the interval [−9, 9], over one-third of the numbers
have absolute value less than 0.1 and over two-thirds have absolute value less than
1. Figure 7.1.1 illustrates how the floating-point numbers in the interval [0, 2] are
distributed.

0 1 20.1

Figure 7.1.1.

Most real numbers have to be rounded off in order to be represented as t-digit
floating-point numbers. The difference between the floating-point number x ′ and the
original number x is called the round off error. The size of the round off error is
perhaps more meaningful when it is compared with the size of the original number.

Definition If x is a real number and x ′ is its floating-point approximation, then the difference
x ′ − x is called the absolute error and the quotient (x ′ − x)/x is called the relative
error.

Table 1

Real number 4-digit decimal Absolute error Relative error

x representation x′ x′ − x (x′ − x)/x

62,133 0.6213 × 105 −3
−3

62,133
≈ −4.8 × 10−5

0.12658 0.1266 × 100 2 × 10−5 1

6329
≈ 1.6 × 10−4

47.213 0.4721 × 102 −3.0 × 10−3 −0.003

47.213
≈ −6.4 × 10−5

π 0.3142 × 101 3.142 − π ≈ 4 × 10−4 3.142 − π

π
≈ 1.3 × 10−4

When arithmetic operations are applied to floating-point numbers, additional roundoff
errors may occur.

EXAMPLE 4 Let a′ = 0.263 × 104 and b′ = 0.446 × 101 be three-digit decimal floating-point
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numbers. If these numbers are added, the exact sum will be

a′ + b′ = 0.263446 × 104

However, the floating-point representation of this sum is 0.263 × 104. This, then,
should be the computed sum. We will denote the floating-point sum by f l(a′ + b′).
The absolute error in the sum is

f l(a′ + b′) − (a′ + b′) = −4.46

and the relative error is

−4.46

0.26344 × 104
≈ −0.17 × 10−2

The actual value of a′b′ is 11,729.8; however, f l(a′b′) is 0.117 × 105. The absolute
error in the product is −29.8 and the relative error is approximately −0.25 × 10−2.
Floating-point subtraction and division can be done in a similar manner.

The relative error in approximating a number x by its floating-point representation
x ′ is usually denoted by the symbol δ. Thus,

δ = x ′ − x

x
, or x ′ = x(1 + δ) (1)

|δ| can be bounded by a positive constant ε, called the machine precision or the ma-
chine epsilon. The machine epsilon is defined to be the smallest floating-point number
ε for which

f l(1 + ε) > 1

For example, if the computer uses three-digit decimal floating-point numbers, then

f l(1 + 0.499 × 10−2) = 1

while
f l(1 + 0.500 × 10−2) = 1.01

Therefore, the machine epsilon would be 0.500 × 10−2.
Standard IEEE double-precision arithmetic uses base b = 2 and t = 52 digits. In

this case the machine epsilon is ε = 2−52.
It follows from (1) that if a′ and b′ are two floating-point numbers, then

f l(a′ + b′) = (a′ + b′)(1 + δ1)

f l(a′b′) = (a′b′)(1 + δ2)

f l(a′ − b′) = (a′ − b′)(1 + δ3)

f l(a′ ÷ b′) = (a′ ÷ b′)(1 + δ4)

The δi ’s are relative errors and will all have absolute values less than ε. Note in Exam-
ple 4 that δ1 ≈ −0.17 × 10−2, δ2 ≈ −0.25 × 10−2, and ε = 0.5 × 10−2.

If the numbers you are working with involve some slight errors, arithmetic opera-
tions may compound these errors. If two numbers agree to k decimal places and one
number is subtracted from the other, there will be a loss of significant digits in your
answer. In this case, the relative error in the difference will be many times as great as
the relative error in either of the numbers.



390 Chapter 7 Numerical Linear Algebra

EXAMPLE 5 Let c = 3.4215298 and d = 3.4213851. Calculate c − d and 1/(c − d), using six-digit
decimal floating-point arithmetic.

Solution

I. The first step is to represent c and d by six-digit decimal floating-point num-
bers:

c′ = 0.342153 × 101

d ′ = 0.342139 × 101

The relative errors in c and d are, respectively,

c′ − c

c
≈ 0.6 × 10−7 and

d ′ − d

d
≈ 1.4 × 10−6

II. f l(c′ − d ′) = c′ − d ′ = 0.140000 × 10−3. The actual value of c − d is
0.1447 × 10−3. The absolute and relative errors in approximating c − d by
f l(c′ − d ′) are, respectively,

f l(c′ − d ′) − (c − d) = −0.47 × 10−5

and
f l(c′ − d ′) − (c − d)

c − d
≈ −3.2 × 10−2

Note that the magnitude of the relative error in the difference is more than 104

times the relative error in either c or d.
III. f l[1/(c′ − d ′)] = 0.714286 × 104, and the correct answer, to six significant

figures, is
1

c − d
≈ 0.691085 × 104

The absolute and relative errors are approximately 232 and 0.03, respectively.

SECTION 7.1 EXERCISES
1. Find the three-digit decimal floating-point repre-

sentation of each of the following numbers:
(a) 2312 (b) 32.56

(c) 0.01277 (d) 82,431

2. Find the absolute error and the relative error when
each of the real numbers in Exercise 1 is approxi-
mated by a three-digit decimal floating-point num-
ber.

3. Represent each of the following as five-digit base 2
floating-point numbers:
(a) 21 (b) 3

8

(c) 9.872 (d) −0.1

4. Use four-digit decimal floating-point arithmetic to
do each of the following, and calculate the absolute
and relative errors in your answers:
(a) 10,420 + 0.0018 (b) 10,424 − 10,416

(c) 0.12347 − 0.12342 (d) (3626.6) · (22.656)

5. Let x1 = 94,210, x2 = 8631, x3 = 1440, x4 = 133,
and x5 = 34. Calculate each of the following, using
four-digit decimal floating-point arithmetic:
(a) (((x1 + x2) + x3) + x4) + x5

(b) x1 + ((x2 + x3) + (x4 + x5))

(c) (((x5 + x4) + x3) + x2) + x1
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6. What would the machine epsilon be for a com-
puter that uses 16-digit base-10 floating-point arith-
metic?

7. What would the machine epsilon be for a computer

that uses 36-digit base-2 floating-point arithmetic?

8. How many floating-point numbers are there in the
system if t = 2, L = −2, U = 2, and b = 2?

7.2 Gaussian Elimination

In this section, we discuss the problem of solving a system of n linear equations in
n unknowns by Gaussian elimination. Gaussian elimination is generally considered
to be the most efficient computational method, since it involves the least amount of
arithmetic operations.

Gaussian Elimination without Interchanges

Let A = A(1) = (a(1)
i j ) be a nonsingular matrix. Then A can be reduced to strict

triangular form using row operations I and III. For simplicity, let us assume that the
reduction can be done by using only row operation III. Initially we have

A = A(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)

11 a(1)

12 · · · a(1)

1n

a(1)

21 a(1)

22 · · · a(1)

2n

...

a(1)

n1 a(1)

n2 · · · a(1)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Step 1. Let mk1 = a(1)

k1 /a(1)

11 for k = 2, . . . , n [by our assumption, a(1)

11 �= 0]. The
first step of the elimination process is to apply row operation III n − 1 times to
eliminate the entries below the diagonal in the first column of A. Note that mk1

is the multiple of the first row that is to be subtracted from the kth row. The
new matrix obtained will be

A(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)

11 a(1)

12 · · · a(1)

1n

0 a(2)

22 · · · a(2)

2n

...

0 a(2)

n2 · · · a(2)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where

a(2)
k j = a(1)

k j − mk1a(1)

1 j (2 ≤ k ≤ n, 2 ≤ j ≤ n)

The first step of the elimination process requires n − 1 divisions, (n − 1)2

multiplications, and (n − 1)2 additions/subtractions.

Step 2. If a(2)

22 �= 0, then it can be used as a pivot element to eliminate a(2)

32 , . . . , a(2)

n2 .
For k = 3, . . . , n, set

mk2 = a(2)

k2

a(2)

22
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and subtract mk2 times the second row of A(2) from the kth row. The new
matrix obtained will be

A(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)

11 a(1)

12 a(1)

13 · · · a(1)

1n

0 a(2)

22 a(2)

23 · · · a(2)

2n

0 0 a(3)

33 · · · a(3)

3n

...
...

...
...

0 0 a(3)

n3 · · · a(3)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The second step requires n −2 divisions, (n −2)2 multiplications, and (n −2)2

additions/subtractions.

After n − 1 steps, we will end up with a strictly triangular matrix U = A(n). The
operation count for the entire process can be determined as follows:

Divisions: (n − 1) + (n − 2) + · · · + 1 = n(n − 1)

2

Multiplications: (n − 1)2 + (n − 2)2 + · · · + 12 = n(2n − 1)(n − 1)

6

Additions and/or subtractions: (n − 1)2 + · · · + 12 = n(2n − 1)(n − 1)

6

The elimination process is summarized in the following algorithm:

Algorithm 7.2.1 Gaussian Elimination without Interchanges

For k = 1, 2, . . . , n − 1
For k = i + 1, . . . , n

Set mki = a(i)
ki

a(i)
i i

[provided that a(i)
i i �= 0]

For j = i + 1, . . . , n

Set a(i+1)
k j = a(i)

k j − mki a
(i)
i j

→ End for loop
→ End for loop

→ End for loop

To solve the system Ax = b, we could augment A by b. Thus, b would be
stored in an extra column of A. The reduction process could then be done by using
Algorithm 7.2.1 and letting j run from i + 1 to n + 1 instead of from i + 1 to n. The
triangular system could then be solved by back substitution.

Most of the work involved in solving a system Ax = b occurs in the reduction
of A to strict triangular form. Suppose that, after having solved Ax = b, we want
to solve another system, Ax = b1. We know the triangular form U from the first
system, and consequently we would like to be able to solve the new system without
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having to go through the entire reduction process again. We can do this if we make
use of the LU factorization discussed in Section 5 of Chapter 1 (see Example 6 of that
section). To compute the LU factorization, we must keep track of the numbers mki

used in Algorithm 7.2.1. These numbers are called the multipliers. The multiplier mki

is the multiple of the i th row that is subtracted from the kth row during the i th step of
the reduction process. To see how the multipliers can be used to solve Ax = b1, it is
helpful to view the reduction process in terms of matrix multiplications.

Triangular Factorization

The first step of the reduction process involves multiplying A by n − 1 elementary
matrices. We then get

A(2) = En1 · · · E31 E21 A(1)

where

Ek1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0 1
...

. . .

−mk1 0 · · · 1
...

. . .

0 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Each Ek1 is nonsingular, with

E−1
k1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0 1
...

. . .

mk1 0 · · · 1
...

. . .

0 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Let

M1 = En1 · · · E31 E21 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
−m21 1
−m31 0 1

...
. . .

−mn1 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, A(2) = M1 A. The matrix M1 is nonsingular, and

M−1
1 = E−1

21 E−1
31 · · · E−1

n1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
m21 1
m31 0 1
...

. . .

mn1 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Similarly,

A(3) = En2 · · · E42 E32 A(2)

= M2 A(2)

= M2 M1 A

where

M2 = En2 · · · E32 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0 1
0 −m32 1
...

...
...

. . .

0 −mn2 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

M−1
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0 1
0 m32 1
...

...
...

. . .

0 mn2 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
At the end of the reduction process, we have

U = A(n) = Mn−1 · · · M2 M1 A

It follows that
A = M−1

1 M−1
2 · · · M−1

n−1U

The M−1
j ’s multiply out to give the following lower triangular matrix when they are

taken in the order shown:

L = M−1
1 M−1

2 · · · M−1
n−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
m21 1 0 · · · 0
m31 m32 1 · · · 0
...

mn1 mn2 mn3 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, A = LU , where L is lower triangular and U is upper triangular.

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 3 1
4 1 4
3 4 6

⎫⎪⎪⎪⎪⎪⎭
The elimination can be carried out in two steps:⎧⎪⎪⎪⎪⎪⎩

2 3 1
4 1 4
3 4 6

⎫⎪⎪⎪⎪⎪⎭ 1→
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 − 1

2
9
2

⎫⎪⎪⎪⎪⎪⎭ 2→
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 0 4.3

⎫⎪⎪⎪⎪⎪⎭
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The multipliers for step 1 were m21 = 2 and m31 = 3
2 , and the multiplier for step 2 was

m32 = 1
10 . Let

L =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
m21 1 0
m31 m32 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0
3
2

1
10 1

⎫⎪⎪⎪⎪⎪⎭
and

U =
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 0 4.3

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that LU = A.

Once A has been reduced to triangular form and the factorization LU has been
determined, the system Ax = b can be solved in two steps.

Step 1. Forward Substitution. The system Ax = b can be written in the form

LUx = b

Let y = Ux. It follows that

Ly = LUx = b

Thus, we can find y by solving the lower triangular system

y1 = b1

m21 y1 + y2 = b2

m31 y1 + m32 y2 + y3 = b3
...

mn1 y1 + mn2 y2 + mn3 y3 + · · · + yn = bn

It follows from the first equation that y1 = b1. This value can be used in the
second equation to solve for y2. The values of y1 and y2 can be used in the third
equation to solve for y3, and so on. This method of solving a lower triangular
system is called forward substitution.

Step 2. Back Substitution. Once y has been determined, we need only solve the upper
triangular system Ux = y to find the solution x of the system. The upper
triangular system is solved by back substitution.

EXAMPLE 2 Solve the system
2x1 + 3x2 + x3 = −4
4x1 + x2 + 4x3 = 9
3x1 + 4x2 + 6x3 = 0

Solution
The coefficient matrix for this system is the matrix A in Example 1. Since L and U
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have been determined, the system can be solved by forward and back substitution:

⎧⎪⎪⎪⎪⎪⎩
1 0 0 −4
2 1 0 9
3
2

1
10 1 0

⎫⎪⎪⎪⎪⎪⎭
y1 = −4
y2 = 9 − 2y1 = 17
y3 = 0 − 3

2 y1 − 1
10 y2 = 4.3

⎧⎪⎪⎪⎪⎪⎩
2 3 1 −4
0 −5 2 17
0 0 4.3 4.3

⎫⎪⎪⎪⎪⎪⎭
2x1 + 3x2 + x3 = −4 x1 = 2

− 5x2 + 2x3 = 17 x2 = −3
4.3x3 = 4.3 x3 = 1

The solution of the system is x = (2, −3, 1)T .

Algorithm 7.2.2 Forward and Back Substitution

For k = 1, . . . , n

Set yk = bk −
k−1∑
i=1

mki yi

→ End for loop
For k = n, n − 1, . . . , 1

Set xk =
yk −

n∑
j=k+1

ukj x j

ukk

→ End for loop

Operation Count Algorithm 7.2.2 requires n divisions, n(n −1) multiplications, and
n(n −1) additions/subtractions. The total operation count for solving a system Ax = b
using Algorithms 7.2.1 and 7.2.2 is then

Multiplications/divisions: 1
3 n3 + n2 − 1

3 n

Additions/subtractions: 1
3 n3 + 1

2 n2 − 5
6 n

In both cases, 1
3 n3 is the dominant term. We will say that solving a system by Gaussian

elimination involves roughly 1
3 n3 multiplications/divisions and 1

3 n3 additions/subtrac-
tions.

Storage It is not necessary to store the multipliers in a separate matrix L . Each mul-
tiplier mki can be stored in the matrix A in place of the entry a(i)

ki eliminated. At the
end of the reduction process, A is being used to store the mki ’s and the ui j ’s:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u11 u12 · · · u1,n−1 u1n

m21 u22 · · · u2,n−1 u2n
...

mn1 mn2 · · · mn,n−1 unn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Algorithm 7.2.1 breaks down if, at any step, a(k)
kk is 0. If this happens, it is neces-

sary to perform row interchanges. In the next section, we will see how to incorporate
interchanges into our elimination algorithm.

SECTION 7.2 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
2 4 1

−3 1 −2

⎫⎪⎪⎪⎪⎪⎭
Factor A into a product LU , where L is lower tri-
angular with 1’s along the diagonal and U is upper
triangular.

2. Let A be the matrix in Exercise 1. Use the LU fac-
torization of A to solve Ax = b for each of the
following choices of b:
(a) (4, 3, −13)T (b) (3, 1, −10)T

(c) (7, 23, 0)T

3. Let A and B be n × n matrices and let x ∈ R
n .

(a) How many scalar additions and multiplications
are necessary to compute the product Ax?

(b) How many scalar additions and multiplications
are necessary to compute the product AB?

(c) How many scalar additions and multiplications
are necessary to compute (AB)x? To compute
A(Bx)?

4. Let A ∈ R
m×n , B ∈ R

n×r , and x, y ∈ R
n . Suppose

that the product AxyTB is computed in the follow-
ing ways:

(i) (A(xyT ))B (ii) (Ax)(yTB)

(iii) ((Ax)yT )B

(a) How many scalar additions and multiplications
are necessary for each of these computations?

(b) Compare the number of scalar additions and
multiplications for each of the three methods
when m = 5, n = 4, and r = 3. Which method
is most efficient in this case?

5. Let Eki be the elementary matrix formed by sub-
tracting α times the i th row of the identity matrix
from the kth row.
(a) Show that Eki = I − αekeT

i .
(b) Let E ji = I − βe j eT

i . Show that
E ji Eki = I − (αek + βe j )eT

i .
(c) Show that E−1

ki = I + αekeT
i .

6. Let A be an n × n matrix with triangular factoriza-
tion LU . Show that

det(A) = u11u22 · · · unn

7. If A is a symmetric n×n matrix with triangular fac-
torization LU , then A can be factored further into
a product L DLT (where D is diagonal). Devise an
algorithm, similar to Algorithm 7.2.2, for solving
L DLT x = b.

8. Write an algorithm for solving the tridiagonal sys-
tem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 b1

c1 a2
. . .

. . .

. . . an−1 bn−1

cn−1 an

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

...

xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1

d2

...

dn−1

dn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
by Gaussian elimination with the diagonal elements
as pivots. How many additions/subtractions and
multiplications/divisions are necessary?

9. Let A = LU , where L is lower triangular with 1’s
on the diagonal and U is upper triangular.
(a) How many scalar additions and multiplications

are necessary to solve Ly = e j by forward sub-
stitution?

(b) How many additions/subtractions and multipli-
cations/divisions are necessary to solve Ax =
e j ? The solution x j of Ax = e j will be the j th
column of A−1.

(c) Given the factorization A = LU , how many
additional multiplications/ divisions and addi-
tions/subtractions are needed to compute A−1?

10. Suppose that A−1 and the LU factorization of A
have already been determined. How many scalar
additions and multiplications are necessary to com-
pute A−1b? Compare this number with the number
of operations required to solve LUx = b using Al-
gorithm 7.2.2. Suppose that we have a number of
systems to solve with the same coefficient matrix
A. Is it worthwhile to compute A−1? Explain.
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11. Let A be a 3 × 3 matrix, and assume that A can
be transformed into a lower triangular matrix L by
using only column operations of type III; that is,

AE1 E2 E3 = L

where E1, E2, E3 are elementary matrices of

type III. Let

U = (E1 E2 E3)
−1

Show that U is upper triangular with 1’s on the di-
agonal and A = LU . (This exercise illustrates a
column version of Gaussian elimination.)

7.3 Pivoting Strategies

In this section, we present an algorithm for Gaussian elimination with row inter-
changes. At each step of the algorithm, it will be necessary to choose a pivotal row. We
can often avoid unnecessarily large error accumulations by choosing the pivotal rows
in a reasonable manner.

Gaussian Elimination with Interchanges

Consider the following example:

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

6 −4 2
4 2 1
2 −1 1

⎫⎪⎪⎪⎪⎪⎭
We wish to reduce A to triangular form by using row operations I and III. To keep track
of the interchanges, we will use a row vector p. The coordinates of p will be denoted
by p(1), p(2), and p(3). Initially, we set p = (1, 2, 3). Suppose that, at the first step
of the reduction process, the third row is chosen as the pivotal row. Then instead of
interchanging the first and third rows, we will interchange the first and third entries of
p. Setting p(1) = 3 and p(3) = 1, the vector p becomes (3, 2, 1). The vector p is used
to keep track of the reordering of the rows. We can think of p as a renumbering of the
rows. The actual physical reordering of the rows can be deferred until the end of the
reduction process. The first step of the reduction process is carried out as follows:

row

p(3) = 1

p(2) = 2

p(1) = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎩
6 −4 2

4 2 1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1

0 4 −1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
If, at the second step, row p(3) is chosen as the pivotal row, the entries of p(3)

and p(2) are switched. The final step of the elimination process is then carried out as
follows:

p(2) = 1

p(3) = 2

p(1) = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎩
0 − 1 −1
0 4 −1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1

0 0 −5

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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If the rows are reordered in the order (p(1), p(2), p(3)) = (3, 1, 2), the resulting
matrix will be in strict triangular form:

p(1) = 3

p(2) = 1

p(3) = 2

⎧⎪⎪⎪⎪⎪⎪⎪⎩
2 −1 1

0 −1 −1

0 0 −5

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Had the rows been written in the order (3, 1, 2) to begin with, the reduction would have
been exactly the same, except that there would have been no need for interchanges.
Reordering the rows of A in the order (3, 1, 2) is the same as premultiplying A by the
permutation matrix:

P =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
Let us perform the reduction on A and PA simultaneously and compare the results.
The multipliers used in the reduction process were 3, 2, and −4. These will be stored
in the places of the terms eliminated and enclosed in boxes to distinguish them from
the other entries of the matrix.

A =
⎧⎪⎪⎪⎪⎪⎩

6 −4 2
4 2 1
2 −1 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

3 −1 −1
2 4 −1
2 −1 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

3 −1 −1
2 −4 −5
2 −1 1

⎫⎪⎪⎪⎪⎪⎭

PA =
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
6 −4 2
4 2 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
3 −1 −1
2 4 −1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
3 −1 −1
2 −4 −5

⎫⎪⎪⎪⎪⎪⎭
If the rows of the reduced form of A are reordered, the resulting reduced matrices
will be the same. The reduced form of PA now contains the information necessary to
determine its triangular factorization. Indeed,

PA = LU

where

L =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
3 1 0
2 −4 1

⎫⎪⎪⎪⎪⎪⎭ and U =
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
0 −1 −1
0 0 −5

⎫⎪⎪⎪⎪⎪⎭
On the computer, it is not necessary to actually interchange the rows of A. We

simply treat row p(k) as the kth row and use ap(k), j in place of ak, j .

Algorithm 7.3.1 Gaussian Elimination with Interchanges

For i = 1, . . . , n
Set p(i) = i

→ End for loop
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For i = 1, . . . , n
(1) Choose a pivot element ap( j),i from the elements

ap(i),i , ap(i+1),i , . . . , ap(n),i

(Strategies for doing this will be discussed later in this section.)
(2) Switch the i th and j th entries of p.
(3) For k = i + 1, . . . , n

Set m p(k),i = ap(k),i/ap(i),i

For j = i + 1, . . . , n
Set ap(k), j = ap(k), j − m p(k),i ap(i), j

→ End for loop
→ End for loop

→ End for loop

Remarks

1. The multiplier m p(k),i is stored in the position of the element ap(k),i being elim-
inated.

2. The vector p can be used to form a permutation matrix P whose i th row is the
p(i)th row of the identity matrix.

3. The matrix PA can be factored into a product LU , where

lki =

⎧⎪⎨
⎪⎩

m p(k),i if k > i
1 if k = i
0 if k < i

and uki =
{

ap(k),i if k ≤ i
0 if k > i

4. Since P is nonsingular, the system Ax = b is equivalent to the system PAx =
Pb. Let c = Pb. Since PA = LU , it follows that the system is equivalent to

LUx = c

5. If PA = LU , then A = P−1LU = PTLU .

It follows from Remarks 4 and 5 that if A = PTLU , then the system Ax = b can
be solved in three steps:

Step 1. Reordering. Reorder the entries of b to form c = Pb.

Step 2. Forward substitution. Solve the system Ly = c for y.

Step 3. Back substitution. Solve Ux = y.

EXAMPLE 2 Solve the system
6x1 − 4x2 + 2x3 = −2
4x1 + 2x2 + x3 = 4
2x1 − x2 + x3 = −1

Solution
The coefficient matrix of this system is the matrix A from Example 1. P , L , and U
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have already been determined, and they can be used to solve the system as follows:

Step 1. c = Pb = (−1, −2, 4)T

Step 2. y1 = −1 y1 = −1
3y1 + y2 = −2 y2 = −2 + 3 = 1
2y1 − 4y2 + y3 = 4 y3 = 4 + 2 + 4 = 10

Step 3. 2x1 − x2 + x3 = −1 x1 = 1
− x2 − x3 = 1 x2 = 1

− 5x3 = 10 x3 = −2

The solution of the system is x = (1, 1, −2)T .

It is possible to do Gaussian elimination without row interchanges if the diagonal
entries a(i)

i i are nonzero at each step. However, in finite-precision arithmetic, pivots a(i)
i i

that are near 0 can cause problems.

EXAMPLE 3 Consider the system
0.0001x1 + 2x2 = 4

x1 + x2 = 3

The exact solution of the system is

x =
(

2

1.9999
,

3.9997

1.9999

)T

Rounded off to four decimal places, the solution is (1.0001, 1.9999)T . Let us solve the
system using three-digit decimal floating-point arithmetic:⎧⎪⎩0.0001 2 4

1 1 3

⎫⎪⎭ →
⎧⎪⎩0.0001 2 4

0 −0.200 × 105 −0.400 × 105

⎫⎪⎭
The computed solution is x′ = (0, 2)T . There is a 100 percent error in the x1 co-
ordinate. However, if we interchange rows to avoid the small pivot, then three-digit
decimal arithmetic gives⎧⎪⎩ 1 1 3

0.0001 2 4

⎫⎪⎭ →
⎧⎪⎩1 1 3

0 2.00 4.00

⎫⎪⎭
In this case, the computed solution is x′ = (1, 2)T .

If the pivot a(i)
i i is small in absolute value, the multipliers mki = a(i)

ki /a(i)
i i will be

large in absolute value. If there is an error in the computed value of a(i)
i j , it will be

multiplied by mki . In general, large multipliers tend to contribute to the propagation of
error. In contrast, multipliers that are less than 1 in absolute value generally retard the
growth of error. By careful selection of the pivot elements, we can try to avoid small
pivots and at the same time keep the multipliers less than 1 in absolute value. The most
commonly used strategy for doing this is called partial pivoting.
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Partial Pivoting
At the i th step of the reduction process, there are n − i + 1 candidates for the pivot
element:

ap(i),i , ap(i+1),i , . . . , ap(n),i

Choose the candidate ap( j),i with the maximum absolute value,

|ap( j),i | = max
i≤k≤n

|ap(k),i |

and interchange the i th and j th entries of p. The pivot element ap(i),i has the property

|ap(i),i | ≥ |ap(k),i |
for k = i + 1, . . . , n. Thus, the multipliers will all satisfy

|m p(k),i | =
∣∣∣∣ap(k),i

ap(i),i

∣∣∣∣ ≤ 1

We could always carry things one step further and do complete pivoting. In com-
plete pivoting, the pivot element is chosen to be the element of maximum absolute
value among all the elements in the remaining rows and columns. In this case, we
must keep track of both the rows and the columns. At the i th step, the element ap( j)q(k)

is chosen so that
|ap( j)q(k)| = max

i ≤ s ≤ n
i ≤ t ≤ n

|ap(s)q(t)|

The i th and j th entries of p are interchanged, and the i th and kth entries of q are
interchanged. The new pivot element is ap(i)q(i). The major drawback to complete
pivoting is that at each step we must search for a pivot element among (n − i + 1)2

elements of A. Doing this may be too costly in terms of computer time.

SECTION 7.3 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

0 3 1
1 2 −2
2 5 4

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

1
7

−1

⎫⎪⎪⎪⎪⎪⎭
(a) Reorder the rows of (A|b) in the order (2, 3, 1)

and then solve the reordered system.
(b) Factor A into a product PTLU , where P is

the permutation matrix corresponding to the
reordering in part (a).

2. Let A be the matrix in Exercise 1. Use the fac-
torization PTLU to solve Ax = c for each of the
following choices of c:
(a) (8, 1, 20)T (b) (−9, −2, −7)T

(c) (4, 1, 11)T

3. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 8 6
−1 −4 5

2 4 −6

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

8
1
4

⎫⎪⎪⎪⎪⎪⎭
Solve the system Ax = b using partial pivoting. If
P is the permutation matrix corresponding to the
pivoting strategy, factor PA into a product LU .

4. Let

A =
⎧⎪⎩3 2

2 4

⎫⎪⎭ and b =
⎧⎪⎩ 5

−2

⎫⎪⎭
Solve the system Ax = b using complete pivot-
ing. Let P be the permutation matrix determined
by the pivot rows and Q the permutation matrix de-
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termined by the pivot columns. Factor PAQ into a
product LU .

5. Let A be the matrix in Exercise 4 and let c =
(6, −4)T . Solve the system Ax = c in two steps:
(a) Set z = QT x and solve LUz = Pc for z.
(b) Calculate x = Qz.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

5 4 7
2 −4 3
2 8 6

⎫⎪⎪⎪⎪⎪⎭ ,

b =
⎧⎪⎪⎪⎪⎪⎩

2
−5

4

⎫⎪⎪⎪⎪⎪⎭ , c =
⎧⎪⎪⎪⎪⎪⎩

5
−4

2

⎫⎪⎪⎪⎪⎪⎭
(a) Use complete pivoting to solve the system

Ax = b.
(b) Let P be the permutation matrix determined

by the pivot rows, and let Q be the permuta-
tion matrix determined by the pivot columns.
Factor PAQ into a product LU .

(c) Use the LU factorization from part (b) to solve
the system Ax = c.

7. The exact solution of the system

0.6000x1 + 2000x2 = 2003

0.3076x1 − 0.4010x2 = 1.137

is x = (5, 1)T . Suppose that the calculated value of
x2 is x ′

2 = 1+ ε. Use this value in the first equation
and solve for x1. What will the error be? Calculate
the relative error in x1 if ε = 0.001.

8. Solve the system in Exercise 7 using four-digit dec-
imal floating-point arithmetic and Gaussian elimi-
nation with partial pivoting.

9. Solve the system in Exercise 7 using four-digit dec-
imal floating-point arithmetic and Gaussian elimi-
nation with complete pivoting.

10. Use four-digit decimal floating-point arithmetic,
and scale the system in Exercise 7 by multiplying
the first equation through by 1/2000 and the second
equation through by 1/0.4010. Solve the scaled
system using partial pivoting.

7.4 Matrix Norms and Condition Numbers

In this section, we are concerned with the accuracy of computed solutions of linear
systems. How accurate can we expect the computed solutions to be, and how can we
test their accuracy? The answer to these questions depends largely on how sensitive the
coefficient matrix of the system is to small changes. The sensitivity of the matrix can
be measured in terms of its condition number. The condition number of a nonsingular
matrix is defined in terms of its norm and the norm of its inverse. Before discussing
condition numbers, it is necessary to establish some important results regarding the
standard types of matrix norms.

Matrix Norms
Just as vector norms are used to measure the size of vectors, matrix norms can be used
to measure the size of matrices. In Section 4 of Chapter 5, we introduced a norm on
R

m×n that was induced by an inner product on R
m×n . This norm was referred to as the

Frobenius norm and was denoted by ‖ · ‖F . We showed that the Frobenius norm of a
matrix A could be computed by taking the square root of the sum of the squares of all
its entries:

‖A‖F =
(

n∑
j=1

m∑
i=1

a2
i j

)1/2

(1)

Actually, equation (1) defines a family of matrix norms, since it defines a norm
on R

m×n for any choice of m and n. The Frobenius norm has a number of important
properties:
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I. If a j represents the j th column vector of A, then

‖A‖F =
(

n∑
j=1

m∑
i=1

a2
i j

)1/2

=
(

n∑
j=1

‖a j‖2
2

)1/2

II. If �ai represents the i th row vector of A, then

‖A‖F =
(

m∑
i=1

n∑
j=1

a2
i j

)1/2

=
(

m∑
i=1

‖�aT
i ‖2

2

)1/2

III. If x ∈ R
n , then

‖Ax‖2 =
⎡
⎣ m∑

i=1

(
n∑

j=1

ai j x j

)2
⎤
⎦1/2

=
[

m∑
i=1

(�ai x
)2

]1/2

≤
[

m∑
i=1

‖x‖2
2‖�aT

i ‖2
2

]1/2

(Cauchy–Schwarz)

= ‖A‖F ‖x‖2

IV. If B = (b1, . . . , br ) is an n × r matrix, it follows from properties I and III
that

‖AB‖F = ‖(Ab1, Ab2, . . . , Abr )‖F

=
(

r∑
i=1

‖Abi‖2
2

)1/2

≤ ‖A‖F

(
r∑

i=1

‖bi‖2
2

)1/2

= ‖A‖F‖B‖F

There are many other norms that we could use for R
m×n in addition to the Frobenius

norm. Any norm used must satisfy the three conditions that define norms in general:

(i) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = O

(ii) ‖αA‖ = |α|‖A‖
(iii) ‖A + B‖ ≤ ‖A‖ + ‖B‖
The families of matrix norms that turn out to be most useful also satisfy the addi-

tional property

(iv) ‖AB‖ ≤ ‖A‖ ‖B‖
Consequently, we will consider only families of norms that have this additional prop-
erty. One important consequence of property (iv) is that

‖An‖ ≤ ‖A‖n
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In particular, if ‖A‖ < 1, then ‖An‖ → 0 as n → ∞.
In general, a matrix norm ‖ · ‖M on R

m×n and a vector norm ‖ · ‖V on R
n are said

to be compatible if
‖Ax‖V ≤ ‖A‖M‖x‖V

for every x ∈ R
n . In particular, it follows from property III of the Frobenius norm

that the matrix norm ‖ · ‖F and the vector norm ‖ · ‖2 are compatible. For each of the
standard vector norms, we can define a compatible matrix norm by using the vector
norm to compute an operator norm for the matrix. The matrix norm defined in this
way is said to be subordinate to the vector norm.

Subordinate Matrix Norms

We can think of each m × n matrix as a linear transformation from R
n to R

m . For any
family of vector norms, we can define an operator norm by comparing ‖Ax‖ and ‖x‖
for each nonzero x and taking

‖A‖ = max
x�=0

‖Ax‖
‖x‖ (2)

It can be shown that there is a particular x0 in R
n that maximizes ‖Ax‖/‖x‖, but the

proof is beyond the scope of this book. Assuming that ‖Ax‖/‖x‖ can always be maxi-
mized, we will show that (2) actually does define a norm on R

m×n . To do this, we must
verify that each of the three conditions of the definition is satisfied:

(i) For each x �= 0,
‖Ax‖
‖x‖ ≥ 0

and, consequently,

‖A‖ = max
x�=0

‖Ax‖
‖x‖ ≥ 0

If ‖A‖ = 0, then Ax = 0 for every x ∈ R
n . This implies that

a j = Ae j = 0 for j = 1, . . . , n

and hence A must be the zero matrix.

(ii) ‖αA‖ = max
x�=0

‖αAx‖
‖x‖ = |α| max

x�=0

‖Ax‖
‖x‖ = |α| ‖A‖

(iii) If x �= 0, then

‖A + B‖ = max
x�=0

‖(A + B)x‖
‖x‖

≤ max
x�=0

‖Ax‖ + ‖Bx‖
‖x‖

≤ max
x�=0

‖Ax‖
‖x‖ + max

x�=0

‖Bx‖
‖x‖

= ‖A‖ + ‖B‖
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Thus, (2) defines a norm on R
m×n . For each family of vector norms ‖ · ‖, we can then

define a family of matrix norms by (2). The matrix norms defined by (2) are said to be
subordinate to the vector norms ‖ · ‖.

Theorem 7.4.1 If the family of matrix norms ‖ · ‖M is subordinate to the family of vector norms ‖ · ‖V ,
then ‖ · ‖M and ‖ · ‖V are compatible and the matrix norms ‖ · ‖M satisfy property (iv).

Proof If x is any nonzero vector in R
n , then

‖Ax‖V

‖x‖V
≤ max

y �=0

‖Ay‖V

‖y‖V
= ‖A‖M

and hence
‖Ax‖V ≤ ‖A‖M‖x‖V

Since this last inequality is also valid if x = 0, it follows that ‖ · ‖M and ‖ · ‖V are
compatible. If B is an n × r matrix, then, since ‖ · ‖M and ‖ · ‖V are compatible, we
have

‖ABx‖V ≤ ‖A‖M‖Bx‖V ≤ ‖A‖M‖B‖M‖x‖V

Thus, for all x �= 0,
‖ABx‖V

‖x‖V
≤ ‖A‖M‖B‖M

and hence

‖AB‖M = max
x�=0

‖ABx‖V

‖x‖V
≤ ‖A‖M‖B‖M

It is a simple matter to compute the Frobenius norm of a matrix. For example, if

A =
⎧⎪⎩4 2

0 4

⎫⎪⎭
then

‖A‖F = (42 + 02 + 22 + 42)1/2 = 6

On the other hand, it is not so obvious how to compute ‖A‖ if ‖ · ‖ is a subordinate
matrix norm. It turns out that the matrix norm

‖A‖2 = max
x�=0

‖Ax‖2

‖x‖2

is difficult to compute; however,

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1

and

‖A‖∞ = max
x�=0

‖Ax‖∞
‖x‖∞

can be easily calculated.
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Theorem 7.4.2 If A is an m × n matrix, then

‖A‖1 = max
1≤ j≤n

(
m∑

i=1

|ai j |
)

and

‖A‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j |
)

Proof We will prove that

‖A‖1 = max
1≤ j≤n

(
m∑

i=1

|ai j |
)

and leave the proof of the second statement as an exercise. Let

α = max
1≤ j≤n

m∑
i=1

|ai j | =
m∑

i=1

|aik |

That is, k is the index of the column in which the maximum occurs. Let x be an
arbitrary vector in R

n; then

Ax =
(

n∑
j=1

a1 j x j ,

n∑
j=1

a2 j x j , . . . ,

n∑
j=1

amj x j

)T

and it follows that

‖Ax‖1 =
m∑

i=1

∣∣∣∣∣
n∑

j=1

ai j x j

∣∣∣∣∣
≤

m∑
i=1

n∑
j=1

|ai j x j |

=
n∑

j=1

(
|x j |

m∑
i=1

|ai j |
)

≤ α

n∑
j=1

|x j |

= α‖x‖1

Thus, for any nonzero x in R
n ,

‖Ax‖1

‖x‖1
≤ α

and hence

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1
≤ α (3)

On the other hand,
‖Aek‖1 = ‖ak‖1 = α
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Since ‖ek‖1 = 1, it follows that

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1
≥ ‖Aek‖1

‖ek‖1
= α (4)

Together, (3) and (4) imply that ‖A‖1 = α.

EXAMPLE 1 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3 2 4 −3

5 −2 −3 5
2 1 −6 4
1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Then

‖A‖1 = |4| + | − 3| + | − 6| + |1| = 14

and
‖A‖∞ = |5| + | − 2| + | − 3| + |5| = 15

The 2-norm of a matrix is more difficult to compute, since it depends on the sin-
gular values of the matrix. In fact, the 2-norm of a matrix is its largest singular value.

Theorem 7.4.3 If A is an m × n matrix with singular value decomposition U�V T , then

‖A‖2 = σ1 (the largest singular value)

Proof Since U and V are orthogonal,

‖A‖2 = ‖U�V T ‖2 = ‖�‖2

(See Exercise 42.) Now,

‖�‖2 = max
x �=0

‖�x‖2

‖x‖2

= max
x �=0

(
n∑

i=1

(σi xi )
2

)1/2

(
n∑

i=1

x2
i

)1/2

≤ σ1

However, if we choose x = e1, then

‖�x‖2

‖x‖2
= σ1

and hence it follows that
‖A‖2 = ‖�‖2 = σ1
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Corollary 7.4.4 If A = U�V T is nonsingular, then

‖A−1‖2 = 1

σn

Proof The singular values of A−1 = V �−1U T , arranged in decreasing order, are

1

σn
≥ 1

σn−1
≥ · · · ≥ 1

σ1

Therefore,

‖A−1‖2 = 1

σn

Condition Numbers

Matrix norms can be used to estimate the sensitivity of linear systems to small changes
in the coefficient matrix. Consider the following example:

EXAMPLE 2 Solve the following system:

2.0000x1 + 2.0000x2 = 6.0000
2.0000x1 + 2.0005x2 = 6.0010

(5)

If we use five-digit decimal floating-point arithmetic, the computed solution will be
the exact solution x = (1, 2)T . Suppose, however, that we are forced to use four-digit
decimal floating-point numbers. Thus, in place of (5), we have

2.000x1 + 2.000x2 = 6.000
2.000x1 + 2.001x2 = 6.001

(6)

The computed solution of system (6) is the exact solution x′ = (2, 1)T .
The systems (5) and (6) agree, except for the coefficient a22. The relative error in

this coefficient is
a′

22 − a22

a22
≈ 0.00025

However, the relative errors in the coordinates of the solutions x and x′ are

x ′
1 − x1

x1
= 1.0 and

x ′
2 − x2

x2
= −0.5

Definition A matrix A is said to be ill conditioned if relatively small changes in the entries
of A can cause relatively large changes in the solutions of Ax = b. A is said to be
well conditioned if relatively small changes in the entries of A result in relatively
small changes in the solutions of Ax = b.
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If the matrix A is ill conditioned, the computed solution of Ax = b generally
will not be accurate. Even if the entries of A can be represented exactly as floating-
point numbers, small rounding errors occurring in the reduction process may have a
drastic effect on the computed solution. If, however, the matrix is well conditioned
and the proper pivoting strategy is used, we should be able to compute solutions quite
accurately. In general, the accuracy of the solution depends on the conditioning of
the matrix. If we could measure the conditioning of A, this measure could be used to
derive a bound for the relative error in the computed solution.

Let A be an n × n nonsingular matrix and consider the system Ax = b. If x is
the exact solution of the system and x′ is the calculated solution, then the error can be
represented by the vector e = x − x′. If ‖ · ‖ is a norm on R

n , then ‖e‖ is a measure
of the absolute error and ‖e‖/‖x‖ is a measure of the relative error. In general, we
have no way of determining the exact values of ‖e‖ and ‖e‖/‖x‖. One possible way of
testing the accuracy of x′ is to put it back into the original system and see how close
b′ = Ax′ comes to b. The vector

r = b − b′ = b − Ax′

is called the residual and can be easily calculated. The quantity

‖b − Ax′‖
‖b‖ = ‖r‖

‖b‖
is called the relative residual. Is the relative residual a good estimate of the relative
error? The answer to this question depends on the conditioning of A. In Example 2,
the residual for the computed solution x′ = (2, 1)T is

r = b − Ax′ = (0, 0.0005)T

The relative residual in terms of the ∞-norm is

‖r‖∞
‖b‖∞

= 0.0005

6.0010
≈ 0.000083

and the relative error is given by

‖e‖∞
‖x‖∞

= 0.5

The relative error is more than 6000 times the relative residual! In general, we will
show that if A is ill conditioned, then the relative residual may be much smaller than
the relative error. For well-conditioned matrices, however, the relative residual and the
relative error are quite close. To show this, we need to make use of matrix norms.
Recall that if ‖ · ‖ is a compatible matrix norm on R

n×n , then, for any n × n matrix C
and any vector y ∈ R

n , we have

‖Cy‖ ≤ ‖C‖ ‖y‖ (7)

Now
r = b − Ax′ = Ax − Ax′ = Ae
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and consequently,
e = A−1r

It follows from property (7) that

‖e‖ ≤ ‖A−1‖ ‖r‖
and

‖r‖ = ‖Ae‖ ≤ ‖A‖ ‖e‖
Therefore, ‖r‖

‖A‖ ≤ ‖e‖ ≤ ‖A−1‖ ‖r‖ (8)

Now x is the exact solution to Ax = b, and hence x = A−1b. By the same reasoning
used to derive (8), we have

‖b‖
‖A‖ ≤ ‖x‖ ≤ ‖A−1‖ ‖b‖ (9)

It follows from (8) and (9) that

1

‖A‖ ‖A−1‖
‖r‖
‖b‖ ≤ ‖e‖

‖x‖ ≤ ‖A‖ ‖A−1‖ ‖r‖
‖b‖

The number ‖A‖ ‖A−1‖ is called the condition number of A and will be denoted by
cond(A). Thus,

1

cond(A)

‖r‖
‖b‖ ≤ ‖e‖

‖x‖ ≤ cond(A)
‖r‖
‖b‖ (10)

Inequality (10) relates the size of the relative error ‖e‖/‖x‖ to the relative residual
‖r‖/‖b‖. If the condition number is close to 1, the relative error and the relative
residual will be close. If the condition number is large, the relative error could be
many times as large as the relative residual.

EXAMPLE 3 Let

A =
⎧⎪⎩3 3

4 5

⎫⎪⎭
Then

A−1 = 1

3

⎧⎪⎩ 5 −3
−4 3

⎫⎪⎭
‖A‖∞ = 9 and ‖A−1‖∞ = 8

3 . (We use ‖ · ‖∞ because it is easy to calculate.) Thus,

cond∞(A) = 9 · 8
3 = 24

Theoretically, the relative error in the calculated solution of the system Ax = b could
be as much as 24 times the relative residual.

EXAMPLE 4 Suppose that x′ = (2.0, 0.1)T is the calculated solution of

3x1 + 3x2 = 6
4x1 + 5x2 = 9

Determine the residual r and the relative residual ‖r‖∞/‖b‖∞.
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Solution

r =
⎧⎪⎩6

9

⎫⎪⎭ −
⎧⎪⎩3 3

4 5

⎫⎪⎭⎧⎪⎩2.0
0.1

⎫⎪⎭ =
⎧⎪⎩−0.3

0.5

⎫⎪⎭
‖r‖∞
‖b‖∞

= 0.5

9
= 1

18

We can see by inspection that the actual solution of the system in Example 4 is

x =
⎧⎪⎩1

1

⎫⎪⎭. The error e is given by

e = x − x′ =
⎧⎪⎩−1.0

0.9

⎫⎪⎭
The relative error is given by

‖e‖∞
‖x‖∞

= 1.0

1
= 1

The relative error is 18 times the relative residual. This is not surprising, since
cond(A) = 24. The results are similar if we use ‖ · ‖1. In this case,

‖r‖1

‖b‖1
= 0.8

15
= 4

75
and

‖e‖1

‖x‖1
= 1.9

2
= 19

20

The condition number of a nonsingular matrix actually gives us valuable informa-
tion about the conditioning of A. Let A′ be a new matrix formed by altering the entries
of A slightly. Let E = A′ − A. Thus, A′ = A + E , where the entries of E are small
relative to the entries of A. A will be ill conditioned if, for some such E , the solutions
of A′x = b and Ax = b vary greatly. Let x′ be the solution of A′x = b and x be the
solution of Ax = b. The condition number allows us to compare the change in solution
relative to x′ to the relative change in the matrix A:

x = A−1b = A−1 A′x′ = A−1(A + E)x′ = x′ + A−1 Ex′

Hence,
x − x′ = A−1 Ex′

Using inequality (7), we see that

‖x − x′‖ ≤ ‖A−1‖ ‖E‖ ‖x′‖
or ‖x − x′‖

‖x′‖ ≤ ‖A−1‖ ‖E‖ = cond(A)
‖E‖
‖A‖ (11)

Let us return to Example 2 and see how inequality (11) applies. Let A and A′ be
the two coefficient matrices in Example 2:

E = A′ − A =
⎧⎪⎩0 0

0 0.0005

⎫⎪⎭
and

A−1 =
⎧⎪⎩ 2000.5 −2000

−2000 2000

⎫⎪⎭
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In terms of the ∞-norm, the relative error in A is

‖E‖∞
‖A‖∞

= 0.0005

4.0005
≈ 0.0001

and the condition number is

cond(A) = ‖A‖∞ ‖A−1‖∞ = (4.0005)(4000.5) ≈ 16,004

The bound on the relative error given in (11) is then

cond(A)
‖E‖
‖A‖ = ‖A−1‖ ‖E‖ = (4000.5)(0.0005) ≈ 2

The actual relative error for the systems in Example 2 is

‖x − x′‖∞
‖x′‖∞

= 1

2

If A is a nonsingular n × n matrix and we compute its condition number using the
2-norm, then we have

cond2(A) = ‖A‖2‖A−1‖2 = σ1

σn

If σn is small, then cond2(A) will be large. The smallest singular value, σn , is a measure
of how close the matrix is to being singular. Thus, the closer the matrix is to being
singular, the more ill conditioned it is. If the coefficient matrix of a linear system
is close to being singular, then small changes in the matrix due to rounding errors
could result in drastic changes to the solution of the system. To illustrate the relation
between conditioning and nearness to singularity, let us look again at an example from
Chapter 6.

EXAMPLE 5 In Section 5 of Chapter 6, we saw that the nonsingular 100 × 100 matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
is actually very close to being singular, and to make it singular, we need only change
the value of the (100, 1) entry of A from 0 to − 1

298 . It follows from Theorem 6.5.2 that

σn = min
X singular

‖A − X‖F ≤ 1

298

so cond2(A) must be very large. It is even easier to see that A is extremely ill condi-
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tioned if we use the infinity norm. The inverse of A is given by

A−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 2 4 · · · 298

0 1 1 2 · · · 297

...

0 0 0 0 · · · 21

0 0 0 0 · · · 20

0 0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The infinity norms of A and A−1 are both determined by the entries in the first row of
the matrix. The infinity norm condition number of A is given by

cond∞ A = ‖A‖∞‖A−1‖∞ = 100 × 299 ≈ 6.34 × 1031

SECTION 7.4 EXERCISES
1. Determine ‖ · ‖F , ‖ · ‖∞, and ‖ · ‖1 for each of the

following matrices:

(a)
⎧⎪⎩1 0

0 1

⎫⎪⎭ (b)
⎧⎪⎩ 1 4

−2 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
0 5 1
2 3 1
1 2 2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
5 0 5
4 1 0
3 2 1

⎫⎪⎪⎪⎪⎪⎭
2. Let

A =
⎧⎪⎩2 0

0 −2

⎫⎪⎭ and x =
⎧⎪⎩ x1

x2

⎫⎪⎭
and set

f (x1, x2) = ‖Ax‖2/‖x‖2

Determine the value of ‖A‖2 by finding the maxi-
mum value of f for all (x1, x2) �= (0, 0).

3. Let

A =
⎧⎪⎩1 0

0 0

⎫⎪⎭
Use the method of Exercise 2 to determine the
value of ‖A‖2.

4. Let

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 0 0
0 −5 0 0
0 0 −2 0
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Compute the singular value decomposition of

D.

(b) Find the value of ‖D‖2.

5. Show that if D is an n × n diagonal matrix, then

‖D‖2 = max
1≤i≤n

(|dii |)

6. If D is an n × n diagonal matrix, how do the values
of ‖D‖1, ‖D‖2, and ‖D‖∞ compare? Explain your
answers.

7. Let I denote the n × n identity matrix. Determine
the values of ‖I‖1, ‖I‖∞, and ‖I‖F .

8. Let ‖ · ‖M denote a matrix norm on R
n×n , ‖ · ‖V

denote a vector norm on R
n , and I be the n × n

identity matrix. Show that
(a) If ‖ · ‖M and ‖ · ‖V are compatible, then

‖I‖M ≥ 1.

(b) If ‖·‖M is subordinate to ‖·‖V , then ‖I‖M = 1.

9. A vector x in R
n can also be viewed as an n × 1

matrix X :

x = X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2

...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) How do the matrix norm ‖X‖∞ and the vector

norm ‖x‖∞ compare? Explain.

(b) How do the matrix norm ‖X‖1 and the vector
norm ‖x‖1 compare? Explain.

10. A vector y in R
n can also be viewed as an n × 1

matrix Y = (y). Show that
(a) ‖Y‖2 = ‖y‖2 (b) ‖Y T ‖2 = ‖y‖2
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11. Let A = wyT , where w ∈ R
m and y ∈ R

n . Show
that

(a)
‖Ax‖2

‖x‖2
≤ ‖y‖2‖w‖2 for all x �= 0 in R

n .

(b) ‖A‖2 = ‖y‖2‖w‖2

12. Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
−1 2 −7

4 1 4

⎫⎪⎪⎪⎪⎪⎭
(a) Determine ‖A‖∞.
(b) Find a vector x whose coordinates are each

±1 such that ‖Ax‖∞ = ‖A‖∞. (Note that
‖x‖∞ = 1, so ‖A‖∞ = ‖Ax‖∞/‖x‖∞.)

13. Theorem 7.4.2 states that

‖A‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j |
)

Prove this in two steps.
(a) Show first that

‖A‖∞ ≤ max
1≤i≤m

(
n∑

j=1

|ai j |
)

(b) Construct a vector x whose coordinates are
each ±1 such that

‖Ax‖∞
‖x‖∞

= ‖Ax‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j |
)

14. Show that ‖A‖F = ‖AT ‖F .

15. Let A be a symmetric n × n matrix. Show that
‖A‖∞ = ‖A‖1.

16. Let A be a 5 × 4 matrix with singular values σ1 =
5, σ2 = 3, and σ3 = σ4 = 1. Determine the values
of ‖A‖2 and ‖A‖F .

17. Let A be an m × n matrix.
(a) Show that ‖A‖2 ≤ ‖A‖F .
(b) Under what circumstances will ‖A‖2 = ‖A‖F ?

18. Let ‖ · ‖ denote the family of vector norms and let
‖ · ‖M be a subordinate matrix norm. Show that

‖A‖M = max
‖x‖=1

‖Ax‖

19. Let A be an m × n matrix and let ‖ · ‖v and ‖ · ‖w

be vector norms on R
n and R

m , respectively. Show
that

‖A‖v,w = max
x �=0

‖Ax‖w

‖x‖v

defines a matrix norm on R
m×n .

20. Let A be an m × n matrix. The 1,2-norm of A is
given by

‖A‖1,2 = max
x�=0

‖Ax‖2

‖x‖1

(See Exercise 19.) Show that

‖A‖1,2 = max (‖a1‖2, ‖a2‖2, . . . , ‖an‖2)

21. Let A be an m × n matrix. Show that
‖A‖1,2 ≤ ‖A‖2

22. Let A be an m × n matrix and let B ∈ R
n×r . Show

that
(a) ‖Ax‖ ≤ ‖A‖1,2‖x‖1 for all x in R

n .
(b) ‖AB‖1,2 ≤ ‖A‖2‖B‖1,2

23. Let A be an n × n matrix and let ‖ · ‖M be a ma-
trix norm that is compatible with some vector norm
on R

n . Show that if λ is an eigenvalue of A, then
|λ| ≤ ‖A‖M .

24. Use the result from Exercise 23 to show that if λ is
an eigenvalue of a stochastic matrix, then |λ| ≤ 1.

25. Sudoku is a popular puzzle involving matrices. In
this puzzle, one is given some of the entries of a
9 × 9 matrix A and asked to fill in the missing en-
tries. The matrix A has block structure

A =
⎧⎪⎪⎪⎪⎪⎩

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎫⎪⎪⎪⎪⎪⎭
where each submatrix Ai j is 3 × 3. The rules of the
puzzle are that each row, each column, and each of
the submatrices of A must be made up of all of the
integers 1 through 9. We will refer to such a matrix
as a sudoku matrix. Show that if A is a sudoku
matrix, then λ = 45 is its dominant eigenvalue.

26. Let Ai j be a submatrix of a sudoku matrix A (see
Exercise 25). Show that if λ is an eigenvalue of Ai j ,
then |λ| ≤ 22.

27. Let A be an n × n matrix and x ∈ R
n . Prove:

(a) ‖Ax‖∞ ≤ n1/2‖A‖2‖x‖∞
(b) ‖Ax‖2 ≤ n1/2‖A‖∞‖x‖2

(c) n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2

28. Let A be a symmetric n × n matrix with eigen-
values λ1, . . . , λn and orthonormal eigenvectors
u1, . . . , un . Let x ∈ R

n and let ci = uT
i x for

i = 1, 2, . . . , n. Show that

(a) ‖Ax‖2
2 =

n∑
i=1

(λi ci )
2

(b) If x �= 0, then

min
1≤i≤n

|λi | ≤ ‖Ax‖2

‖x‖2
≤ max

1≤i≤n
|λi |
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(c) ‖A‖2 = max
1≤i≤n

|λi |
29. Let

A =
⎧⎪⎩ 1 −0.99

−1 1

⎫⎪⎭
Find A−1 and cond∞(A).

30. Solve the given two systems and compare the so-
lutions. Are the coefficient matrices well condi-
tioned? Ill conditioned? Explain.

1.0x1 + 2.0x2 = 1.12

2.0x1 + 3.9x2 = 2.16

1.000x1 + 2.011x2 = 1.120

2.000x1 + 3.982x2 = 2.160

31. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
2 2 3
1 1 2

⎫⎪⎪⎪⎪⎪⎭
Calculate cond∞(A) = ‖A‖∞‖A−1‖∞.

32. Let A be a nonsingular n × n matrix, and let ‖ · ‖M

denote a matrix norm that is compatible with some
vector norm on R

n . Show that

condM(A) ≥ 1

33. Let

An =
⎧⎪⎪⎪⎪⎩1 1

1 1 − 1

n

⎫⎪⎪⎪⎪⎭
for each positive integer n. Calculate
(a) A−1

n (b) cond∞(An) (c) lim
n→∞ cond∞(An)

34. If A is a 5×3 matrix with ‖A‖2 = 8, cond2(A) = 2,
and ‖A‖F = 12, determine the singular values of
A.

35. Let

A =
⎧⎪⎩3 2

1 1

⎫⎪⎭ and b =
⎧⎪⎩5

2

⎫⎪⎭
The solution computed using two-digit decimal
floating-point arithmetic is x = (1.1, 0.88)T .
(a) Determine the residual vector r and the value

of the relative residual ‖r‖∞/‖b‖∞.
(b) Find the value of cond∞(A).
(c) Without computing the exact solution, use the

results from parts (a) and (b) to obtain bounds
for the relative error in the computed solution.

(d) Compute the exact solution x and determine
the actual relative error. Compare your results
with the bounds derived in part (c).

36. Let

A =
⎧⎪⎪⎪⎪⎪⎩

−0.50 0.75 −0.25
−0.50 0.25 0.25

1.00 −0.50 0.50

⎫⎪⎪⎪⎪⎪⎭
Calculate cond1(A) = ‖A‖1‖A−1‖1.

37. Let A be the matrix in Exercise 36 and let

A′ =
⎧⎪⎪⎪⎪⎪⎩

−0.5 0.8 −0.3
−0.5 0.3 0.3

1.0 −0.5 0.5

⎫⎪⎪⎪⎪⎪⎭
Let x and x′ be the solutions of Ax = b and
A′x = b, respectively, for some b ∈ R

3. Find a
bound for the relative error (‖x − x′‖1)/‖x′‖1.

38. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
5.00
1.02
1.04
1.10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
An approximate solution of Ax = b is calculated
by rounding the entries of b to the nearest inte-
ger and then solving the rounded system with in-
teger arithmetic. The calculated solution is x′ =
(12, 4, 2, 1)T . Let r denote the residual vector.
(a) Determine the values of ‖r‖∞ and cond∞(A).
(b) Use your answer to part (a) to find an upper

bound for the relative error in the solution.
(c) Compute the exact solution x and determine

the relative error
‖x − x′‖∞

‖x‖∞
.

39. Let A and B be nonsingular n × n matrices. Show
that

cond(AB) ≤ cond(A) cond(B)

40. Let D be a nonsingular n × n diagonal matrix and
let

dmax = max
1≤i≤n

|dii | and dmin = min
1≤i≤n

|dii |

(a) Show that

cond1(D) = cond∞(D) = dmax

dmin

(b) Show that

cond2(D) = dmax

dmin

41. Let Q be an n × n orthogonal matrix. Show that
(a) ‖Q‖2 = 1 (b) cond2(Q) = 1
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(c) for any b ∈ R
n , the relative error in the solu-

tion of Qx = b is equal to the relative residual;
that is,

‖e‖2

‖x‖2
= ‖r‖2

‖b‖2

42. Let A be an n × n matrix and let Q and V be n × n
orthogonal matrices. Show that
(a) ‖Q A‖2 = ‖A‖2 (b) ‖AV ‖2 = ‖A‖2

(c) ‖Q AV ‖2 = ‖A‖2

43. Let A be an m × n matrix and let σ1 be the largest
singular value of A. Show that if x and y are
nonzero vectors in R

n , then each of the following
holds:

(a)
|xT Ay|

‖x‖2 ‖y‖2
≤ σ1

[Hint: Make use of the Cauchy–Schwarz in-
equality.]

(b) max
x�=0, y�=0

|xT Ay|
‖x‖ ‖y‖ = σ1

44. Let A be an m × n matrix with singular value de-
composition U�V T . Show that

min
x�=0

‖Ax‖2

‖x‖2
= σn

45. Let A be an m × n matrix with singular value de-
composition U�V T . Show that, for any vector
x ∈ R

n ,

σn‖x‖2 ≤ ‖Ax‖2 ≤ σ1‖x‖2

46. Let A be a nonsingular n × n matrix and let Q be
an n × n orthogonal matrix. Show that
(a) cond2(Q A) = cond2(AQ) = cond2(A)

(b) if B = QTAQ, then cond2(B) = cond2(A).

47. Let A be a symmetric nonsingular n×n matrix with
eigenvalues λ1, . . . , λn . Show that

cond2(A) =
max
1≤i≤n

|λi |
min

1≤i≤n
|λi |

7.5 Orthogonal Transformations

Orthogonal transformations are one of the most important tools in numerical linear
algebra. The types of orthogonal transformations that will be introduced in this section
are easy to work with and do not require much storage. Most important, processes that
involve orthogonal transformations are inherently stable. For example, let x ∈ R

n and
x′ = x + e be an approximation to x: If Q is an orthogonal matrix, then

Qx′ = Qx + Qe

The error in Qx′ is Qe. With respect to the 2-norm, the vector Qe is the same size as
e:

‖Qe‖2 = ‖e‖2

Similarly, if A′ = A + E , then

Q A′ = Q A + QE

and

‖QE‖2 = ‖E‖2

When an orthogonal transformation is applied to a vector or matrix, the error will not
grow with respect to the 2-norm.
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Elementary Orthogonal Transformations

By an elementary orthogonal matrix, we mean a matrix of the form

Q = I − 2uuT

where u ∈ R
n and ‖u‖2 = 1. To see that Q is orthogonal, note that

QT = (I − 2uuT )T = I − 2uuT = Q

and

QTQ = Q2 = (I − 2uuT )(I − 2uuT )

= I − 4uuT + 4u(uT u)uT

= I

Thus, if Q is an elementary orthogonal matrix, then

QT = Q−1 = Q

The matrix Q = I − 2uuT is completely determined by the unit vector u. Rather
than store all n2 entries of Q, we need store only the vector u. To compute Qx, note
that

Qx = (I − 2uuT )x = x − 2αu

where α = uT x.
The matrix product Q A is computed as

Q A = (Qa1, Qa2, . . . , Qan)

where
Qai = ai − 2αi u αi = uT ai

Elementary orthogonal transformations can be used to obtain a Q R factorization
of A, and this in turn can be used to solve a linear system Ax = b. As with Gaussian
elimination, the elementary matrices are chosen so as to produce zeros in the coefficient
matrix. To see how this is done, let us consider the problem of finding a unit vector u
such that

(I − 2uuT )x = (α, 0, . . . , 0)T = αe1

for a given vector x ∈ R
n .

Householder Transformations

Let H = I − 2uuT . If Hx = αe1, then, because H is orthogonal, we have

|α| = ‖αe1‖2 = ‖Hx‖2 = ‖x‖2

If we take α = ‖x‖2 and Hx = αe1, then, since H is its own inverse, we have

x = H(αe1) = α(e1 − (2u1)u) (1)
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Thus,
x1 = α(1 − 2u2

1)

x2 = −2αu1u2

...

xn = −2αu1un

Solving for the ui ’s, we get

u1 = ±
(

α − x1

2α

)1/2

ui = −xi

2αu1
for i = 2, . . . , n

If we let

u1 = −
(

α − x1

2α

)1/2

and set β = α(α − x1)

then
−2αu1 = [2α(α − x1)]

1/2 = (2β)1/2

It follows that

u =
(

− 1

2αu1

)
(−2αu2

1, x2, . . . , xn)
T

= 1√
2β

(x1 − α, x2, . . . , xn)
T

If we set v = (x1 − α, x2, . . . , xn)
T , then

‖v‖2
2 = (x1 − α)2 +

n∑
i=2

x2
i = 2α(α − x1)

and hence
‖v‖2 = √

2β

Thus,

u = 1√
2β

v = 1

‖v‖2
v

In summation, given a vector x ∈ R
n , if we set

α = ‖x‖2, β = α(α − x1)

v = (x1 − α, x2, . . . , xn)
T

u = 1

‖v‖2
v = 1√

2β
v

and

H = I − 2uuT = I − 1

β
vvT
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then

Hx = αe1

The matrix H formed in this way is called a Householder transformation. The matrix
H is determined by the vector v and the scalar β. For any vector y ∈ R

n ,

Hy =
(

I − 1

β
vvT

)
y = y −

(
1

β
vT y

)
v

Rather than store all n2 entries of H , we need store only v and β.

EXAMPLE 1 Given the vector x = (4, 4, 2)T , find a Householder matrix that will zero out the last
two entries of x.

Solution
Set

α = ‖x‖ = 6

β = α(α − x1) = 12

v = (x1 − α, x2, x3)
T = (−2, 4, 2)T

The Householder matrix is given by

H = I − 1

12
vvT

= 1

3

⎧⎪⎪⎪⎪⎪⎩
2 2 1
2 −1 −2
1 −2 2

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that

Hx = 6e1

Suppose now that we wish to zero out only the last n − k components of a vec-
tor x = (x1, . . . , xk, xk+1, . . . , xn)

T . To do this, we let x(1) = (x1, . . . , xk−1)
T and

x(2) = (xk, xk+1, . . . , xn)
T . Let I (1) and I (2) denote the (k − 1) × (k − 1) and

(n − k + 1) × (n − k + 1) identity matrices, respectively. By the methods just de-
scribed, we can construct a Householder matrix H (2)

k = I (2) − (1/βk)vkvT
k such that

H (2)
k x(2) = ‖x(2)‖2e1

Let

Hk =
⎧⎪⎪⎩ I (1) O

O H (2)
k

⎫⎪⎪⎭ (2)
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It follows that

Hkx =
⎧⎪⎪⎩ I (1) O

O H (2)
k

⎫⎪⎪⎭⎧⎪⎪⎩x(1)

x(2)

⎫⎪⎪⎭
=
⎧⎪⎪⎩ I (1)x(1)

H (2)
k x(2)

⎫⎪⎪⎭
=
⎛
⎝x1, . . . , xk−1,

(
n∑

i=k

x2
i

)1/2

, 0, . . . , 0

⎞
⎠T

Remarks

1. The Householder matrix Hk defined in equation (2) is an elementary orthogonal
matrix. If we let

v =
⎧⎪⎩ 0

vk

⎫⎪⎭ and u = (1/‖v‖)v
then

Hk = I − 1

βk
vvT = I − 2uuT

2. Hk acts like the identity matrix on the first k − 1 coordinates of any vector
y ∈ R

n . If y = (y1, . . . , yk−1, yk, . . . , yn)
T , y(1) = (y1, . . . , yk−1)

T , and y(2) =
(yk, . . . , yn)

T , then

Hky =
⎧⎪⎪⎪⎩ I (1) O

O H (2)
k

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩y(1)

y(2)

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ y(1)

H (2)
k y(2)

⎫⎪⎪⎪⎭
In particular, if y(2) = 0, then Hky = y.

3. It is generally not necessary to store the entire matrix Hk . It suffices to store the
n − k + 1 vector vk and the scalar βk .

EXAMPLE 2 Find a Householder matrix that zeroes out the last two entries of y = (3, 4, 4, 2)T

while leaving the first entry unchanged.

Solution
The Householder matrix will change only the last three entries of y. These entries
correspond to the vector x = (4, 4, 2)T in R

3. But this is the vector whose last two
entries were zeroed out in Example 1. The 3 × 3 Householder matrix from Example 1
can be used to form a 4 × 4 matrix

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0

0 2
3

2
3

1
3

0 2
3 − 1

3 − 2
3

0 1
3 − 2

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
which will have the desired effect on y. We leave it to the reader to verify that Hy =
(3, 6, 0, 0)T .



422 Chapter 7 Numerical Linear Algebra

We are now ready to apply Householder transformations to solve linear systems.
If A is a nonsingular n × n matrix, we can use Householder transformations to reduce
A to strict triangular form. To begin with, we can find a Householder transformation
H1 = I − (1/β1)v1vT

1 that, when applied to the first column of A, will give a multiple
of e1. Thus, H1 A will be of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · ×
0 × · · · ×
0 × · · · ×
...

0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can then find a Householder transformation H2 that will zero out the last n − 2
elements in the second column of H1 A while leaving the first element in that column
unchanged. It follows from remark 2 that H2 will have no effect on the first column of
H1 A, so multiplication by H2 yields a matrix of the form

H2 H1 A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can continue to apply Householder transformations in this fashion until we end up
with an upper triangular matrix, which we will denote by R. Thus,

Hn−1 · · · H2 H1 A = R

It follows that

A = H−1
1 H−1

2 · · · H−1
n−1 R

= H1 H2 · · · Hn−1 R

Let Q = H1 H2 · · · Hn−1. The matrix Q is orthogonal, and A can be factored into the
product of an orthogonal matrix times an upper triangular matrix:

A = Q R

After A has been factored into a product Q R, the system Ax = b is easily solved:

Ax = b
Q Rx = b

Rx = QT b

Rx = Hn−1 · · · H2 H1b (3)

Once Hn−1 · · · H2 H1b has been calculated, the system (3) can be solved by back sub-
stitution.
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Storage The vector vk can be stored in the kth column of A. Since vk has n − k + 1
nonzero entries and there are only n − k zeros in the kth column of the reduced matrix,
it is necessary to store rkk elsewhere. The diagonal elements of R can be stored either
in an n vector or in a row added to A. The βk’s also can be stored in an additional row
of A: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v11 r12 r13 r14

v12 v22 r23 r24

v13 v23 v33 r34

v14 v24 v34 0
r11 r22 r33 r44

β1 β2 β3 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Operation Count In solving an n × n system by means of Householder transfor-
mations, most of the work is done in reducing A to triangular form. The number of
operations required is approximately 2

3 n3 multiplications, 2
3 n3 additions, and n − 1

square roots.

Rotations and Reflections

Often, it will be desirable to have a transformation that annihilates only a single entry
of a vector. In this case, it is convenient to use either a rotation or a reflection. Let us
consider first the two-dimensional case.

Let

R =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭ and G =
⎧⎪⎩cos θ sin θ

sin θ − cos θ

⎫⎪⎭
and let

x =
⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩r cos α

r sin α

⎫⎪⎭
be a vector in R

2. Then

Rx =
⎧⎪⎩r cos(θ + α)

r sin(θ + α)

⎫⎪⎭ and Gx =
⎧⎪⎩r cos(θ − α)

r sin(θ − α)

⎫⎪⎭
R represents a rotation in the plane by an angle θ . The matrix G has the effect of
reflecting x about the line x2 = [tan(θ/2)]x1 (see Figure 7.5.1). If we set cos θ = x1/r
and sin θ = −x2/r , then

Rx =
⎧⎪⎩ x1 cos θ − x2 sin θ

x1 sin θ + x2 cos θ

⎫⎪⎭ =
⎧⎪⎩ r

0

⎫⎪⎭
If we set cos θ = x1/r and sin θ = x2/r , then

Gx =
⎧⎪⎩ x1 cos θ + x2 sin θ

x1 sin θ − x2 cos θ

⎫⎪⎭ =
⎧⎪⎩ r

0

⎫⎪⎭
Both R and G are orthogonal. The matrix G is also symmetric. Indeed, G
is an elementary orthogonal matrix. If we let u = (sin θ/2, − cos θ/2)T , then
G = I − 2uuT .
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x

x
Rx

Gx

2+ αθ

α

θ
α

θ – α

Figure 7.5.1.

EXAMPLE 3 Let x = (−3, 4)T . To find a rotation matrix R that zeroes out the second coordinate of
x, set

r =
√

(−3)2 + 42 = 5

cos θ = x1

r
= −3

5

sin θ = − x2

r
= −4

5

and set

R =
⎧⎪⎩cos θ −sin θ

sin θ cos θ

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩− 3

5
4
5

− 4
5 − 3

5

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that Rx = 5e1.

To find a reflection matrix G that zeroes out the second coordinate of x, compute
r and cos θ in the same way as for the rotation matrix, but set

sin θ = x2

r
= 4

5

and

G =
⎧⎪⎩cos θ sin θ

sin θ −cos θ

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩− 3

5
4
5

4
5

3
5

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that Gx = 5e1.

Let us now consider the n-dimensional case. Let R and G be n × n matrices with

rii = r j j = cos θ gii = cos θ, g j j = − cos θ

r ji = sin θ, ri j = − sin θ g ji = gi j = sin θ
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and rst = gst = δst for all other entries of R and G. Thus, R and G resemble the
identity matrix, except for the (i, i), (i, j), ( j, j), and ( j, i) positions. Let c = cos θ

and s = sin θ . If x ∈ R
n , then

Rx = (x1, . . . , xi−1, xi c − x j s, xi+1, . . . , x j−1, xi s + x j c, x j+1, . . . , xn)
T

and

Gx = (x1, . . . , xi−1, xi c + x j s, xi+1, . . . , x j−1, xi s − x j c, x j+1, . . . , xn)
T

The transformations R and G alter only the i th and j th components of a vector; they
have no effect on the other coordinates. We will refer to R as a plane rotation and to
G as a Givens transformation or a Givens reflection. If we set

c = xi

r
and s = − x j

r

(
r =

√
x2

i + x2
j

)
then the j th component of Rx will be 0. If we set

c = xi

r
and s = x j

r

then the j th component of Gx will be 0.

EXAMPLE 4 Let x = (5, 8, 12)T . Find a rotation matrix R that zeroes out the third entry of x but
leaves the second entry of x unchanged.

Solution
Since R will act only on x1 and x3, set

r =
√

x2
1 + x2

3 = 13

c = x1

r
= 5

13

s = − x3

r
= −12

13

and set

R =
⎧⎪⎪⎪⎪⎪⎩

c 0 −s
0 1 0
s 0 c

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
5
13 0 12

13

0 1 0

− 12
13 0 5

13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The reader may verify that Rx = (13, 8, 0)T .

Given a nonsingular n × n matrix A, we can use either plane rotations or Givens
transformations to obtain a Q R factorization of A. Let G21 be the Givens transforma-
tion acting on the first and second coordinates, which, when applied to A, results in a
zero in the (2, 1) position. We can apply another Givens transformation, G31, to G21 A
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to obtain a zero in the (3, 1) position. This process can be continued until the last n −1
entries in the first column have been eliminated:

Gn1 · · · G31G21 A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · ×
0 × · · · ×
0 × · · · ×
...

0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
At the next step, Givens transformations G32, G42, . . . , Gn2 are used to eliminate the
last n − 2 entries in the second column. The process is continued until all elements
below the diagonal have been eliminated.

(Gn,n−1) · · · (Gn2 · · · G32)(Gn1 · · · G21)A = R (R upper triangular)

If we let QT = (Gn,n−1) · · · (Gn2 · · · G32)(Gn1 · · · G21), then A = Q R and the system
Ax = b is equivalent to the system

Rx = QT b

This system can be solved by back substitution.

Operation Count The Q R factorization of A by means of Givens transformations
or plane rotations requires roughly 4

3 n3 multiplications, 2
3 n3 additions, and 1

2 n2 square
roots.

SECTION 7.5 EXERCISES
1. For each of the following vectors x, find a rotation

matrix R such that Rx = ‖x‖2e1:
(a) x = (1, 1)T (b) x = (

√
3, −1)T

(c) x = (−4, 3)T

2. Given x ∈ R
3, define

ri j = (
x2

i + x2
j

)1/2
i, j = 1, 2, 3

For each of the following, determine a Givens
transformation Gi j such that the i th and j th coor-
dinates of Gi j x are ri j and 0, respectively:
(a) x = (3, 1, 4)T , i = 1, j = 3

(b) x = (1, −1, 2)T , i = 1, j = 2

(c) x = (4, 1,
√

3)T , i = 2, j = 3

(d) x = (4, 1,
√

3)T , i = 3, j = 2

3. For each of the given vectors x, find a House-
holder transformation such that Hx = αe1, where
α = ‖x‖2:
(a) x = (8, −1, −4)T (b) x = (6, 2, 3)T

(c) x = (7, 4, −4)T

4. For each of the following, find a Householder trans-
formation that zeroes out the last two coordinates of
the vector:
(a) x = (5, 8, 4, 1)T

(b) x = (4, −3, −2, −1, 2)T

5. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 3 −2
1 1 1
1 −5 1
5 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Determine the scalar β and vector v for the

Householder matrix H = I − (1/β)vvT that
zeroes out the last three entries of a1.

(b) Without explicitly forming the matrix H , com-
pute the product HA.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 −4
2 6 7

−2 1 8

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

9
9

−3

⎫⎪⎪⎪⎪⎪⎭



7.5 Orthogonal Transformations 427

(a) Use Householder transformations to transform
A into an upper triangular matrix R. Also
transform the vector b; that is, compute b(1) =
H2 H1b.

(b) Solve Rx = b(1) for x and check your answer
by computing the residual b − Ax.

7. For each of the following systems, use a Givens re-
flection to transform the system to upper triangular
form and then solve the upper triangular system:

(a) 3x1 + 8x2 = 5

4x1 − x2 = −5

(b) x1 + 4x2 = 5

x1 + 2x2 = 1

(c) 4x1 − 4x2 + x3 = 2

x2 + 3x3 = 2

−3x1 + 3x2 − 2x3 = 1

8. Suppose that you wish to eliminate the last coordi-
nate of a vector x and leave the first n − 2 coordi-
nates unchanged. How many operations are neces-
sary if this is to be done by a Givens transformation
G? A Householder transformation H? If A is an
n × n matrix, how many operations are required to
compute GA and HA?

9. Let Hk = I − 2uuT be a Householder transforma-
tion with

u = (0, . . . , 0, uk, uk+1, . . . , un)
T

Let b ∈ R
n and let A be an n × n matrix. How

many additions and multiplications are necessary
to compute (a) Hkb? (b) Hk A?

10. Let QT = Gn−k · · · G2G1, where each Gi is a
Givens transformation. Let b ∈ R

n and let A be an
n × n matrix. How many additions and multiplica-
tions are necessary to compute (a) QT b? (b) QTA?

11. Let R1 and R2 be two 2 × 2 rotation matrices and
let G1 and G2 be two 2×2 Givens transformations.
What type of transformations are each of the fol-
lowing?
(a) R1 R2 (b) G1G2

(c) R1G1 (d) G1 R1

12. Let x and y be distinct vectors in R
n with ‖x‖2 =

‖y‖2. Define

u = 1

‖x − y‖2
(x − y) and Q = I − 2uuT

Show that
(a) ‖x − y‖2

2 = 2(x − y)T x

(b) Qx = y

13. Let u be a unit vector in R
n and let

Q = I − 2uuT

(a) Show that u is an eigenvector of Q. What is
the corresponding eigenvalue?

(b) Let z be a nonzero vector in R
n that is orthog-

onal to u. Show that z is an eigenvector of Q
belonging to the eigenvalue λ = 1.

(c) Show that the eigenvalue λ = 1 must have
multiplicity n−1. What is the value of det(Q)?

14. Let R be an n × n plane rotation. What is the value
of det(R)? Show that R is not an elementary or-
thogonal matrix.

15. Let A = Q1 R1 = Q2 R2, where Q1 and Q2 are or-
thogonal and R1 and R2 are both upper triangular
and nonsingular.
(a) Show that QT

1 Q2 is diagonal.

(b) How do R1 and R2 compare? Explain.

16. Let A = xyT , where x ∈ R
m , y ∈ R

n , and both
x and y are nonzero vectors. Show that A has a
singular value decomposition of the form H1�H2,
where H1 and H2 are Householder transformations
and

σ1 = ‖x‖ ‖y‖, σ2 = σ3 = · · · = σn = 0

17. In constructing a Householder matrix to zero out
the last n − 1 of a vector x in R

n , the scalar α

must satisfy |α| = ‖x‖2. Instead of always tak-
ing α = ‖x‖2, it is customary to choose α = −‖x‖2

whenever x1 > 0. Explain the advantages of choos-
ing α in this manner.

18. Let

R =
⎧⎪⎩cos θ − sin θ

sin θ cos θ

⎫⎪⎭
Show that if θ is not an integer multiple of π , then
R can be factored into a product R = U LU , where

U =
⎧⎪⎪⎩1 cos θ−1

sin θ

0 1

⎫⎪⎪⎭ and L =
⎧⎪⎩ 1 0

sin θ 1

⎫⎪⎭
This type of factorization of a rotation matrix arises
in applications involving wavelets and filter bases.
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7.6 The Eigenvalue Problem

In this section, we are concerned with numerical methods for computing the eigen-
values and eigenvectors of an n × n matrix A. The first method we study is called
the power method. The power method is an iterative method for finding the dominant
eigenvalue of a matrix and a corresponding eigenvector. By the dominant eigenvalue,
we mean an eigenvalue λ1 satisfying |λ1| > |λi | for i = 2, . . . , n. If the eigenvalues of
A satisfy

|λ1| > |λ2| > · · · > |λn|
then the power method can be used to compute the eigenvalues one at a time. The sec-
ond method is called the Q R algorithm. The Q R algorithm is an iterative method in-
volving orthogonal similarity transformations. It has many advantages over the power
method. It will converge whether or not A has a dominant eigenvalue, and it calculates
all the eigenvalues at the same time.

In the examples in Chapter 6, the eigenvalues were determined by forming the
characteristic polynomial and finding its roots. However, this procedure is generally
not recommended for numerical computations. The difficulty is that often a small
change in one or more of the coefficients of the characteristic polynomial can result
in a relatively large change in the computed zeros of the polynomial. For example,
consider the polynomial p(x) = x10. The lead coefficient is 1 and the remaining
coefficients are all 0. If the constant term is altered by adding −10−10, we obtain
the polynomial q(x) = x10 − 10−10. Although the coefficients of p(x) and q(x)

differ only by 10−10, the roots of q(x) all have absolute value 1
10 , whereas the roots of

p(x) are all 0. Thus, even when the coefficients of the characteristic polynomial have
been determined accurately, the computed eigenvalues may involve significant error.
For this reason, the methods presented in this section do not involve the characteristic
polynomial. To see that there is some advantage to working directly with the matrix
A, we must determine the effect that small changes in the entries of A have on the
eigenvalues. This is done in the next theorem.

Theorem 7.6.1 Let A be an n × n matrix with n linearly independent eigenvectors, and let X be a
matrix that diagonalizes A. That is,

X−1 AX = D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If A′ = A + E and λ′ is an eigenvalue of A′, then

min
1≤i≤n

|λ′ − λi | ≤ cond2(X)‖E‖2 (1)

Proof We may assume that λ′ is unequal to any of the λi ’s (otherwise there is nothing to
prove). Thus, if we set D1 = D −λ′ I , then D1 is a nonsingular diagonal matrix. Since
λ′ is an eigenvalue of A′, it is also an eigenvalue of X−1 A′ X . Therefore, X−1 A′ X −λ′ I
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is singular, and hence D−1
1 (X−1 A′ X − λ′ I ) is also singular. But

D−1
1 (X−1 A′ X − λ′ I ) = D−1

1 X−1(A + E − λ′ I )X

= D−1
1 X−1 E X + I

Therefore, −1 is an eigenvalue of D−1
1 X−1 E X . It follows that

|−1| ≤ ‖D−1
1 X−1 E X‖2 ≤ ‖D−1

1 ‖2 cond2(X)‖E‖2

The 2-norm of D−1
1 is given by

‖D−1
1 ‖2 = max

1≤i≤n
|λ′ − λi |−1

The index i that maximizes |λ′−λi |−1 is the same index that minimizes |λ′−λi |. Thus,

min
1≤i≤n

|λ′ − λi | ≤ cond2(X)‖E‖2

If the matrix A is symmetric, we can choose an orthogonal diagonalizing matrix.
In general, if Q is any orthogonal matrix, then

cond2(Q) = ‖Q‖2‖Q−1‖2 = 1

Hence, (1) simplifies to
min

1≤i≤n
|λ′ − λi | ≤ ‖E‖2

Thus, if A is symmetric and ‖E‖2 is small, the eigenvalues of A′ will be close to the
eigenvalues of A.

We are now ready to talk about some of the methods for calculating the eigenvalues
and eigenvectors of an n × n matrix A. The first method we will present computes an
eigenvector x of A by successively applying A to a given vector in R

n . To see the
idea behind the method, let us assume that A has n linearly independent eigenvectors
x1, . . . , xn and that the corresponding eigenvalues satisfy

|λ1| > |λ2| ≥ · · · ≥ |λn| (2)

Given an arbitrary vector v0 in R
n , we can write

v0 = α1x1 + · · · + αnxn

Av0 = α1λ1x1 + α2λ2x2 + · · · + αnλnxn

A2v0 = α1λ
2
1x1 + α2λ

2
2x2 + · · · + αnλ

2
nxn

and, in general,
Akv0 = α1λ

k
1x1 + α2λ

k
2x2 + · · · + αnλ

k
nxn

If we define
vk = Akv0 k = 1, 2, . . .

then
1

λk
1

vk = α1x1 + α2

(
λ2

λ1

)k

x2 + · · · + αn

(
λn

λ1

)k

xn (3)
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Since ∣∣∣∣λi

λ1

∣∣∣∣ < 1 for i = 2, 3, . . . , n

it follows that
1

λk
1

vk → α1x1 as k → ∞

Thus, if α1 �= 0, then the sequence {(1/λk
1)vk} converges to an eigenvector α1x1 of

A. There are some obvious difficulties with the method as it has been presented so
far. The main difficulty is that we cannot compute (1/λk

1)vk , since λ1 is unknown. But
even if λ1 were known, there would be difficulties because of λk

1 approaching 0 or ±∞.
Fortunately, however, we do not have to scale the sequence {vk} using 1/λk

1. If the vk’s
are scaled so that we obtain unit vectors at each step, the sequence will converge to a
unit vector in the direction of x1. The eigenvalue λ1 can be computed at the same time.
This method of computing the eigenvalue of largest magnitude and the corresponding
eigenvector is called the power method.

The Power Method

In this method, two sequences {vk} and {uk} are defined recursively. To start, u0 can be
any nonzero vector in R

n . Once uk has been determined, the vectors vk+1 and uk+1 are
calculated as follows:

1. Set vk+1 = Auk .
2. Find the coordinate jk+1 of vk+1 that has the maximum absolute value.
3. Set uk+1 = (1/v jk+1)vk+1.

The sequence {uk} has the property that, for k ≥ 1, ‖uk‖∞ = u jk = 1. If the
eigenvalues of A satisfy (2) and u0 can be written as a linear combination of eigenvec-
tors α1x1 + · · · + αnxn with α1 �= 0, the sequence {uk} will converge to an eigenvector
y of λ1. If k is large, then uk will be a good approximation to y and vk+1 = Auk will
be a good approximation to λ1y. Since the jk th coordinate of uk is 1, it follows that the
jk th coordinate of vk+1 will be a good approximation to λ1.

In view of (3), we can expect that the uk’s will converge to y at the same rate at
which (λ2/λ1)

k is converging to 0. Thus, if |λ2| is nearly as large as |λ1|, the conver-
gence will be slow.

EXAMPLE 1 Let

A =
⎧⎪⎩2 1

1 2

⎫⎪⎭
It is an easy matter to determine the exact eigenvalues of A. These turn out to be
λ1 = 3 and λ2 = 1, with corresponding eigenvectors x1 = (1, 1)T and x2 = (1, −1)T .
To illustrate how the vectors generated by the power method converge, we will apply
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the method with u0 = (2, 1)T .

v1 = Au0 =
⎧⎪⎩5

4

⎫⎪⎭ , u1 = 1

5
v1 =

⎧⎪⎩1.0
0.8

⎫⎪⎭

v2 = Au1 =
⎧⎪⎩2.8

2.6

⎫⎪⎭ , u2 = 1

2.8
v2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

13

14

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ≈
⎧⎪⎩1.00

0.93

⎫⎪⎭

v3 = Au2 = 1

14

⎧⎪⎩41
40

⎫⎪⎭ , u3 = 14

41
v3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

40

41

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ≈
⎧⎪⎩1.00

0.98

⎫⎪⎭

v4 = Au3 ≈
⎧⎪⎩2.98

2.95

⎫⎪⎭
If u3 = (1.00, 0.98)T is taken as an approximate eigenvector, then 2.98 is the approx-
imate value of λ1. Thus, with just a few iterations, the approximation for λ1 involves
an error of only 0.02.

The power method can be used to compute the eigenvalue λ1 of largest magnitude
and a corresponding eigenvector y1. What about the remaining eigenvalues and eigen-
vectors? If we could reduce the problem of finding the remaining eigenvalues of A to
that of finding the eigenvalues of some (n − 1) × (n − 1) matrix A1, then the power
method could be applied to A1. This can actually be done by a process called deflation.

Deflation

The idea behind deflation is to find a nonsingular matrix H such that HAH−1 is a
matrix of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 × · · · ×
0
... A1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

Since A and HAH−1 are similar, they have the same characteristic polynomials. Thus,
if HAH−1 is of the form (4), then

det(A − λI ) = det(HAH−1 − λI ) = (λ1 − λ) det(A1 − λI )

and it follows that the remaining n −1 eigenvalues of A are the eigenvalues of A1. The
question remains: How do we find such a matrix H? Note that the form (4) requires
that the first column of HAH−1 be λ1e1. The first column of HAH−1 is HAH−1e1.
Thus,

HAH−1e1 = λ1e1

or, equivalently,
A(H−1e1) = λ1(H−1e1)
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So H−1e1 is in the eigenspace corresponding to λ1. Thus, for some eigenvector x1

belonging to λ1,
H−1e1 = x1 or Hx1 = e1

We must find a matrix H such that Hx1 = e1 for some eigenvector x1 belonging to
λ1. This can be done by means of a Householder transformation. If y1 is the computed
eigenvector belonging to λ1, set

x1 = 1

‖y1‖2
y1

Since ‖x1‖2 = 1, we can find a Householder transformation H such that

Hx1 = e1

Because H is a Householder transformation, it follows that H−1 = H , and hence
HAH is the desired similarity transformation.

Reduction to Hessenberg Form

The standard methods for finding eigenvalues are all iterative. The amount of work
required in each iteration is often prohibitively high unless, initially, A is in some
special form that is easier to work with. If this is not the case, the standard procedure
is to reduce A to a simpler form by means of similarity transformations. Generally,
Householder matrices are used to transform A into a matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · × × ×
× × · · · × × ×
0 × · · · × × ×
0 0 · · · × × ×
...

0 0 · · · × × ×
0 0 · · · 0 × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
A matrix in this form is said to be in upper Hessenberg form. Thus, B is in upper
Hessenberg form if and only if bi j = 0 whenever i ≥ j + 2.

A matrix A can be transformed into upper Hessenberg form in the following man-
ner: First, choose a Householder matrix H1 so that H1 A is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n

× × · · · ×
0 × · · · ×
...

0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix H1 will be of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 · · · 0
0 × · · · ×
...

0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and hence postmultiplication of H1 A by H1 will leave the first column unchanged. If
A(1) = H1 AH1, then A(1) is a matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)

11 a(1)

12 · · · a(1)

1n

a(1)

21 a(1)

22 · · · a(1)

2n

0 a(1)

32 · · · a(1)

3n
...

0 a(1)

n2 · · · a(1)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since H1 is a Householder matrix, it follows that H−1

1 = H1, and hence A(1) is
similar to A. Next, a Householder matrix H2 is chosen so that

H2(a
(1)

12 , a(1)

22 , . . . , a(1)

n2 )T = (a(1)

12 , a(1)

22 , ×, 0, . . . , 0)T

The matrix H2 will be of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
0 1 0 · · · 0
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎩ I2 O

O X

⎫⎪⎭

Multiplication of A(1) on the left by H2 will leave the first two rows and the first column
unchanged:

H2 A(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)

11 a(1)

12 a(1)

13 · · · a(1)

1n

a(1)

21 a(1)

22 a(1)

23 · · · a(1)

2n

0 × × · · · ×
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Postmultiplication of H2 A(1) by H2 will leave the first two columns unchanged. Thus,
A(2) = H2 A(1) H2 is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × × · · · ×
× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This process may be continued until we end up with an upper Hessenberg matrix

H = A(n−2) = Hn−2 · · · H2 H1 AH1 H2 · · · Hn−2
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which is similar to A.
If, in particular, A is symmetric, then, since

H T = H T
n−2 · · · H T

2 H T
1 AT H T

1 H T
2 · · · H T

n−2

= Hn−2 · · · H2 H1 AH1 H2 · · · Hn−2

= H

it follows that H is tridiagonal. Thus, any n × n matrix A can be reduced to upper
Hessenberg form by similarity transformations. If A is symmetric, the reduction will
yield a symmetric tridiagonal matrix.

We close this section by outlining one of the best methods available for computing
the eigenvalues of a matrix. The method is called the Q R algorithm and was developed
by John G. F. Francis in 1961.

QR Algorithm

Given an n × n matrix A, factor it into a product Q1 R1, where Q1 is orthogonal and
R1 is upper triangular. Define

A1 = A = Q1 R1

and
A2 = QT

1 AQ1 = R1 Q1

Factor A2 into a product Q2 R2, where Q2 is orthogonal and R2 is upper triangular.
Define

A3 = QT
2 A2 Q2 = R2 Q2

Note that A2 = QT
1 AQ1 and A3 = (Q1 Q2)

T A(Q1 Q2) are both similar to A. We can
continue in this manner and obtain a sequence of similar matrices. In general, if

Ak = Qk Rk

then Ak+1 is defined to be Rk Qk . It can be shown that, under very general conditions,
the sequence of matrices defined in this way converges to a matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 × · · · ×
B2 ×

O
. . .

Bs

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the Bi ’s are either 1 × 1 or 2 × 2 diagonal blocks. Each 2 × 2 block will
correspond to a pair of complex conjugate eigenvalues of A. The eigenvalues of A will
be eigenvalues of the Bi ’s. In the case where A is symmetric, each of the Ak’s will also
be symmetric and the sequence will converge to a diagonal matrix.

EXAMPLE 2 Let A1 be the matrix from Example 1. The Q R factorization of A1 requires only a
single Givens transformation,

G1 = 1√
5

⎧⎪⎩2 1
1 −2

⎫⎪⎭
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Thus,

A2 = G1 AG1 = 1

5

⎧⎪⎩2 1
1 −2

⎫⎪⎭⎧⎪⎩2 1
1 2

⎫⎪⎭⎧⎪⎩2 1
1 −2

⎫⎪⎭ =
⎧⎪⎩ 2.8 −0.6

−0.6 1.2

⎫⎪⎭
The Q R factorization of A2 can be accomplished with the Givens transformation

G2 = 1√
8.2

⎧⎪⎩ 2.8 −0.6
−0.6 −2.8

⎫⎪⎭
It follows that

A3 = G2 A2G2 ≈
⎧⎪⎩2.98 0.22

0.22 1.02

⎫⎪⎭
The off-diagonal elements are getting closer to 0 after each iteration, and the diagonal
elements are approaching the eigenvalues λ1 = 3 and λ2 = 1.

Remarks

1. Because of the amount of work required at each iteration of the Q R algorithm,
it is important that the starting matrix A be in either Hessenberg or symmetric
tridiagonal form. If this is not the case, we should perform similarity transfor-
mations on A to obtain a matrix A1 that is in one of these forms.

2. If Ak is in upper Hessenberg form, the Q R factorization can be carried out with
n − 1 Givens transformations.

Gn,n−1 · · · G32G21 Ak = Rk

Setting
QT

k = Gn,n−1 · · · G32G21

we have
Ak = Qk Rk

and
Ak+1 = QT

k Ak Qk

To compute Ak+1, it is not necessary to determine Qk explicitly. We need only
keep track of the n − 1 Givens transformations. When Rk is postmultiplied by
G21, the resulting matrix will have the (2, 1) entry filled in. The other entries
below the diagonals will all still be zero. Postmultiplying Rk G21 by G32 will
have the effect of filling in the (3, 2) position. Postmultiplication of Rk G21G32

by G43 will fill in the (4, 3) position, and so on. Thus, the resulting matrix
Ak+1 = Rk G21G32 · · · Gn,n−1 will be in upper Hessenberg form. If A1 is a
symmetric tridiagonal matrix, then each succeeding Ai will be upper Hessen-
berg and symmetric. Hence, A2, A3, . . . will all be tridiagonal.

3. As in the power method, convergence may be slow when some of the eigenval-
ues are close together. To speed up convergence, it is customary to introduce
origin shifts. At the kth step, a scalar αk is chosen and Ak − αk I (rather than
Ak) is decomposed into a product Qk Rk . The matrix Ak+1 is defined by

Ak+1 = Rk Qk + αk I
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Note that

QT
k Ak Qk = QT

k (Qk Rk + αk I )Qk = Rk Qk + αk I = Ak+1

so Ak and Ak+1 are similar. With the proper choice of shifts αk , the convergence
can be greatly accelerated.

4. In our brief discussion, we have presented only an outline of the method. Many
of the details, such as how to choose the origin shifts, have been omitted. For a
more thorough discussion and a proof of convergence, see Wilkinson [32].

SECTION 7.6 EXERCISES
1. Let

A =
⎧⎪⎩1 1

1 1

⎫⎪⎭
(a) Apply one iteration of the power method to A,

with any nonzero starting vector.
(b) Apply one iteration of the Q R algorithm to A.
(c) Determine the exact eigenvalues of A by solv-

ing the characteristic equation, and determine
the eigenspace corresponding to the largest
eigenvalue. Compare your answers with those
to parts (a) and (b).

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 0
1 3 1
0 1 2

⎫⎪⎪⎪⎪⎪⎭ and u0 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
(a) Apply the power method to A to compute v1,

u1, v2, u2, and v3. (Round off to two decimal
places.)

(b) Determine an approximation λ′
1 to the largest

eigenvalue of A from the coordinates of v3.
Determine the exact value of λ1 and compare
it with λ′

1. What is the relative error?

3. Let

A =
⎧⎪⎩ 1 2

−1 −1

⎫⎪⎭ and u0 =
⎧⎪⎩1

1

⎫⎪⎭
(a) Compute u1, u2, u3, and u4, using the power

method.
(b) Explain why the power method will fail to con-

verge in this case.

4. Let

A = A1 =
⎧⎪⎩1 1

1 3

⎫⎪⎭
Compute A2 and A3, using the Q R algorithm.
Compute the exact eigenvalues of A and compare
them with the diagonal elements of A3. To how
many decimal places do they agree?

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

5 2 2
−2 1 −2
−3 −4 2

⎫⎪⎪⎪⎪⎪⎭
(a) Verify that λ1 = 4 is an eigenvalue of A and

y1 = (2, −2, 1)T is an eigenvector belonging
to λ1.

(b) Find a Householder transformation H such
that HAH is of the form⎧⎪⎪⎪⎪⎪⎩

4 × ×
0 × ×
0 × ×

⎫⎪⎪⎪⎪⎪⎭
(c) Compute HAH and find the remaining eigen-

values of A.

6. Let A be an n × n matrix with distinct real eigen-
values λ1, λ2, . . . , λn . Let λ be a scalar that is not
an eigenvalue of A and let B = (A − λI )−1. Show
that
(a) the scalars μ j = 1/(λ j − λ), j = 1, . . . , n are

the eigenvalues of B.

(b) if x j is an eigenvector of B belonging to μ j ,
then x j is an eigenvector of A belonging to λ j .

(c) if the power method is applied to B, then the
sequence of vectors will converge to an eigen-
vector of A belonging to the eigenvalue that is
closest to λ. [The convergence will be rapid if
λ is much closer to one λi than to any of the
others. This method of computing eigenvec-
tors by using powers of (A − λI )−1 is called
the inverse power method.]

7. Let x = (x1, . . . , xn)
T be an eigenvector of A be-

longing to λ. Show that if |xi | = ‖x‖∞, then

(a)
n∑

j=1

ai j x j = λxi
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(b) |λ− aii | ≤
n∑

j=1
j �=i

|ai j | (Gerschgorin’s theorem)

8. Let λ be an eigenvalue of an n × n matrix A. Show
that

|λ − a j j | ≤
n∑

i=1
i �= j

|ai j |
(column version of
Gerschgorin’s
theorem)

9. Let A be a matrix with eigenvalues λ1, . . . , λn and
let λ be an eigenvalue of A + E . Let X be a matrix
that diagonalizes A and let C = X−1 E X . Prove:
(a) For some i ,

|λ − λi | ≤
n∑

j=1

|ci j |

[Hint: λ is an eigenvalue of X−1(A+E)X . Ap-
ply Gerschgorin’s theorem from Exercise 7.]

(b) min
1≤ j≤n

|λ − λ j | ≤ cond∞(X)‖E‖∞

10. Let Ak = Qk Rk , k = 1, 2, . . . be the sequence of
matrices derived from A = A1 by applying the Q R
algorithm. For each positive integer k, define

Pk = Q1 Q2 · · · Qk and Uk = Rk · · · R2 R1

Show that
Pk Ak+1 = APk

for all k ≥ 1.

11. Let Pk and Uk be defined as in Exercise 10. Show
that
(a) Pk+1Uk+1 = Pk Ak+1Uk = APkUk

(b) PkUk = Ak , and hence

(Q1 Q2 · · · Qk)(Rk · · · R2 R1)

is the Q R factorization of Ak .

12. Let Rk be a k × k upper triangular matrix and sup-
pose that

RkUk = Uk Dk

where Uk is an upper triangular matrix with 1’s on
the diagonal and Dk is a diagonal matrix. Let Rk+1

be an upper triangular matrix of the form

⎧⎪⎪⎪⎩ Rk bk

0T βk

⎫⎪⎪⎪⎭
where βk is not an eigenvalue of Rk . Determine
(k + 1) × (k + 1) matrices Uk+1 and Dk+1 of the
form

Uk+1 =
⎧⎪⎪⎪⎩Uk xk

0T 1

⎫⎪⎪⎪⎭ , Dk+1 =
⎧⎪⎪⎪⎩ Dk 0

0T β

⎫⎪⎪⎪⎭
such that

Rk+1Uk+1 = Uk+1 Dk+1

13. Let R be an n × n upper triangular matrix whose
diagonal entries are all distinct. Let Rk denote the
leading principal submatrix of R of order k, and set
U1 = (1).
(a) Use the result from Exercise 12 to derive an al-

gorithm for finding the eigenvectors of R. The
matrix U of eigenvectors should be upper tri-
angular with 1’s on the diagonal.

(b) Show that the algorithm requires approxi-
mately n3

6 floating-point multiplications/divi-
sions.

7.7 Least Squares Problems

In this section, we study computational methods for finding least squares solutions of
overdetermined systems. Let A be an m × n matrix with m ≥ n and let b ∈ R

m . We
consider some methods for computing a vector x̂ that minimizes ‖b − Ax‖2

2.

Normal Equations

We saw in Chapter 5 that if x̂ satisfies the normal equations

ATAx = AT b

then x̂ is a solution to the least squares problem. If A is of full rank (rank n), then
ATA is nonsingular, and hence the system will have a unique solution. Thus, if ATA
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is invertible, one possible method for solving the least squares problem is to form the
normal equations and then solve them by Gaussian elimination. An algorithm for doing
this would have two main parts.

1. Compute B = ATA and c = AT b.
2. Solve Bx = c.

Note that forming the normal equations requires roughly mn2/2 multiplications.
Since ATA is nonsingular, the matrix B is positive definite. For positive definite ma-
trices, there are reduction algorithms that require only half the usual number of multi-
plications. Thus, the solution of Bx = c requires roughly n3/6 multiplications. Most
of the work then occurs in forming the normal equations, rather than solving them.
However, the main difficulty with this method is that, in forming the normal equations,
we may well end up transforming the problem into an ill-conditioned one. Recall from
Section 4 that if x′ is the computed solution of Bx = c and x is the exact solution, then
the inequality

1

cond(B)

‖r‖
‖c‖ ≤ ‖x − x′‖

‖x‖ ≤ cond(B)
‖r‖
‖c‖

shows how the relative error compares to the relative residual. If A has singular values
σ1 ≥ σ2 ≥ · · · ≥ σn > 0, then cond2(A) = σ1/σn . The singular values of B are
σ 2

1 , σ 2
2 , . . . , σ 2

n . Thus,

cond2(B) = σ 2
1

σ 2
n

= [cond2(A)]2

If, for example, cond2(A) = 100, then the relative error in the computed solution of the
normal equations could be 104 times as large as the relative residual. For this reason,
we should be very careful about using the normal equations to solve least squares
problems.

In Chapter 5, we saw how to use the Gram–Schmidt process to obtain a Q R factor-
ization of a matrix A with full rank. In that case, the matrix Q was an m×n matrix with
orthonormal columns and R was an n × n upper triangular matrix. In the numerical
method that follows, we use Householder transformations to obtain a Q R factorization
of A. In this case, Q will be an m ×m orthogonal matrix and R will be an m ×n matrix
whose subdiagonal entries are all 0.

The QR Factorization

Given an m × n matrix A of full rank, we can apply n Householder transformations to
zero out all the elements below the diagonal. Thus,

Hn Hn−1 · · · H1 A = R

where R is of the form

⎧⎪⎩ R1

O

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × × · · · ×
× × · · · ×

× · · · ×
. . .

...

×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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with nonzero diagonal entries. Let

QT = Hn · · · H1 =
⎧⎪⎪⎪⎩QT

1

QT
2

⎫⎪⎪⎪⎭
where QT

1 is an n × m matrix consisting of the first n rows of QT . Since QT A = R, it
follows that

A = Q R = (Q1 Q2)

⎧⎪⎩ R1

O

⎫⎪⎭ = Q1 R1

Let

c = QT b =
⎧⎪⎪⎪⎩QT

1 b
QT

2 b

⎫⎪⎪⎪⎭ =
⎧⎪⎩c1

c2

⎫⎪⎭
The normal equations can be written in the form

RT
1 QT

1 Q1 R1x = RT
1 QT

1 b

Since QT
1 Q1 = I and RT

1 is nonsingular, this equation simplifies to

R1x = c1

This system can be solved by back substitution. The solution x = R−1
1 c1 will be the

unique solution to the least squares problem. To compute the residual, note that

QT r =
⎧⎪⎩c1

c2

⎫⎪⎭ −
⎧⎪⎩ R1

O

⎫⎪⎭ x =
⎧⎪⎩ 0

c2

⎫⎪⎭
so that

r = Q
⎧⎪⎩ 0

c2

⎫⎪⎭ and ‖r‖2 = ‖c2‖2

In summation, if A is an m × n matrix with full rank, the least squares problem can
be solved as follows:

1. Use Householder transformations to compute

R = Hn · · · H2 H1 A and c = Hn · · · H2 H1b

2. Partition R and c into block form

R =
⎧⎪⎩ R1

O

⎫⎪⎭ c =
⎧⎪⎩c1

c2

⎫⎪⎭
where R1 and c1 each have n rows.

3. Use back substitution to solve R1x = c1.
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The Pseudoinverse

Now consider the case where the matrix A has rank r < n. The singular value decom-
position provides the key to solving the least squares problem in this case. It can be
used to construct a generalized inverse of A. In the case where A is a nonsingular n ×n
matrix with singular value decomposition U�V T , the inverse is given by

A−1 = V �−1U T

More generally, if A = U�V T is an m × n matrix of rank r , then the matrix � will be
an m × n matrix of the form

� =
⎧⎪⎩�1 O

O O

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2
. . .

σr

O

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and we can define

A+ = V �+U T (1)

where �+ is the n × m matrix

�+ =
⎧⎪⎪⎪⎩�−1

1 O

O O

⎫⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ1
. . .

1

σr

O

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Equation (1) gives a natural generalization of the inverse of a matrix. The matrix A+
defined by (1) is called the pseudoinverse of A.

It is also possible to define A+ by its algebraic properties, given in the following
four conditions:

The Penrose Conditions

1. AXA = A
2. XAX = X
3. (AX)T = AX
4. (XA)T = XA

We claim that if A is an m × n matrix, then there is a unique n × m matrix X that
satisfies these conditions. Indeed, if we choose X = A+ = V �+U T , then it is easily
verified that X satisfies all four conditions. We leave this as an exercise for the reader.
To show uniqueness, suppose that Y also satisfies the Penrose conditions. Then, by
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successively applying those conditions, we can argue as follows:

X = XAX (2) Y = YAY (2)

= AT X T X (4) = Y Y TAT (3)

= (AYA)T X T X (1) = Y Y T (AXA)T (1)

= (AT Y T )(AT X T )X = Y (Y TAT )(X TAT )

= YAXAX (4) = YAYAX (3)

= YAX (1) = YAX (1)

Therefore, X = Y . Thus, A+ is the unique matrix satisfying the four Penrose con-
ditions. These conditions are often used to define the pseudoinverse, and A+ is often
referred to as the Moore–Penrose pseudoinverse.

To see how the pseudoinverse can be used in solving least squares problems, let us
first consider the case where A is an m × n matrix of rank n. Then � is of the form

� =
⎧⎪⎩�1

O

⎫⎪⎭
where �1 is a nonsingular n × n diagonal matrix. The matrix ATA is nonsingular and

(ATA)−1 = V (�T �)−1V T

The solution of the normal equations is given by

x = (ATA)−1 AT b

= V (�T �)−1V T V �T U T b

= V (�T �)−1�T U T b

= V �+U T b

= A+b

Thus, if A has full rank, A+b is the solution to the least squares problem. Now, what
about the case where A has rank r < n? In this case there are infinitely many solutions
to the least squares problem. The next theorem shows that not only is A+b a solution,
but it is also the minimal solution with respect to the 2-norm.

Theorem 7.7.1 If A is an m × n matrix of rank r < n with singular value decomposition U�V T , then
the vector

x = A+b = V �+U T b

minimizes ‖b − Ax‖2
2. Moreover, if z is any other vector that minimizes ‖b − Ax‖2

2,
then ‖z‖2 > ‖x‖2.

Proof Let x be a vector in R
n and define

c = U T b =
⎧⎪⎩c1

c2

⎫⎪⎭ and y = V T x =
⎧⎪⎩y1

y2

⎫⎪⎭
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where c1 and y1 are vectors in R
r . Since U T is orthogonal, it follows that

‖b − Ax‖2
2 = ‖U T b − �(V T x)‖2

2

= ‖c − �y‖2
2

=
∣∣∣∣
∣∣∣∣
⎧⎪⎩c1

c2

⎫⎪⎭ −
⎧⎪⎩�1 O

O O

⎫⎪⎭⎧⎪⎩y1

y2

⎫⎪⎭∣∣∣∣
∣∣∣∣2
2

=
∣∣∣∣
∣∣∣∣
⎧⎪⎩c1 − �1y1

c2

⎫⎪⎭∣∣∣∣
∣∣∣∣2
2

= ‖c1 − �1y1‖2
2 + ‖c2‖2

2

Since c2 is independent of x, it follows that ‖b − Ax‖2 will be minimal if and only if

‖c1 − �1y1‖ = 0

Thus, x is a solution to the least squares problem if and only if x = V y, where y is a
vector of the form ⎧⎪⎪⎩�−1

1 c1

y2

⎫⎪⎪⎭
In particular,

x = V

⎧⎪⎪⎩�−1
1 c1

0

⎫⎪⎪⎭
= V

⎧⎪⎪⎩�−1
1 O

O O

⎫⎪⎪⎭⎧⎪⎩c1

c2

⎫⎪⎭
= V �+U T b

= A+b

is a solution. If z is any other solution, z must be of the form

V y = V

⎧⎪⎪⎩�−1
1 c1

y2

⎫⎪⎪⎭
where y2 �= 0. It then follows that

‖z‖2 = ‖y‖2 = ‖�−1
1 c1‖2 + ‖y2‖2 > ‖�−1

1 c1‖2 = ‖x‖2

If the singular value decomposition U�V T of A is known, it is a simple matter
to compute the solution to the least squares problem. If U = (u1, . . . , um) and V =
(v1, . . . , vn), then, defining y = �+U T b, we have

yi = 1

σi
uT

i b i = 1, . . . , r (r = rank of A)

yi = 0 i = r + 1, . . . , n
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and hence

A+b = V y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
v11 y1 + v12 y2 + · · · + v1r yr

v21 y1 + v22 y2 + · · · + v2r yr
...

vn1 y1 + vn2 y2 + · · · + vnr yr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= y1v1 + y2v2 + · · · + yr vr

Thus the solution x = A+b can be computed in two steps:

1. Set yi = (1/σi )uT
i b for i = 1, . . . , r .

2. Let x = y1v1 + · · · + yr vr .

We conclude this section by outlining a method for computing the singular values
of a matrix. We saw in the last section that the eigenvalues of a symmetric matrix are
relatively insensitive to perturbations in the matrix. The same is true for the singular
values of an m × n matrix. If two matrices A and B are close, their singular values
must also be close. More precisely, if A has the singular values σ1 ≥ σ2 ≥ · · · ≥ σn

and B has the singular values ω1 ≥ ω2 ≥ · · · ≥ ωn , then

|σi − ωi | ≤ ‖A − B‖2 i = 1, . . . , n

(see Datta [20], p. 560). Thus, in computing the singular values of a matrix A, we
need not worry that small changes in the entries of A will cause drastic changes in the
computed singular values.

The problem of computing singular values can be simplified using orthogonal
transformations. If A has singular value decomposition U�V T and B = HAPT ,
where H is an m × m orthogonal matrix and P is an n × n orthogonal matrix, then
B has singular value decomposition (HU )�(PV )T . The matrices A and B will have
the same singular values, and if B has a much simpler structure than A, it should be
easier to compute its singular values. Indeed, Gene H. Golub and William M. Kahan
have shown that A can be reduced to upper bidiagonal form and the reduction can be
carried out by Householder transformations.

Bidiagonalization
Let H1 be a Householder transformation that annihilates all the elements below the
diagonal in the first column of A. Let P1 be a Householder transformation such that
postmultiplication of H1 A by P1 annihilates the last n − 2 entries of the first row of
H1 A while leaving the first column unchanged; that is,

H1 AP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 · · · 0
0 × × · · · ×
...

0 × × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The next step is to apply a Householder transformation H2 that annihilates the elements
below the diagonal in the second column of H1 AP1 while leaving the first row and
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column unchanged:

H2 H1 AP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 · · · 0
0 × × · · · ×
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
H2 H1 AP1 is then postmultiplied by a Householder transformation P2 that annihilates
the last n − 3 elements in the second row while leaving the first two columns and the
first row unchanged:

H2 H1 AP1 P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 0 · · · 0
0 × × 0 · · · 0
0 0 × × · · · ×
...

0 0 × × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We continue in this manner until we obtain a matrix

B = Hn · · · H1 AP1 · · · Pn−2

of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× ×

. . .
. . .

× ×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since H = Hn · · · H1 and PT = P1 · · · Pn−2 are orthogonal, it follows that B has the
same singular values as A.

The problem has now been simplified to that of finding the singular values of an
upper bidiagonal matrix B. We could at this point form the symmetric tridiagonal ma-
trix BTB and then compute its eigenvalues using the Q R algorithm. The problem with
this approach is that, in forming BTB, we would still be squaring the condition number,
and consequently our computed solution would be much less reliable. The method we
outline produces a sequence of bidiagonal matrices B1, B2, . . . that converges to a di-
agonal matrix �. The method involves applying a sequence of Givens transformations
to B alternately on the right- and left-hand sides.
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The Golub–Reinsch Algorithm

Let

Rk =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

Ik−1 O O

O G(θk) O

O O In−k−1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
and

Lk =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

Ik−1 O O

O G(ϕk) O

O O In−k−1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The 2 × 2 matrices G(θk) and G(ϕk) are given by

G(θk) =
⎧⎪⎩cos θk sin θk

sin θk − cos θk

⎫⎪⎭ and G(ϕk) =
⎧⎪⎩cos ϕk sin ϕk

sin ϕk − cos ϕk

⎫⎪⎭
for some angles θk and ϕk . The matrix B = B1 is first multiplied on the right by R1.
This will have the effect of filling in the (2, 1) position.

B1 R1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× × ×

×
. . . ×

×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next, L1 is chosen so as to annihilate the element filled in by R1. It will also have the
effect of filling in the (1, 3) position. Thus,

L1 B1 R1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × ×
× ×

. . .

×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
R2 is chosen so as to annihilate the (1, 3) entry. It will fill in the (3, 2) entry of L1 B1 R1.
Next, L2 annihilates the (3, 2) entry and fills in the (2, 4) entry, and so on:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× ×
× × ×

. . .

×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× × ×

× ×
. . .

×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
L1 B1 R1 R2 L2L1 B1 R1 R2
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We continue this process until we end up with a new bidiagonal matrix,

B2 = Ln−1 · · · L1 B1 R1 · · · Rn−1

Why should we be any better off with B2 than B1? It can be shown that if the first
transformation R1 is chosen correctly, BT

2 B2 will be the matrix obtained from BT
1 B1

by applying one iteration of the Q R algorithm with shift. The same process can now
be applied to B2 to obtain a new bidiagonal matrix B3 such that BT

3 B3 would be the
matrix obtained by applying two iterations of the Q R algorithm with shifts to BT

1 B1.
Even though the BT

i Bi ’s are never computed, we know that, with the proper choice of
shifts, these matrices will converge rapidly to a diagonal matrix. The Bi ’s then must
also converge to a diagonal matrix �. Since each of the Bi ’s has the same singular
values as B, the diagonal elements of � will be the singular values of B. The matrices
U and V T can be determined by keeping track of all the orthogonal transformations.

Only a brief sketch of the algorithm has been given. To include more would be
beyond the scope of this book. For complete details of the algorithm, see the paper by
Golub and Reinsch in [33], p. 135.

SECTION 7.7 EXERCISES
1. Find the solution x to the least squares problem,

given that A = Q R in each of the following:

(a) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

1√
2

− 1√
2

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =
⎧⎪⎩1 1

0 1

⎫⎪⎭, b =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭

(b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0
1√
2

− 1√
2

0
1√
2

1√
2

0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =
⎧⎪⎪⎪⎪⎪⎩

1 1 0
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
3
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0
1√
2

− 1√
2

0
1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1

0 1

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

−√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

1√
2

0
1

2
1

2
0

1√
2

−1

2
1

2
0 − 1√

2
−1

2
1

2
− 1√

2
0

1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0
0 1 1
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−2
0
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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2. Let

A =
⎧⎪⎩ D

E

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1

d2

. . .

dn

e1

e2

. . .

en

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2

...

b2n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Use the normal equations to find the solution x to
the least squares problem.

3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2
1 3
1 2
1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3
10

3
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use Householder transformations to reduce A

to the form

⎧⎪⎩ R1

O

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
× ×
0 ×
0 0
0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
and apply the same transformations to b.

(b) Use the results from part (a) to find the least
squares solution of Ax = b.

4. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
ε 0
0 ε

⎫⎪⎪⎪⎪⎪⎭
where ε is a small scalar.
(a) Determine the singular values of A exactly.
(b) Suppose that ε is sufficiently small that 1 + ε2

gets rounded off to 1 on your calculator. Deter-
mine the eigenvalues of the calculated ATA and
compare the square roots of these eigenvalues
with your answers in part (a).

5. Show that the pseudoinverse A+ satisfies the four
Penrose conditions.

6. Let B be any matrix that satisfies Penrose condi-
tions 1 and 3, and let x = Bb. Show that x is a
solution to the normal equations ATAx = AT b.

7. If x ∈ R
m , we can think of x as an m × 1 matrix. If

x �= 0, we can then define a 1 × m matrix X by

X = 1

‖x‖2
2

xT

Show that X and x satisfy the four Penrose condi-
tions and, consequently, that

x+ = X = 1

‖x‖2
2

xT

8. Show that if A is a m × n matrix of rank n, then
A+ = (ATA)−1 AT .

9. Let A be an m × n matrix and let b ∈ R
m . Show

that b ∈ R(A) if and only if

b = AA+b

10. Let A be an m × n matrix with singular value de-
composition U�V T , and suppose that A has rank
r , where r < n. Let b ∈ R

m . Show that a vector
x ∈ R

n minimizes ‖b − Ax‖2 if and only if

x = A+b + cr+1vr+1 + · · · + cnvn

where cr+1, . . . , cn are scalars.

11. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
Determine A+ and verify that A and A+ satisfy
the four Penrose conditions (see Example 1 of Sec-
tion 5).

12. Let

A =
⎧⎪⎩ 1 2

−1 −2

⎫⎪⎭ and b =
⎧⎪⎩ 6

−4

⎫⎪⎭
(a) Compute the singular value decomposition of

A and use it to determine A+.

(b) Use A+ to find a least squares solution to the
system Ax = b.

(c) Find all solutions to the least squares problem
Ax = b.

13. Show each of the following:
(a) (A+)+ = A (b) (AA+)2 = AA+

(c) (A+ A)2 = A+ A
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14. Let A1 = U�1V T and A2 = U�2V T , where

�1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

. . .

σr−1

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

�2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

. . .

σr−1

σr

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and σr = ε > 0. What are the values of ‖A1−A2‖F

and ‖A+
1 − A+

2 ‖F ? What happens to these values as
we let ε → 0?

15. Let A = XY T , where X is an m × r matrix, Y T is
an r × n matrix, and X T X and Y T Y are both non-
singular. Show that the matrix

B = Y (Y T Y )−1(X T X)−1 X T

satisfies the Penrose conditions and hence must
equal A+. Thus, A+ can be determined from any
factorization of this form.

Chapter Seven Exercises

MATLAB EXERCISES

Sensitivity of Linear Systems
In these exercises, we are concerned with the numerical
solution of linear systems of equations. The entries of
the coefficient matrix A and the right-hand side b may
often contain small errors due to limitations in the accu-
racy of the data. Even if there are no errors in either A
or b, rounding errors will occur when their entries are
translated into the finite-precision number system of the
computer. Thus, we generally expect that the coefficient
matrix and the right-hand side will involve small errors.
The system that the computer solves is then a slightly
perturbed version of the original system. If the original
system is very sensitive, its solution could differ greatly
from the solution of the perturbed system.

Generally, a problem is well conditioned if the per-
turbations in the solutions are on the same order as the
perturbations in the data. A problem is ill conditioned
if the changes in the solutions are much greater than the
changes in the data. How well or ill conditioned a prob-
lem is depends on how the size of the perturbations in
the solution compares with the size of the perturbations
in the data. For linear systems, this in turn depends on
how close the coefficient matrix is to a matrix of lower
rank. The conditioning of a system can be measured us-

ing the condition number of the matrix, which can be
computed with the MATLAB function cond. MATLAB
computations are carried out to 16 significant digits of
accuracy. You will lose digits of accuracy depending on
how sensitive the system is. The greater the condition
number, the more digits of accuracy you lose.

1. Set

A = round(10 ∗ rand(6))

s = ones(6, 1)

b = A ∗ s

The solution of the linear system Ax = b is clearly
s. Solve the system using the MATLAB \ opera-
tion. Compute the error x − s. (Since s consists
entirely of 1’s, this is the same as x − 1.) Now per-
turb the system slightly. Set

t = 1.0e−12,

E = rand(6) − 0.5,

r = rand(6, 1) − 0.5

and set

M = A + t ∗ E, c = b + t ∗ r
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Solve the perturbed system Mz = c for z. Compare
the solution z to the solution of the original system
by computing z−1. How does the size of the pertur-
bation in the solution compare with the size of the
perturbations in A and b? Repeat the perturbation
analysis with t = 1.0e−04 and t = 1.0e−02. Is
the system Ax = b well conditioned? Explain. Use
MATLAB to compute the condition number of A.

2. If a vector y ∈ R
n is used to construct an n × n

Vandermonde matrix V , then V will be nonsingu-
lar, provided that y1, y2, . . . , yn are all distinct.
(a) Construct a Vandermonde system by setting

y = rand(6, 1) and V = vander(y)

Generate vectors b and s in R
6 by setting

b = sum(V ′)′ and s = ones(6, 1)

If V and b had been computed in exact arith-
metic, then the exact solution of V x = b would
be s. Why? Explain. Solve V x = b, using the
\ operation. Compare the computed solution
x with the exact solution s using the MATLAB
format long. How many significant digits
were lost? Determine the condition number of
V .

(b) The Vandermonde matrices become increas-
ingly ill conditioned as the dimension n in-
creases. Even for small values of n, we can
make the matrix ill conditioned by taking two
of the points close together. Set

x(2) = x(1) + 1.0e−12

and use the new value of x(2) to recompute V .
For the new matrix V , set b = sum(V ′)′ and
solve the system V z = b. How many digits
of accuracy were lost? Compute the condition
number of V .

3. Construct a matrix C as follows: Set

A = round(100 ∗ rand(4))

L = tril(A, −1) + eye(4)

C = L ∗ L ′

(a) The matrix C is a nice matrix in that it is a
symmetric matrix with integer entries and its
determinant is equal to 1. Use MATLAB to
verify these claims. Why do we know ahead
of time that the determinant will equal 1? In
theory, the entries of the exact inverse should
all be integers. Why? Explain. Does this hap-
pen computationally? Compute D = inv(C)

and check its entries, using format long.
Compute C ∗ D and compare it with eye(4).

(b) Set

r = ones(4, 1) and b = sum(C ′)′

In exact arithmetic the solution of the sys-
tem Cx = b should be r. Compute the so-
lution by using \ and display the answer in
format long. How many digits of accu-
racy were lost? We can perturb the system
slightly by taking e to be a small scalar, such
as 1.0e−12, and then replacing the right-hand
side of the system by

b1 = b + e ∗ [1, −1, 1, −1]′

Solve the perturbed system first for the case
e = 1.0e−12 and then for the case e =
10e−06. In each case, compare your solution
x with the original solution by displaying x−1.
Compute cond(C). Is C ill conditioned? Ex-
plain.

4. The n × n Hilbert matrix H is defined by

h(i, j) = 1/(i + j − 1) i, j = 1, 2, . . . , n

It can be generated with the MATLAB function
hilb. The Hilbert matrix is notoriously ill con-
ditioned. It is often used in examples to illustrate
the dangers of matrix computations. The MATLAB
function invhilb gives the exact inverse of the
Hilbert matrix. For the cases n = 6, 8, 10, 12, con-
struct H and b so that Hx = b is a Hilbert sys-
tem whose solution in exact arithmetic should be
ones(n, 1). In each case, determine the solution
x of the system by using invhilb and examine
x with format long. How many digits of accu-
racy were lost in each case? Compute the condition
number of each Hilbert matrix. How does the con-
dition number change as n increases?

Sensitivity of Eigenvalues
If A is an n × n matrix and X is a matrix that diag-
onalizes A, then the sensitivity of the eigenvalues of A
depends on the condition number of X. If A is defective,
the condition number for the eigenvalue problem will be
infinite. For more on the sensitivity of eigenvalues, see
Wilkinson [32], Chapter 2.

5. Use MATLAB to compute the eigenvalues and
eigenvectors of a random 6 × 6 matrix B. Compute
the condition number of the matrix of eigenvectors.
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Is the eigenvalue problem well conditioned? Per-
turb B slightly by setting

B1 = B + 1.0e − 04 ∗ rand(6)

Compute the eigenvalues and compare them with
the exact eigenvalues of B.

6. Set

A = round(10 ∗ rand(5)); A = A + A′

[X, D] = eig(A)

Compute cond(X) and X T X . What type of matrix
is X? Is the eigenvalue problem well conditioned?
Explain. Perturb A by setting

A1 = A + 1.0e−06 ∗ rand(5)

Calculate the eigenvalues of A1 and compare them
with the eigenvalues of A.

7. Set A = magic(4) and t = trace(A). The
scalar t should be an eigenvalue of A and the re-
maining eigenvalues should add up to zero. Why?
Explain. Use MATLAB to verify that A− t I is sin-
gular. Compute the eigenvalues of A and a matrix
X of eigenvectors. Determine the condition num-
bers of A and X . Is the eigenvalue problem well
conditioned? Explain. Perturb A by setting

A1 = A + 1.0e−04 ∗ rand(4)

How do the eigenvalues of A1 compare to those of
A?

8. Set

A = diag(10 : −1 : 1) + 10 ∗ diag(ones(1, 9), 1)

[X, D] = eig(A)

Compute the condition number of X . Is the eigen-
value problem well conditioned? Ill conditioned?
Explain. Perturb A by setting

A1 = A; A1(10, 1) = 0.1

Compute the eigenvalues of A1 and compare them
to the eigenvalues of A.

9. Construct a matrix A as follows:

A = diag(11 : −1 : 1, −1);
for j = 0 : 11

A = A + diag(12 − j : −1 : 1, j);
end

(a) Compute the eigenvalues of A and the value
of the determinant of A. Use the MATLAB
function prod to compute the product of the
eigenvalues. How does the value of the prod-
uct compare with the determinant?

(b) Compute the eigenvectors of A and the con-
dition number for the eigenvalue problem. Is
the problem well conditioned? Ill conditioned?
Explain.

(c) Set

A1 = A + 1.0e−04 ∗ rand(size(A))

Compute the eigenvalues of A1. Compare
them with the eigenvalues of A by computing

sort(eig(A1)) − sort(eig(A))

and displaying the result in format long.

Householder Transformations
A Householder matrix is an n × n orthogonal matrix
of the form I − 1

b vvT . For any given nonzero vector
x ∈ R

n, it is possible to choose b and v so that Hx will
be a multiple of e1.

10. (a) In MATLAB, the simplest way to compute a
Householder matrix that zeroes out entries of a
given vector x is to compute the Q R factoriza-
tion of x. Thus, if we are given a vector x ∈ R

n ,
then the MATLAB command

[H, R] = qr(x)

will compute the desired Householder ma-
trix H . Compute a Householder matrix H
that zeroes out the last three entries of e =
ones(4, 1). Set

C = [e,rand(4, 3)]

Compute H ∗ e and H ∗ C .
(b) We can also compute the vector v and the

scalar b that determine the Householder trans-
formation that zeroes out entries of a given
vector. To do this for a given vector x, we
would set

a = norm(x);
v = x; v(1) = v(1) − a

b = a ∗ (a − x(1))

Construct v and b in this way for the vector e
from part (a). If K = I − 1

b vvT , then

K e = e −
(

vT e
b

)
v
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Compute both of these quantities with MAT-
LAB and verify that they are equal. How does
K e compare to He from part (a)? Compute
also K ∗ C and C − v ∗ ((v′ ∗ C)/b) and verify
that the two are equal.

11. Set

x1 = (1 : 5)′; x2 = [1, 3, 4, 5, 9]′; x = [x1; x2]
Construct a Householder matrix of the form

H =
⎧⎪⎩ I O

O K

⎫⎪⎭
where K is a 5 × 5 Householder matrix that zeroes
out the last four entries of x2. Compute the product
Hx.

Rotations and Reflections

12. To plot y = sin(x), we must define vectors of x and
y values and then use the plot command. This
can be done as follows:

x = 0 : 0.1 : 6.3; y = sin(x);
plot(x, y)

(a) Let us define a rotation matrix and use it to ro-
tate the graph of y = sin(x). Set

t = pi /4; c = cos(t); s = sin(t);
R = [c, −s; s, c]

To find the rotated coordinates, set

Z = R ∗ [x; y];
x1 = Z(1, :); y1 = Z(2, :);

The vectors x1 and y1 contain the coordinates
for the rotated curve. Set

w = [0, 5]; axis square

and plot x1 and y1, using the MATLAB com-
mand

plot(x1, y1, w, w)

By what angles has the graph been rotated and
in what direction?

(b) Keep all your variables from part (a) and set

G = [c, s; s, −c]
The matrix G represents a Givens reflection.
To determine the reflected coordinates, set

Z = G ∗ [x; y];
x2 = Z(1, :); y2 = Z(2, :);

Plot the reflected curve, using the MATLAB
command

plot(x2, y2, w, w)

The curve y = sin(x) has been reflected about
a line through the origin making an angle of
π/8 with the x-axis. To see this, set

w1 = [0, 6.3 ∗ cos(t/2)] ;
z1 = [0, 6.3 ∗ sin(t/2)] ;

and plot the new axis and both curves with the
MATLAB command

plot(x, y, x2, y2, w1, z1)

(c) Use the rotation matrix R from part (a) to ro-
tate the curve y = − sin(x). Plot the rotated
curve. How does the graph compare to that of
the curve from part (b)? Explain.

Singular Value Decomposition

13. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 5 2
4 5 2
0 3 6
0 3 6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Enter the matrix A in MATLAB and compute its
singular values by setting s = svd(A).
(a) How can the entries of s be used to determine

the values ‖A‖2 and ‖A‖F ? Compute these
norms by setting

p = norm(A) and q = norm(A, ‘fro’)

and compare your results with s(1) and
norm(s).

(b) To obtain the full singular value decomposition
of A, set

[ U, D, V ] = svd(A)

Compute the closest matrix of rank 1 to A by
setting

B = s(1) ∗ U (:, 1) ∗ V (:, 1)′

How are the row vectors of B related to the two
distinct row vectors of A?

(c) The matrices A and B should have the same 2-
norm. Why? Explain. Use MATLAB to com-
pute ‖B‖2 and ‖B‖F . In general, for a rank-
1 matrix, the 2-norm and the Frobenius norm
should be equal. Why? Explain.
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14. Set
A = round(10 ∗ rand(10, 5))

and
s = svd(A)

(a) Use MATLAB to compute ‖A‖2, ‖A‖F , and
cond2(A), and compare your results with s(1),
norm(s), s(1)/s(5), respectively.

(b) Set

[ U, D, V ] = svd(A);
D(5, 5) = 0;

B = U ∗ D ∗ V ′

The matrix B should be the closest matrix of
rank 4 to A (where distance is measured in
terms of the Frobenius norm). Compute ‖A‖2

and ‖B‖2. How do these values compare?
Compute and compare the Frobenius norms of
the two matrices. Compute also ‖A − B‖F

and compare the result with s(5). Set r =
norm(s(1 : 4)) and compare the result with
‖B‖F .

(c) Use MATLAB to construct a matrix C that is
the closest matrix of rank 3 to A with respect
to the Frobenius norm. Compute ‖C‖2 and
‖C‖F . How do these values compare with the
computed values for ‖A‖2 and ‖A‖F , respec-
tively? Set

p = norm(s(1 : 3))

and
q = norm(s(4 : 5))

Compute ‖C‖F and ‖A − C‖F and compare
your results with p and q, respectively.

15. Set

A = rand(8, 4) ∗ rand(4, 6),

[ U, D, V ] = svd(A)

(a) What is the rank of A? Use the column vec-
tors of V to generate two matrices V 1 and
V 2 whose columns form orthonormal bases for
R(AT ) and N (A), respectively. Set

P = V 2 ∗ V 2′,
r = P ∗ rand(6, 1),

w = A′ ∗ rand(8, 1)

If r and w had been computed in exact arith-
metic, they would be orthogonal. Why? Ex-
plain. Use MATLAB to compute rT w.

(b) Use the column vectors of U to generate two
matrices U1 and U2 whose column vectors
form orthonormal bases for R(A) and N (AT ),
respectively. Set

Q = U2 ∗ U2′,
y = Q ∗ rand(8, 1),

z = A ∗ rand(6, 1)

Explain why y and z would be orthogonal if
all computations were done in exact arithmetic.
Use MATLAB to compute yT z.

(c) Set X = pinv(A). Use MATLAB to verify
the four Penrose conditions:

(i) AX A = A (ii) X AX = X
(iii) (AX)T = AX (iv) (X A)T = X A

(d) Compute and compare AX and U1(U1)T . Had
all computations been done in exact arithmetic,
the two matrices would be equal. Why? Ex-
plain.

Gerschgorin Circles

16. With each A ∈ R
n×n , we can associate n closed cir-

cular disks in the complex plane. The i th disk is
centered at aii and has radius

ri =
n∑

j=1
j �=i

|ai j |

Each eigenvalue of A is contained in at least one of
the disks (see Exercise 7 of Section 6).
(a) Set

A = round(10 ∗ rand(5))

Compute the radii of the Gerschgorin disks of
A and store them in a vector r. To plot the
disks, we must parameterize the circles. This
can be done by setting

t = [0 : 0.1 : 6.3]′;
We can then generate two matrices X and Y
whose columns contain the x and y coordinates
of the circles. First, we initialize X and Y to
zero by setting

X = zeros(length(t), 5); Y = X;
The matrices can then be generated with the
following commands:

for i = 1 : 5
X (:, i) = r(i) ∗ cos(t) + real(A(i, i));
Y (:, i) = r(i) ∗ sin(t) + imag(A(i, i));

end
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Set e = eig(A) and plot the eigenvalues
and the disks with the command

plot(X, Y,real(e),imag(e), ‘x’)

If everything is done correctly, all the eigen-
values of A should lie within the union of the
circular disks.

(b) If k of the Gerschgorin disks form a connected
domain in the complex plane that is isolated
from the other disks, then exactly k of the
eigenvalues of the matrix will lie in that do-
main. Set

B = [3 0.1 2; 0.1 7 2; 2 2 50]
(i) Use the method described in part (a) to

compute and plot the Gerschgorin disks
of B.

(ii) Since B is symmetric, its eigenvalues are
all real and so must all lie on the real axis.
Without computing the eigenvalues, ex-
plain why B must have exactly one eigen-
value in the interval [46, 54]. Multiply the
first two rows of B by 0.1 and then mul-
tiply the first two columns by 10. We can
do this in MATLAB by setting

D = diag([0.1, 0.1, 1])
and

C = D ∗ B/D

The new matrix C should have the same
eigenvalues as B. Why? Explain. Use C
to find intervals containing the other two
eigenvalues. Compute and plot the Ger-
schgorin disks for C .

(iii) How are the eigenvalues of CT related to
the eigenvalues of B and C? Compute
and plot the Gerschgorin disks for CT .
Use one of the rows of CT to find an in-
terval containing the largest eigenvalue of
CT .

Distribution of Condition Numbers and Eigen-
values of Random Matrices

17. We can generate a random symmetric 10 × 10 ma-
trix by setting

A = rand(10); A = (A + A′)/2

Since A is symmetric, its eigenvalues are all real.
The number of positive eigenvalues can be calcu-
lated by setting

y = sum(eig(A) > 0)

(a) For j = 1, 2, . . . , 100, generate a random
symmetric 10 × 10 matrix and determine the
number of positive eigenvalues. Denote the
number of positive eigenvalues of the j th ma-
trix by y( j). Set x = 0 : 10, and deter-
mine the distribution of the y data by set-
ting n = hist(y, x). Determine the mean
of the y( j) values, using the MATLAB com-
mand mean(y). Use the MATLAB command
hist(y, x) to generate a plot of the histogram.

(b) We can generate a random symmetric 10 × 10
matrix whose entries are in the interval [−1, 1]
by setting

A = 2 ∗ rand(10) − 1; A = (A + A′)/2

Repeat part (a), using random matrices gener-
ated in this manner. How does the distribution
of the y data compare to the one obtained in
part (a)?

18. A nonsymmetric matrix A may have complex
eigenvalues. We can determine the number of
eigenvalues of A that are both real and positive with
the MATLAB commands

e = eig(A)

y = sum(e > 0 & imag (e) == 0)

Generate 100 random nonsymmetric 10×10 matri-
ces. For each matrix, determine the number of pos-
itive real eigenvalues and store that number as an
entry of a vector z. Determine the mean of the z( j)
values, and compare it with the mean computed in
part (a) of Exercise 17. Determine the distribution
and plot the histogram.

19. (a) Generate 100 random 5 × 5 matrices and com-
pute the condition number of each matrix. De-
termine the mean of the condition numbers and
plot the histogram of the distribution.

(b) Repeat part (a), using 10 × 10 matrices.
Compare your results with those obtained in
part (a).
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CHAPTER TEST A True or False

In each of the statements that follow, answer true if the
statement is always true and false otherwise. In the case
of a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. If a, b, and c are floating-point numbers, then

f l( f l(a + b) + c) = f l(a + f l(b + c))

2. The computation of A(BC) requires the same num-
ber of floating-point operations as the computation
of (AB)C .

3. If A is a nonsingular matrix and a numerically sta-
ble algorithm is used to compute the solution of a
system Ax = b, then the relative error in the com-
puted solution will always be small.

4. If A is a symmetric matrix and a numerically sta-
ble algorithm is used to compute the eigenvalues
of Ax = b, then the relative error in the computed
eigenvalues should always be small.

5. If A is a nonsymmetric matrix and a numerically
stable algorithm is used to compute the eigenvalues

of Ax = b, then the relative error in the computed
eigenvalues should always be small.

6. If both A−1 and the LU factorization of an n × n
matrix A have already been computed, then it is
more efficient to solve a system Ax = b by mul-
tiplying A−1b, rather than solving LUx = b by
forward and back substitution.

7. If A is a symmetric matrix, then ‖A‖1 = ‖A‖∞.

8. If A is an m × n matrix, then ‖A‖2 = ‖A‖F .

9. If the coefficient matrix A in a least squares prob-
lem has dimensions m × n and rank n, then the
three methods of solution discussed in Section 7,
namely, the normal equations, the Q R factoriza-
tion, and the singular value decomposition, will all
compute highly accurate solutions.

10. If two m×n matrices A and B are close in the sense
that ‖A − B‖2 < ε for some small positive num-
ber ε, then their pseudoinverses will also be close;
that is, ‖A+ − B+‖2 < δ, for some small positive
number δ.

CHAPTER TEST B

1. Let A and B be n × n matrices and let x be a vector
in R

n . How many scalar additions and multiplica-
tions are required to compute (AB)x and how many
are necessary to compute A(Bx)? Which computa-
tion is more efficient?

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 3 6
4 4 8
1 3 4

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

3
0
4

⎫⎪⎪⎪⎪⎪⎭ , c =
⎧⎪⎪⎪⎪⎪⎩

1
8
2

⎫⎪⎪⎪⎪⎪⎭

(a) Use Gaussian elimination with partial pivoting
to solve Ax = b.

(b) Write the permutation matrix P that corre-
sponds to the pivoting strategy in part (a), and
determine the LU factorization of P A.

(c) Use P , L , and U to solve the system Ax = c.

3. Show that if Q is any 4 × 4 orthogonal matrix, then
‖Q‖2 = 1 and ‖Q‖F = 2.

4. Given

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

H−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
16 −120 240 −140

−120 1200 −2700 1680
240 −2700 6480 −4200

−140 1680 −4200 2800

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
and b = (10, −10, 20, 10)T

(a) Determine the values of ‖H‖1 and ‖H−1‖1.
(b) When the system Hx = b is solved using

MATLAB and the computed solution x′ is used
to compute a residual vector r = b − Hx′, it
turns out that ‖r‖1 = 0.36×10−11. Use this in-
formation to determine a bound on the relative
error ‖x − x′‖1

‖x‖1

where x is the exact solution of the system.

5. Let A be a 10 × 10 matrix with cond∞(A) =
5 × 106. Suppose that the solution of a system
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Ax = b is computed in 15-digit decimal arithmetic
and the relative residual, ‖r‖∞/‖b‖∞, turns out to
be approximately twice the machine epsilon. How
many digits of accuracy would you expect to have
in your computed solution? Explain.

6. Let x = (1, 2, −2)T .
(a) Find a Householder matrix H such that Hx is

a vector of the form (r, 0, 0)T .

(b) Find a Givens transformation G such that Gx
is a vector of the form (1, s, 0)T .

7. Let Q be an n × n orthogonal matrix and let R be
an n × n upper triangular matrix. If A = Q R and
B = RQ, how are the eigenvalues and eigenvectors
of A and B related? Explain.

8. Let

A =
⎧⎪⎩1 2

4 3

⎫⎪⎭

Estimate the largest eigenvalue of A and a corre-
sponding eigenvector by doing five iterations of the
power method. You may start with any nonzero
vector u0.

9. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 5
1 5
1 6
1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
4
5
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use Householder matrices to transform A into

a 4 × 2 upper triangular matrix R.

(b) Apply the same Householder transformations
to b, and then compute the least squares solu-
tion of the system Ax = b.

10. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
5 2 4
5 2 4
3 6 0
3 6 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
5
1

−1
9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The singular value decomposition of A is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
12 0 0

0 6 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

2
3

1
3

1
3 − 2

3
2
3

− 2
3 − 1

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Use the singular value decomposition to find the least squares solution of the system Ax = b that has the smallest
2-norm.
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MATLAB

MATLAB is an interactive program for matrix computations. The original version
of MATLAB, short for matrix laboratory, was developed by Cleve Moler from the
Linpack and Eispack software libraries. Over the years, MATLAB has undergone a
series of expansions and revisions. Today it is the leading software for scientific com-
putations. The MATLAB software is distributed by the MathWorks, Inc., of Natick,
Massachusetts.

In addition to widespread use in industrial and engineering settings, MATLAB
has become a standard instructional tool for undergraduate linear algebra courses. A
Student Edition of MATLAB is available at a price affordable to undergraduates.

Another highly recommended resource for teaching linear algebra with MATLAB
is ATLAST Computer Exercises for Linear Algebra, 2nd ed (see [12]). This manual
contains MATLAB-based exercises and projects for linear algebra and a collection of
MATLAB utilities (M-files) that help students to visualize linear algebra concepts. The
M-files are available for download from the ATLAST Web page:

www.umassd.edu/SpecialPrograms/ATLAST/

The MATLAB Desktop Display

At start-up, MATLAB will display a desktop with three windows. The window on
the right is the command window, in which MATLAB commands are entered and
executed. The window on the top left displays either the Current Directory Browser or
the Workspace Browser, depending on which button has been toggled.

The Workspace Browser allows you to view and make changes to the contents of
the workspace. It is also possible to plot a data set using the Workspace window. Just
highlight the data set to be plotted and then select the type of plot desired. MATLAB
will display the graph in a new figure window. The Current Directory Browser allows
you to view MATLAB and other files and to perform file operations such as opening
and editing or searching for files.

The lower window on the left displays the Command History. It allows you view
a log of all the commands that have been entered in the command window. To repeat a
previous command, just click on the command to highlight it and then double-click to
execute it. You can also recall and edit commands directly from the command window
by using the arrow keys. From the command window, you can use the up arrow to
recall previous commands. The commands can then be edited using the left and right
arrow keys. Press the Enter key of your computer to execute the edited command.

456
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Any of the MATLAB windows can be closed by clicking on the × in the upper
right corner of the window. To detach a window from the MATLAB desktop, click on
the arrow that is next to the × in the upper right corner of the window.

Basic Data Elements

The basic elements that MATLAB uses are matrices. Once the matrices have been
entered or generated, the user can quickly perform sophisticated computations with a
minimal amount of programming.

Entering matrices in MATLAB is easy. To enter the matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
type

A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]
or the matrix could be entered one row at a time:

A = [ 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 ]

Once a matrix has been entered, you can edit it in two ways. From the command
window, you can redefine any entry with a MATLAB command. For example, the
command A(1, 3) = 5 will change the third entry in the first row of A to 5. You can
also edit the entries of a matrix from the Workspace Browser. To change the (1, 3)

entry of A with the Workspace Browser, we first locate A in the Name column of the
browser and then click on the array icon to the left of A to open an array display of the
matrix. To change the (1, 3) entry to a 5, click on the corresponding cell of the array
and enter 5.

Row vectors of equally spaced points can be generated with MATLAB’s : opera-
tion. The command x = 2 : 6 generates a row vector with integer entries going from 2
to 6.

x =
2 3 4 5 6

It is not necessary to use integers or to have a step size of 1. For example, the command
x = 1.2 : 0.2 : 2 will produce

x =
1.2000 1.4000 1.6000 1.8000 2.0000
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Submatrices

To refer to a submatrix of the matrix A entered earlier, use the : to specify the rows and
columns. For example, the submatrix consisting of the entries in the second two rows
of columns 2 through 4 is given by A(2 : 3, 2 : 4). Thus, the statement

C = A(2 : 3, 2 : 4)

generates
C =

6 7 8

10 11 12

If the colon is used by itself for one of the arguments, either all the rows or all the
columns of the matrix will be included. For example, A(:, 2 : 3) represents the subma-
trix of A consisting of all the elements in the second and third columns, and A(4, :)
denotes the fourth row vector of A. We can generate a submatrix using nonadjacent
rows or columns by using vector arguments to specify which rows and columns are to
be included. For example, to generate a matrix whose entries are those which appear
only in the first and third rows and second and fourth columns of A, set

E = A([1, 3], [2, 4])
The result will be

E =
2 4

10 12

Generating Matrices

We can also generate matrices by using built-in MATLAB functions. For example, the
command

B = rand(4)

will generate a 4 × 4 matrix whose entries are random numbers between 0 and 1.
Other functions that can be used to generate matrices are eye, zeros, ones, magic,
hilb, pascal, toeplitz, compan, and vander. To build triangular or diagonal
matrices, we can use the MATLAB functions triu, tril, and diag.

The matrix building commands can be used to generate blocks of partitioned ma-
trices. For example, the MATLAB command

E = [ eye(2), ones(2, 3); zeros(2), [1 : 3; 3 : −1 : 1] ]
will generate the matrix

E =
1 0 1 1 1

0 1 1 1 1

0 0 1 2 3

0 0 3 2 1
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Matrix Arithmetic

Addition and Multiplication of Matrices
Matrix arithmetic in MATLAB is straightforward. We can multiply our original matrix
A times B simply by typing A ∗ B. The sum and difference of A and B are given by
A+ B and A− B, respectively. The transpose of the real matrix A is given by A′. For a
matrix C with complex entries, the ′ operation corresponds to the conjugate transpose.
Thus, C H is given as C ′ in MATLAB.

Backslash or Matrix Left Division
If W is an n × n matrix and b represents a vector in Rn , the solution of the system
W x = b can be computed using MATLAB’s backslash operator by setting

x = W\b

For example, if we set

W = [1 1 1 1; 1 2 3 4; 3 4 6 2; 2 7 10 5]
and b = [3; 5; 5; 8], then the command

x = W\b

will yield
x =

1.0000

3.0000

−2.0000

1.0000

In the case that the n × n coefficient matrix is singular or has numerical rank less
than n, the backslash operator will still compute a solution, but MATLAB will issue a
warning. For example, our original 4 × 4 matrix A is singular and the command

x = A\b

yields

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.387779e-018.

x =
1.0e + 015∗

2.2518

−3.0024

−0.7506

1.5012
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The 1.0e + 015 indicates the exponent for each of the entries of x. Thus, each of the
four entries listed is multiplied by 1015. The value of RCOND is an estimate of the
reciprocal of the condition number of the coefficient matrix. Even if the matrix were
nonsingular, with a condition number on the order of 1018, one could expect to lose as
much as 18 digits of accuracy in the decimal representation of the computed solution.
Since the computer keeps track of only 16 decimal digits, this means that the computed
solution may not have any digits of accuracy.

If the coefficient matrix for a linear system has more rows than columns, then
MATLAB assumes that a least squares solution of the system is desired. If we set

C = A(:, 1 : 2)

then C is a 4 × 2 matrix and the command

x = C\b

will compute the least squares solution

x =
−2.2500

2.6250

If we now set
C = A(:, 1 : 3)

then C will be a 4 × 3 matrix with rank equal to 2. Although the least squares problem
will not have a unique solution, MATLAB will still compute a solution and return a
warning that the matrix is rank deficient. In this case, the command

x = C\b

yields

Warning: Rank deficient, rank = 2, tol = 1.7852e-014.

x =
−0.9375

0

1.3125

Exponentiation

Powers of matrices are easily generated. The matrix A5 is computed in MATLAB by
typing Aˆ5. We can also perform operations elementwise by preceding the operand by
a period. For example, if V = [1 2; 3 4], then V ˆ2 results in

ans =
7 10

15 22

while V .ˆ2 will give
ans =

1 4

9 16
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MATLAB Functions

To compute the eigenvalues of a square matrix A, we need only type eig(A). The
eigenvectors and eigenvalues can be computed by setting

[X D] = eig(A)

Similarly, we can compute the determinant, inverse, condition number, norm, and rank
of a matrix with simple one-word commands. Matrix factorizations such as the LU ,
Q R, Cholesky, Schur decomposition, and singular value decomposition can be com-
puted with a single command. For example, the command

[Q R] = qr(A)

will produce an orthogonal (or unitary) matrix Q and an upper triangular matrix R,
with the same dimensions as A, such that A = Q R.

Programming Features

MATLAB has all the flow control structures that you would expect in a high-level lan-
guage, including for loops, while loops, and if statements. This allows the user to
write his or her own MATLAB programs and to create additional MATLAB functions.
Note that MATLAB prints out automatically the result of each command, unless the
command line ends in a semicolon. When using loops, we recommend ending each
command with a semicolon to avoid printing all the results of the intermediate compu-
tations.

M-files

It is possible to extend MATLAB by adding your own programs. MATLAB programs
are all given the extension .m and are referred to as M-files. There are two basic types
of M-files.

Script Files

Script files are files that contain a series of MATLAB commands. All the variables used
in these commands are global, and consequently the values of these variables in your
MATLAB session will change every time you run the script file. For example, if you
wanted to determine the nullity of a matrix, you could create a script file nullity.m
containing the following commands:

[m,n] = size(A);
nuldim = n−rank(A)

Entering the command nullity would cause the two lines of code in the script file
to be executed. The disadvantage of determining the nullity this way is that the matrix
must be named A. An alternative would be to create a function file.
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Function Files
Function files begin with a function declaration statement of the form

function [oargl,. . .,oargj] = fname(inarg1,. . .,inargk)

All the variables used in the function M-file are local. When you call a function file,
only the values of the output variables will change in your MATLAB session. For
example, we could create a function file nullity.m to compute the nullity of a
matrix as follows:

function k = nullity(A)

% The command nullity(A) computes the dimension
% of the nullspace of A.
[m,n] = size(A);
k = n−rank(A);

The lines beginning with % are comments that are not executed. These lines will
be displayed whenever you type help nullity in a MATLAB session. Once the
function is saved, it can be used in a MATLAB session in the same way that we use
built-in MATLAB functions. For example, if we set

B = [1 2 3; 4 5 6; 7 8 9];
and then enter the command

n = nullity(B)

MATLAB will return the answer: n = 1.

The MATLAB Path
The M-files that you develop should be kept in a directory that can be added to the
MATLAB path—the list of directories that MATLAB searches for M-files. To have
your directories automatically appended to the MATLAB path at the start of a MAT-
LAB session, create an M-file startup.m that includes commands to be executed at
start-up. To append a directory to the MATLAB path, include a line in the startup
file of the form

addpath dirlocation

For example, if you are working on a PC and the linear algebra files that you created
are in drive c in a subdirectory linalg of the MATLAB directory, then, if you add
the line

addpath c: \MATLAB \linalg
to the MATLAB start-up file, MATLAB will automatically preappend the linalg
directory to its search path at start-up. On Windows platforms, the startup.m file
should be placed in the tools \local subdirectory of your root MATLAB directory.

It is also possible to use files that are not in a directory on the MATLAB path.
Simply use the Current Directory Browser to navigate to the directory containing the
M-files. Double-click on the directory to set it as the current directory for the MATLAB
session. MATLAB automatically looks in the current directory when it searches for M-
files.
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Relational and Logical Operators

MATLAB has six relational operators that are used for comparisons of scalars or for
elementwise comparisons of arrays:

Relational Operators
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
∼= not equal

Given two m × n matrices A and B, the command

C = A < B

will generate an m × n matrix consisting of zeros and ones. The (i, j) entry will be
equal to 1 if and only if ai j < bi j . For example, suppose that

A =
⎧⎪⎪⎪⎪⎪⎩

−2 0 3
4 2 −5

−1 −3 2

⎫⎪⎪⎪⎪⎪⎭
The command A >= 0 will generate

ans =
0 1 1

1 1 0

0 0 1

There are three logical operators in MATLAB:

Logical Operators
& AND
| OR
∼ NOT

These logical operators regard any nonzero scalar as corresponding to TRUE and 0 as
corresponding to FALSE. The operator & corresponds to the logical AND. If a and b
are scalars, the expression a&b will equal 1 if a and b are both nonzero (TRUE) and
0 otherwise. The operator | corresponds to the logical OR. The expression a|b will
have the value 0 if both a and b are 0; otherwise it will be equal to 1. The operator ∼
corresponds to the logical NOT. For a scalar a, it takes on the value 1 (TRUE) if a = 0
(FALSE) and the value 0 (FALSE) if a �= 0 (TRUE).

For matrices, these operators are applied elementwise. Thus, if A and B are both
m × n matrices, then A&B is a matrix of zeros and ones whose ij th
entry is a(i, j)&b(i, j). For example, if

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−1 2 0
1 0 3
0 1 2

⎫⎪⎪⎪⎪⎪⎭
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then

A&B =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 0 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ , A|B =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 1 1
0 1 1

⎫⎪⎪⎪⎪⎪⎭ , ∼A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
1 1 0

⎫⎪⎪⎪⎪⎪⎭
The relational and logical operators are often used in if statements.

Columnwise Array Operators

MATLAB has a number of functions that, when applied to either a row or column
vector x, return a single number. For example, the command max(x) will compute the
maximum entry of x, and the command sum(x) will return the value of the sum of the
entries of x. Other functions of this form are min, prod, mean, all, and any. When
used with a matrix argument, these functions are applied to each column vector and the
results are returned as a row vector. For example, if

A =
⎧⎪⎪⎪⎪⎪⎩

−3 2 5 4
1 3 8 0

−6 3 1 3

⎫⎪⎪⎪⎪⎪⎭
then

min(A) = (−6, 2, 1, 0)

max(A) = (1, 3, 8, 4)

sum(A) = (−8, 8, 14, 7)

prod(A) = (18, 18, 40, 0)

Graphics

If x and y are vectors of the same length, the command plot(x, y) will produce a plot
of all the (xi , yi ) pairs, and each point will be connected to the next by a line segment. If
the x-coordinates are taken close enough together, the graph should resemble a smooth
curve. The command plot(x, y, ‘x’) will plot the ordered pairs with x’s, but will not
connect the points.

For example, to plot the function f (x) = sin x

x + 1
on the interval [0, 10], set

x = 0 : 0.2 : 10 and y = sin(x)./(x + 1)

The command plot(x, y) will generate the graph of the function. To compare the
graph with that of sin x , we could set z = sin(x) and use the command

plot(x, y, x, z)

to plot both curves at the same time, as in Figure A.1.
It is also possible to do more sophisticated types of plots in MATLAB, including

polar coordinates, three-dimensional surfaces, and contour plots.



Appendix 465

0 1 2 3 4 5 6 7 8 9 10
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure A.1.

Symbolic Toolbox

In addition to doing numeric computations, it is possible to do symbolic calculations
with MATLAB’s symbolic toolbox. The symbolic toolbox allows us to manipulate
symbolic expressions. It can be used to solve equations, differentiate and integrate
functions, and perform symbolic matrix operations.

MATLAB’s sym command can be used to turn any MATLAB data structure into
a symbolic object. For example, the command sym(‘t’) will turn the string ‘t’ into
a symbolic variable t, and the command sym(hilb(3)) will produce the symbolic
version of the 3 × 3 Hilbert matrix written in the form

⎧⎩1, 1
2 , 1

3

⎫⎭⎧⎩ 1
2 , 1

3 , 1
4

⎫⎭⎧⎩ 1
3 , 1

4 , 1
5

⎫⎭
We can create a number of symbolic variables at once with the syms command. For
example, the command

syms a b c

creates three symbolic variables a, b, and c. If we then set

A =
⎧⎩a, b, c;b, c, a;c, a, b

⎫⎭
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the result will be the symbolic matrix

A = ⎧⎩a, b, c
⎫⎭⎧⎩b, c, a
⎫⎭⎧⎩c, a, b
⎫⎭

The MATLAB command subs can be used to substitute an expression or a value
for a symbolic variable. For example, the command subs(A,c,3) will substitute
3 for each occurrence of c in the symbolic matrix A. Multiple substitutions are also
possible: The command

subs(A,[a,b,c],[a−1,b+1,3])
will substitute a−1, b+1, and 3 for a, b, and c, respectively, in the matrix A.

The standard matrix operations ∗, ˆ, +, −, and ′ all work for symbolic matrices
and also for combinations of symbolic and numeric matrices. If an operation involves
two matrices and one of them is symbolic, the result will be a symbolic matrix. For
example, the command

sym(hilb(3))+eye(3)

will produce the symbolic matrix ⎧⎩2, 1
2 , 1

3

⎫⎭⎧⎩ 1
2 , 4

3 , 1
4

⎫⎭⎧⎩ 1
3 , 1

4 , 6
5

⎫⎭
Standard MATLAB matrix commands such as

det, eig, inv, null, trace, sum, prod, poly

all work for symbolic matrices; however, others such as

rref, orth, rank, norm

do not. Likewise, none of the standard matrix factorizations are possible for symbolic
matrices.

Help Facility

MATLAB includes a HELP facility that provides help on all MATLAB features. To
access MATLAB’s help browser, click on the help button in the toolbar (this is the but-
ton with the ? symbol) or type helpbrowser in the command window. You can also
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access HELP by selecting it from the View menu. The help facility gives information
on getting started with MATLAB and on using and customizing the desktop. It lists
and describes all the MATLAB functions, operations, and commands.

You can also obtain help information on any of the MATLAB commands directly
from the command window. Simply enter help followed by the name of the com-
mand. For example, the MATLAB command eig is used to compute eigenvalues. For
information on how to use this command, you could either find the command using the
help browser or simply type help eig in the command window.

From the command window, you also can obtain help on any MATLAB opera-
tor. Simply type help followed by the name of the operator. To do this, you need
to know the name that MATLAB gives to the operator. You can obtain a complete
list of all operator names by entering help followed by any operator symbol. For
example, to obtain help on the backslash operation, first type help \. MATLAB will
respond by displaying the list of all operator names. The backslash operator is listed
as mldivide (short for “matrix left divide”). To find out how the operator works,
simply type help mldivide.

Conclusions

MATLAB is a powerful tool for matrix computations that is also user friendly. The
fundamentals can be mastered easily, and consequently students are able to begin nu-
merical experiments with only a minimal amount of preparation. Indeed, the material
in this appendix, together with the MATLAB help facility, should be enough to get you
started.

The MATLAB exercises at the end of each chapter are designed to enhance un-
derstanding of linear algebra. The exercises do not assume familiarity with MATLAB.
Often, specific commands are given to guide the reader through the more complicated
MATLAB constructions. Consequently, you should be able to work through all the
exercises without resorting to additional MATLAB books or manuals.

Though this appendix summarizes the features of MATLAB that are relevant to
an undergraduate course in linear algebra, many other advanced capabilities have not
been discussed. References [17] and [25] describe MATLAB in greater detail.
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Answers to Selected Exercises

Chapter 1
1.1 1. (a) (11, 3) (b) (4, 1, 3) (c) (−2, 0, 3, 1)

(d) (−2, 3, 0, 3, 1)

2. (a)
⎧⎪⎩1 −3

0 2

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 2 1
0 0 3

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 2 1
0 3 1 −2
0 0 −1 2
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. (a) One solution. The two lines intersect at

the point (3, 1).

(b) No solution. The lines are parallel.

(c) Infinitely many solutions. Both equations
represent the same line.

(d) No solution. Each pair of lines intersect
in a point, however, there is no point that
is on all three lines.

4. (a)
⎧⎪⎩1 1 4

1 −1 2

⎫⎪⎭ (c)
⎧⎪⎩ 2 −1 3

−4 2 −6

⎫⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 −1 1

−1 3 3

⎫⎪⎪⎪⎪⎪⎭
6. (a) (1, −2) (b) (3, 2) (c) ( 1

2 , 2
3 )

(d) (1, 1, 2) (e) (−3, 1, 2)

(f) (−1, 1, 1) (g) (1, 1, −1)

(h) (4, −3, 1, 2)

7. (a) (2, −1) (b) (−2, 3)

8. (a) (−1, 2, 1) (b) (3, 1, −2)

1.2 1. Row echelon form: (a), (c), (d), (g), and (h)
Reduced row echelon form: (c), (d), and (g)

2. (a) Inconsistent

(c) consistent, infinitely many solutions

(d) consistent (4, 5, 2)

(e) inconsistent

(f) consistent, (5, 3, 2)

3. (b) ∅
(c) {(2 + 3α, α, −2) | α real}
(d) {(5 − 2α − β, α, 4 − 3β, β) | α, β real}
(e) {(3 − 5α + 2β, α, β, 6) | α, β real}
(f) {(α, 2, −1) | α real}

4. (a) x1, x2, x3 are lead variables.

(c) x1, x3 are lead variables and x2 is a free
variable.

(e) x1, x4 are lead variables and x2, x3 are
free variables.

5. (a) (5, 1) (b) inconsistent (c) (0, 0)

(d)

{(
5 − α

4
,

1 + 7α

8
, α

)∣∣∣∣α real

}
(e) {(8 − 2α, α − 5, α)}
(f) inconsistent

(g) inconsistent (h) inconsistent

(i) (0, 3
2 , 1)

(j) {(2 − 6α, 4 + α, 3 − α, α)}
(k) {( 15

4 − 5
8 α − β, − 1

4 − 1
8 α, α, β)}

6. (a) (0, −1)

(b) {( 3
4 − 5

8 α, − 1
4 − 1

8 α, α, 3) | α is real}
(d) {α(− 4

3 , 0, 1
3 , 1)}

8. a �= −2

9. β = 2

10. (a) a = 5, b = 4 (b) a = 5, b �= 4

11. (a) (−2, 2) (b) (−7, 4)

12. (a) (−3, 2, 1) (b) (2, −2, 1)

15. x1 = 280, x2 = 230, x3 = 350, x4 = 590

19. x1 = 2, x2 = 3, x3 = 12, x4 = 6

20. 6 moles N2, 18 moles H2, 21 moles O2

21. All three should be equal (i.e., x1 = x2 = x3).

22. (a) (5, 3, −2) (b) (2, 4, 2)

(c) (2, 0, −2, −2, 0, 2)

1.3 1. (a)

⎧⎪⎪⎪⎪⎪⎩
6 2 8

−4 0 2
2 4 4

⎫⎪⎪⎪⎪⎪⎭
471
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(b)

⎧⎪⎪⎪⎪⎪⎩
4 1 6

−5 1 2
3 −2 3

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
3 2 2
5 −3 −1

−4 16 1

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
3 5 −4
2 −3 16
2 −1 1

⎫⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
5 5 8

−10 −1 −9
15 4 6

⎫⎪⎪⎪⎪⎪⎭
(h)

⎧⎪⎪⎪⎪⎪⎩
5 −10 15
5 −1 4
8 −9 6

⎫⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎩15 19
4 0

⎫⎪⎭ (c)

⎧⎪⎪⎪⎪⎪⎩
19 21
17 21

8 10

⎫⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
6 4 8 10

−3 −2 −4 −5
9 6 12 15

⎫⎪⎪⎪⎪⎪⎭
(b) and (e) are not possible.

3. (a) 3 × 3 (b) 1 × 2

4. (a)
⎧⎪⎩3 2

2 −3

⎫⎪⎭⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩1

5

⎫⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1 1 0
2 1 −1
3 −2 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
6
7

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
1 −1 2
3 −2 −1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4
2
0

⎫⎪⎪⎪⎪⎪⎭
9. (a) b = 2a1 + a2

10. (a) inconsistent (b) consistent

(c) inconsistent

13. b = (8, −7, −1, 7)T

17. b = a22 − a12a21

a11

1.4 7. A = A2 = A3 = An

8. A2n = I , A2n+1 = A

13. (a)
⎧⎪⎩ 1 −2

−3 7

⎫⎪⎭, (c)

⎧⎪⎪⎪⎩ 1 − 3
2

−1 2

⎫⎪⎪⎪⎭
31. 4500 married, 5500 single

32. (b) 0 walks of length 2 from V2 to V3 and 3
walks of length 2 from V2 to V5

(c) 6 walks of length 3 from V2 to V3 and 2
walks of length 3 from V2 to V5

33. (a) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 1 0
1 0 1 1 0
0 1 0 0 0
1 1 0 0 1
0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(c) 5 walks of length 3 from V2 to V4 and 7

walks of length 3 or less

1.5 1. (a) type I

(b) not an elementary matrix

(c) type III (d) type II

3. (a)
⎧⎪⎩−2 0

0 1

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 2 1

⎫⎪⎪⎪⎪⎪⎭
4. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩1 −3

0 1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1
2 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
5. (a) E =

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭
(b) F =

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
6. (a) E1 =

⎧⎪⎪⎪⎪⎪⎩
1 0 0

−3 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
(b) E2 =

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0

−2 0 1

⎫⎪⎪⎪⎪⎪⎭
(c) E3 =

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 1 1

⎫⎪⎪⎪⎪⎪⎭
8. (a)

⎧⎪⎩1 0
3 1

⎫⎪⎭⎧⎪⎩3 1
0 2

⎫⎪⎭,

(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
3 1 0

−2 2 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 2 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
9. (b) (i) (0, −1, 1)T , (ii) (−4, −2, 5)T ,

(iii) (0, 3, −2)T

10. (a)
⎧⎪⎩0 1

1 1

⎫⎪⎭ (b)
⎧⎪⎩ 3 −5

−1 2

⎫⎪⎭
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(c)

⎧⎪⎪⎪⎩−4 3
3
2 −1

⎫⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
1
3 0

−1 1
3

⎫⎪⎪⎪⎪⎪⎭

(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 −5

0 1
3 0

−1 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(g)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −3 3

− 3
5

6
5 −1

− 2
5 − 1

5 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(h)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 −1 − 1
2

−2 −1 −1
3
2 1 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
11. (a)

⎧⎪⎩−1 0
4 2

⎫⎪⎭ (b)
⎧⎪⎩ −8 5

−14 9

⎫⎪⎭
12. (a)

⎧⎪⎩ 20 −5
−34 7

⎫⎪⎭ (c)
⎧⎪⎩ 0 −2

−2 2

⎫⎪⎭
1.6 1. (b)

⎧⎪⎩ I
A−1

⎫⎪⎭ (c)
⎧⎪⎩ ATA AT

A I

⎫⎪⎭
(d) AAT + I (e)

⎧⎪⎩ I A−1

A I

⎫⎪⎭
3. (a) Ab1 =

⎧⎪⎩3
3

⎫⎪⎭, Ab2 =
⎧⎪⎩ 4

−1

⎫⎪⎭
(b)

⎧⎩1 1
⎫⎭ B =

⎧⎩3 4
⎫⎭ ,⎧⎩2 −1

⎫⎭ B =
⎧⎩3 −1

⎫⎭
(c) AB =

⎧⎪⎩3 4
3 −1

⎫⎪⎭

4. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 1 1 1
3 2 1 2
1 1 1 1
1 2 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 2 2 2
2 4 2 2
3 1 1 1
3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1
1 1 1 1
3 2 1 2
3 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5. (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 2 0 −2
8 5 8 −5
3 2 3 −2
5 3 5 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 −3
2 −2
1 −1
5 −5
4 −4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
13. A2 =

⎧⎪⎩ B O
O B

⎫⎪⎭, A4 =
⎧⎪⎪⎩ B2 O

O B2

⎫⎪⎪⎭
14. (a)

⎧⎪⎩O I
I O

⎫⎪⎭ (b)
⎧⎪⎩ I O

−B I

⎫⎪⎭
CHAPTER TEST A
1. False 2. True 3. True 4. True 5. False
6. False 7. False 8. False 9. False 10. True
11. True 12. True 13. True 14. False
15. True

Chapter 2
2.1 1. (a) det(M21) = −8, det(M22) = −2,

det(M23) = 5
(b) A21 = 8, A22 = −2, A23 = −5

2. (a) and (c) are nonsingular.
3. (a) 1 (b) 4 (c) 0 (d) 58

(e) −39 (f) 0 (g) 8 (h) 20
4. (a) 2 (b) −4 (c) 0 (d) 0
5. −x3 + ax2 + bx + c

6. λ = 6 or −1
2.2 1. (a) −24 (b) 30 (c) −1

2. (a) 10 (b) 20
3. (a), (e), and (f) are singular while (b), (c),

and (d) are nonsingular.
4. c = 5 or −3
7. (a) 20 (b) 108 (c) 160 (d) 5

4

9. (a) −6 (c) 6 (e) 1
13. det(A) = u11u22u33

2.3 1. (a) det(A) = −7, adj A =
⎧⎪⎩−1 −2

−3 1

⎫⎪⎭,

A−1 =
⎧⎪⎪⎪⎩ 1

7
2
7

3
7 − 1

7

⎫⎪⎪⎪⎭
(c) det(A) = 3, adj A =

⎧⎪⎪⎪⎪⎪⎩
−3 5 2

0 1 1
6 −8 −5

⎫⎪⎪⎪⎪⎪⎭,

A−1 = 1
3 adj A

2. (a) ( 5
7 , 8

7 ) (b) ( 11
5 , − 4

5 )

(c) (4, −2, 2) (d) (2,−1, 2)

(e) (− 2
3 , 2

3 , 1
3 , 0)

3. − 3
4

4. ( 1
2 , − 3

4 , 1)T
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5. (a) det(A) = 0, so A is singular.

(b) adj A =
⎧⎪⎪⎪⎪⎪⎩

−1 2 −1
2 −4 2

−1 2 −1

⎫⎪⎪⎪⎪⎪⎭ and

A adj A =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
9. (a) det(adj(A)) = 8 and det(A) = 2

(b) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 4 −1 1
0 −6 2 −2
0 1 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
14. DO YOUR HOMEWORK.

CHAPTER TEST A
1. True 2. False 3. False 4. True 5. False
6. True 7. True 8. True 9. False 10. True

Chapter 3
3.1 1. (a) ‖x1‖ = 10, ‖x2‖ = √

17

(b) ‖x3‖ = 13 < ‖x1‖ + ‖x2‖
2. (a) ‖x1‖ = √

5, ‖x2‖ = 3
√

5

(b) ‖x3‖ = 4
√

5 = ‖x1‖ + ‖x2‖
7. If x + y = x for all x in the vector space, then

0 = 0 + y = y.

8. If x + y = x + z, then

−x + (x + y) = −x + (x + z)

and the conclusion follows from axioms 1, 2,
3, and 4.

11. V is not a vector space. Axiom 6 does not
hold.

3.2 1. (a) and (c) are subspaces; (b), (d), and (e) are
not.

2. (b) and (c) are subspaces; (a) and (d) are not.

3. (a), (c), (e), and (f) are subspaces; (b), (d),
and (g) are not.

4. (a) {(0, 0)T }
(b) Span((−2, 1, 0, 0)T , (3, 0, 1, 0)T )

(c) Span((1, 1, 1)T )

(d) (−1, 1, 0, 0)T , Span((−5, 0, −3, 1)T )

5. Only the set in part (c) is a subspace of P4.

6. (a), (b), and (d) are subspaces.

11. (a), (c), and (e) are spanning sets.

12. (a) and (b) are spanning sets.

16. (b) and (c)

3.3 1. (a) and (e) are linearly independent (b), (c),
and (d) are linearly dependent.

2. (a) and (e) are linearly independent (b), (c),
and (d) are not.

3. (a) and (b) are all of 3-space

(c) a plane through (0, 0, 0)

(d) a line through (0, 0, 0)

(e) a plane through (0, 0, 0)

4. (a) linearly independent

(b) linearly independent

(c) linearly dependent

8. (a) and (b) are linearly dependent while (c)
and (d) are linearly independent.

11. When α is an odd multiple of π/2. If the
graph of y = cos x is shifted to the left or
right by an odd multiple of π/2, we obtain
the graph of either sin x or − sin x .

3.4 1. Only in parts (a) and (e) do they form a basis.

2. Only in part (a) do they form a basis.

3. (c) 2

4. 1

5. (c) 2

(d) a plane through (0, 0, 0) in 3-space

6. (b) {(1, 1, 1)T }, dimension 1

(c) {(1, 0, 1)T , (0, 1, 1)T }, dimension 2

7. {(1, 1, 0, 0)T , (1, −1, 1, 0)T , (0, 2, 0, 1)T }
11. {x2 + 2, x + 3}
12. (a) {E11, E22} (c) {E11, E21, E22}

(e) {E12, E21, E22}
(f) {E11, E22, E21 + E12}

13. 2

14. (a) 3 (b) 3 (c) 2 (d) 2

15. (a) {x, x2} (b) {x − 1, (x − 1)2}
(c) {x(x − 1)}

3.5 1. (a)
⎧⎪⎩1 −1

1 1

⎫⎪⎭ (b)
⎧⎪⎩1 2

2 5

⎫⎪⎭
(c)

⎧⎪⎩0 1
1 0

⎫⎪⎭
2. (a)

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩ 5 −2

−2 1

⎫⎪⎭
(c)

⎧⎪⎩0 1
1 0

⎫⎪⎭
3. (a)

⎧⎪⎪⎪⎪⎪⎩
5
2

7
2

− 1
2 − 1

2

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩ 11 14

−4 −5

⎫⎪⎭
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(c)
⎧⎪⎩2 3

3 4

⎫⎪⎭
4. [x]E = (−1, 2)T , [y]E = (5, −8)T ,

[z]E = (−1, 5)T

5. (a)

⎧⎪⎪⎪⎪⎪⎩
2 0 −1

−1 2 −1
0 −1 1

⎫⎪⎪⎪⎪⎪⎭ (b) (i) (1, −4, 3)T

(ii) (0, −1, 1)T (iii) (2, 2, −1)T

6. (a)

⎧⎪⎪⎪⎪⎪⎩
1 −1 −2
1 1 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
7
5

−2

⎫⎪⎪⎪⎪⎪⎭
7. w1 = (5, 9)T and w2 = (1, 4)T

8. u1 = (0, −1)T and u2 = (1, 5)T

9. (a)
⎧⎪⎩ 2 2

−1 1

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1
4 − 1

2

1
4

1
2

⎫⎪⎪⎪⎪⎪⎭
10.

⎧⎪⎪⎪⎪⎪⎩
1 −1 0
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
3.6 2. (a) 3 (b) 3 (c) 2

3. (a) u2, u4, u5 are the column vectors of U
corresponding to the free variables.
u2 = 2u1, u4 = 5u1 − u3,
u5 = −3u1 + 2u3

4. (a) consistent (b) inconsistent

(e) consistent

5. (a) infinitely many solutions

(c) unique solution

9. rank of A = 3, dim N (B) = 1

27. (b) n − 1

32. If x j is a solution to Ax = e j for j =
1, . . . , m and X = (x1, x2, . . . , xm), then
AX = Im .

CHAPTER TEST A
1. True 2. False 3. False 4. False 5. True
6. True 7. False 8. True 9. True 10. False
11. True 12. False 13. True 14. False
15. False

Chapter 4
4.1 1. (a) reflection about x2-axis

(b) reflection about the origin

(c) reflection about the line x2 = x1

(d) the length of the vector is halved

(e) projection onto x2-axis

4. (7, 18)T

5. All except (c) are linear transformations from
R3 into R2.

6. (b) and (c) are linear transformations from R2

into R3.

7. (a), (b), and (d) are linear transformations.

9. (a) and (c) are linear transformations from P2

into P3.

10. L(ex ) = ex − 1 and L(x2) = x3/3.

11. (a) and (c) are linear transformations from
C[0, 1] into R1.

17. (a) ker(L) = {0}, L(R3) = R3

(c) ker(L) = Span(e2, e3),
L(R3) = Span((1, 1, 1)T )

18. (a) L(S) = Span(e2, e3)

(b) L(S) = Span(e1, e2)

19. (a) ker(L) = P1, L(P3) = Span(x2, x)

(c) ker(L) = Span(x2 − x), L(P3) = P2

23. The operator in part (a) is one-to-one and
onto.

4.2 1. (a)
⎧⎪⎩−1 0

0 1

⎫⎪⎭ (c)
⎧⎪⎩0 1

1 0

⎫⎪⎭
(d)

⎧⎪⎪⎪⎩ 1
2 0

0 1
2

⎫⎪⎪⎪⎭ (e)
⎧⎪⎩0 0

0 1

⎫⎪⎭
2. (a)

⎧⎪⎩1 1 0
0 0 0

⎫⎪⎭ (b)
⎧⎪⎩1 0 0

0 1 0

⎫⎪⎭
(c)

⎧⎪⎩−1 1 0
0 −1 1

⎫⎪⎭
3. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
1 1 0
1 1 1

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 2
3 1 0
2 0 −1

⎫⎪⎪⎪⎪⎪⎭
4. (a) (0, 0, 0)T (b) (2, −1, −1)T

(c) (−15, 9, 6)T

5. (a)

⎧⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩0 1

1 0

⎫⎪⎭
(c)

⎧⎪⎪⎩√
3 −1
1

√
3

⎫⎪⎪⎭ (d)
⎧⎪⎩0 1

0 0

⎫⎪⎭
6.

⎧⎪⎪⎪⎪⎪⎩
1 0
0 1
1 1

⎫⎪⎪⎪⎪⎪⎭
7. (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 −1
1 −1 0

⎫⎪⎪⎪⎪⎪⎭
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8. (a)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
2 0 1
0 −2 −1

⎫⎪⎪⎪⎪⎪⎭
(b) (i) 7y1 + 6y2 − 8y3, (ii) 3y1 + 3y2 − 3y3,

(iii) y1 + 5y2 + 3y3

9. (a) square

(b) (i) contraction by the factor 1
2 , (ii) clock-

wise rotation by 45◦, (iii) translation 2
units to the right and 3 units down

10. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 −
√

3
2 0

√
3

2 − 1
2 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1 0 −3
0 1 5
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
−1 0 0

0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭
13.

⎧⎪⎪⎪⎩1 1
2

1 0

⎫⎪⎪⎪⎭
14.

⎧⎪⎪⎪⎩ 1 1
2

1
2

−2 0 0

⎫⎪⎪⎪⎭; (a)

⎧⎪⎪⎪⎩ 1
2

−2

⎫⎪⎪⎪⎭ (d)
⎧⎪⎩ 5

−8

⎫⎪⎭
15.

⎧⎪⎪⎪⎪⎪⎩
1 1 0
0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭
18. (a)

⎧⎪⎩−1 −3 1
0 2 0

⎫⎪⎭ (c)
⎧⎪⎩ 2 −2 −4

−1 3 3

⎫⎪⎭
4.3 1. For the matrix A, see the answers to Exer-

cise 1 of Section 4.2.

(a) B =
⎧⎪⎩0 1

1 0

⎫⎪⎭ (b) B =
⎧⎪⎩−1 0

0 −1

⎫⎪⎭
(c) B =

⎧⎪⎩1 0
0 −1

⎫⎪⎭ (d) B =
⎧⎪⎪⎪⎩ 1

2 0

0 1
2

⎫⎪⎪⎪⎭
(e) B =

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎩ 1 1
−1 −3

⎫⎪⎭ (b)
⎧⎪⎩ 1 0

−4 −1

⎫⎪⎭
3. B = A =

⎧⎪⎪⎪⎪⎪⎩
2 −1 −1

−1 2 −1
−1 −1 2

⎫⎪⎪⎪⎪⎪⎭
(Note: in this case the matrices A and U com-
mute, so B = U−1 AU = U−1U A = A.)

4. V =
⎧⎪⎪⎪⎪⎪⎩

1 1 0
1 2 −2
1 0 1

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭

5. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 2
0 1 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 1 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 1
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (d) a1x + a22n(1 + x2)

6. (a)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 1 0
0 0 −1

⎫⎪⎪⎪⎪⎪⎭
CHAPTER TEST A
1. False 2. True 3. True 4. False 5. False
6. True 7. True 8. True 9. True 10. False

Chapter 5
5.1 1. (a) 0◦ (b) 90◦

2. (a)
√

14 (scalar projection), (2, 1, 3)T (vector
projection)

(b) 0, 0 (c) 14
√

13
13 , ( 42

13 , 28
13 )T

(d) 8
√

21
21 , ( 8

21 , 16
21 , 32

21 )T

3. (a) p = (3, 0)T , x − p = (0, 4)T ,
pT (x − p) = 3 · 0 + 0 · 4 = 0

(c) p = (3, 3, 3)T , x − p = (−1, 1, 0)T ,
pT (x − p) = −1 · 3 + 1 · 3 + 0 · 3 = 0

5. (1.8, 3.6)

6. (1.4, 3.8)

7. 0.4
8. (a) 2x + 4y + 3z = 0 (c) z − 4 = 0

10. 5
3

11. 8
7

20. The correlation matrix with entries rounded to
two decimal places is⎧⎪⎪⎪⎪⎪⎩

1.00 −0.04 0.41
−0.04 1.00 0.87

0.41 0.87 1.00

⎫⎪⎪⎪⎪⎪⎭
5.2 1. (a) {(3, 4)T } basis for R(AT ),

{(−4, 3)T } basis for N (A),
{(1, 2)T } basis for R(A),
{(−2, 1)T } basis for N (AT )

(d) basis for R(AT ):
{(1, 0, 0, 0)T , (0, 1, 0, 0)T (0, 0, 1, 1)T },
basis for N (A): {(0, 0, −1, 1)T },
basis for R(A):
{(1, 0, 0, 1)T , (0, 1, 0, 1)T (0, 0, 1, 1)T },
basis for N (AT ): {(1, 1, 1, −1)T }
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2. (a) {(1, 1, 0)T , (−1, 0, 1)T }
3. (b) The orthogonal complement is spanned

by (−5, 1, 3)T .

4. {(−1, 2, 0, 1)T , (2, −3, 1, 0)T } is one basis
for S⊥.

9. dim N (A) = n − r , dim N (AT ) = m − r

5.3 1. (a) (2, 1)T (c) (1.6, 0.6, 1.2)T

2. (1a) p = (3, 1, 0)T , r = (0, 0, 2)T

(1c) p = (3.4, 0.2, 0.6, 2.8)T ,
r = (0.6, −0.2, 0.4, −0.8)T

3. (a) {(1 − 2α, α)T | α real}
(b) {(2 − 2α, 1 − α, α)T | α real}

4. (a) p = (1, 2, −1)T , b − p = (2, 0, 2)T

(b) p = (3, 1, 4)T , p − b = (−5, −1, 4)T

5. (a) y = 1.8 + 2.9x

6. 0.55 + 1.65x + 1.25x2

14. The least squares circle will have cen-
ter (0.58, −0.64) and radius 2.73 (answers
rounded to two decimal places).

5.4 1. ‖x‖2 = 2, ‖y‖2 = 6, ‖x + y‖2 = 2
√

10

2. (a) θ = π

4 (b) p = ( 4
3 , 1

3 , 1
3 , 0)T

3. (b) ‖x‖ = 1, ‖y‖ = 3

4. (a) 0 (b) 5 (c) 7 (d)
√

74

7. (a) 1 (b) 1
π

8. (a) π

6 (b) p = 3
2 x

11. (a)
√

10
2 (b)

√
34
4

15. (a) ‖x‖1 = 7, ‖x‖2 = 5, ‖x‖∞ = 4

(b) ‖x‖1 = 4, ‖x‖2 = √
6, ‖x‖∞ = 2

(c) ‖x‖1 = 3, ‖x‖2 = √
3, ‖x‖∞ = 1

16. ‖x − y‖1 = 5, ‖x − y‖2 = 3, ‖x − y‖∞ = 2

28. (a) not a norm (b) norm (c) norm

5.5 1. (a) and (d)

2. (b) x = −
√

2
3 u1 + 5

3 u2,

‖x‖ =
[(

−
√

2
3

)2 + (
5
3

)2
]1/2

= √
3

3. p = ( 23
18 , 41

18 , 8
9 )T , p − x = ( 5

18 , 5
18 ,− 10

9 )T

4. (b) c1 = y1 cos θ + y2 sin θ ,
c2 = −y1 sin θ + y2 cos θ

6. (a) 15 (b)‖u‖ = 3, ‖v‖ = 5
√

2 (c) π

4

9. (b) (i) 0, (ii) − π

2 , (iii) 0, (iv) π

8

21. (b) (i) (2, −2)T , (ii) (5, 2)T , (iii) (3, 1)T

22. (a) P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

23. (b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2 0 0

− 1
2

1
2 0 0

0 0 1
2 − 1

2

0 0 − 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
29. (b) ‖1‖ = √

2, ‖x‖ =
√

6
3 (c) l(x) = 9

7 x

5.6 1. (a)

{(
− 1√

2
, 1√

2

)T
,
(

1√
2
, 1√

2

)T
}

(b)

{(
2√
5
, 1√

5

)T
,
(
− 1√

5
, 2√

5

)T
}

2. (a)

⎧⎪⎪⎪⎪⎪⎩− 1√
2

1√
2

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

√
2

√
2

0 4
√

2

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
2√
5

− 1√
5

1√
5

2√
5

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

√
5 4

√
5

0 3
√

5

⎫⎪⎪⎪⎪⎪⎭
3.

{
( 1

3 , 2
3 , − 2

3 )T , ( 2
3 , 1

3 , 2
3 )T , (− 2

3 , 2
3 , 1

3 )T
}

4. u1(x) = 1√
2
, u2(x) =

√
6

2 x ,

u3(x) = 3
√

10
4

(
x2 − 1

3

)
5. (a)

{
1
3 (2, 1, 2)T ,

√
2

6 (−1, 4, −1)T
}

(b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
3

−√
2

6

1
3

2
√

2
3

2
3

−√
2

6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ R =
⎧⎪⎪⎪⎪⎪⎩3 5

3

0
√

2
3

⎫⎪⎪⎪⎪⎪⎭

(c) x =
⎧⎪⎩ 9

−3

⎫⎪⎭

6. (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 − 4

5
√

2
4
5

3
5
√

2

0 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎩5 1

0 2
√

2

⎫⎪⎪⎭
(c) (2.1, 5.5)T

7.

{(
− 1√

2
, 1√

2
, 0, 0

)T
,
(√

2
3 ,

√
2

3 , −
√

2
2 ,

√
2

6

)T
}
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8.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
5

2
5

2
5

1
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5

− 2
5

− 2
5

4
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
1√
2

− 1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

5.7 1. (a) T4 = 8x4−8x2+1, T5 = 16x5−20x3+5x

(b) H4 = 16x4 − 48x2 + 12,
H5 = 32x5 − 160x3 + 120x

2. p1(x) = x , p2(x) = x2 − 4
π

+ 1

4. p(x) = (sinh 1)P0(x) + 3
e P1(x) +

5
(
sinh 1 − 3

e

)
P2(x),

p(x) ≈ 0.9963 + 1.1036x + 0.5367x2

6. (a) U0 = 1, U1 = 2x , U2 = 4x2 − 1

11. p(x) = (x − 2)(x − 3) + (x − 1)(x − 3) +
2(x − 1)(x − 2)

13. 1 · f
(
− 1√

3

)
+ 1 · f

(
1√
3

)
14. (a) degree 3 or less

(b) the formula gives the exact answer for the
first integral. The approximate value for
the second integral is 1.5, while the exact
answer is π

2 .

CHAPTER TEST A
1. False 2. False 3. False 4. False 5. True
6. False 7. True 8. True 9. True 10. False

Chapter 6
6.1 1. (a) λ1 = 5, the eigenspace is spanned by

(1, 1)T , λ2 = −1, the eigenspace is
spanned by (1, −2)T

(b) λ1 = 3, the eigenspace is spanned
by (4, 3)T , λ2 = 2, the eigenspace is
spanned by (1, 1)T

(c) λ1 = λ2 = 2, the eigenspace is spanned
by (1, 1)T ,

(d) λ1 = 3 + 4i , the eigenspace is spanned
by (2i, 1)T , λ2 = 3 − 4i , the eigenspace
is spanned by (−2i, 1)T

(e) λ1 = 2 + i , the eigenspace is spanned by
(1, 1 + i)T , λ2 = 2 − i , the eigenspace is
spanned by (1, 1 − i)T

(f) λ1 = λ2 = λ3 = 0, the eigenspace is
spanned by (1, 0, 0)T

(g) λ1 = 2, the eigenspace is spanned by
(1, 1, 0)T , λ2 = λ3 = 1, the eigenspace
is spanned by (1, 0, 0)T , (0, 1, −1)T

(h) λ1 = 1, the eigenspace is spanned by
(1, 0, 0)T , λ2 = 4, the eigenspace is
spanned by (1, 1, 1)T ,

λ3 = −2, the eigenspace is spanned by
(−1, −1, 5)T

(i) λ1 = 2, the eigenspace is spanned by
(7, 3, 1)T , λ2 = 1, the eigenspace is
spanned by (3, 2, 1)T , λ3 = 0, the eigen-
space is spanned by (1, 1, 1)T

(j) λ1 = λ2 = λ3 = −1, the eigenspace is
spanned by (1, 0, 1)T

(k) λ1 = λ2 = 2, the eigenspace is spanned
by e1 and e2, λ3 = 3, the eigenspace is
spanned by e3, λ4 = 4, the eigenspace is
spanned by e4

(l) λ1 = 3, the eigenspace is spanned by
(1, 2, 0, 0)T , λ2 = 1, the eigenspace is
spanned by (0, 1, 0, 0)T ,
λ3 = λ4 = 2, the eigenspace is spanned
by (0, 0, 1, 0)T

10. β is an eigenvalue of B if and only if β =
λ − α for some eigenvalue λ of A.

14. λ1 = 6, λ2 = 2

24. λ1xT y = (Ax)T y = xT AT y = λ2xT y

6.2 1. (a)

⎧⎪⎪⎪⎩ c1e2t + c2e3t

c1e2t + 2c2e3t

⎫⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎩ −c1e−2t − 4c2et

c1e−2t + c2et

⎫⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎩ 2c1 + c2e5t

c1 − 2c2e5t

⎫⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎩ −c1et sin t + c2et cos t

c1et cos t + c2et sin t

⎫⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎩ −c1e3t sin 2t + c2e3t cos 2t

c1e3t cos 2t + c2e3t sin 2t

⎫⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−c1 + c2e5t + c3et

−3c1 + 8c2e5t

c1 + 4c2e5t

⎫⎪⎪⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎪⎩ e−3t + 2et

−e−3t + 2et

⎫⎪⎪⎭
(b)

⎧⎪⎩et cos 2t + 2et sin 2t
et sin 2t − 2et cos 2t

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−6et + 2e−t + 6

−3et + e−t + 4

−et + e−t + 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−2 − 3et + 6e2t

1 + 3et − 3e2t

1 + 3e2t

⎫⎪⎪⎪⎪⎪⎪⎪⎭
4. y1(t) = 15e−0.24t + 25e−0.08t ,

y2(t) = −30e−0.24t + 50e−0.08t

5. (a)

⎧⎪⎪⎪⎩ −2c1et − 2c2e−t + c3e
√

2t + c4e−√
2t

c1et + c2e−t − c3e
√

2t − c4e−√
2t

⎫⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎩ c1e2t + c2e−2t − c3et − c4e−t

c1e2t − c2e−2t + c3et − c4e−t

⎫⎪⎪⎪⎭
6. y1(t) = −e2t + e−2t + et

y2(t) = −e2t − e−2t + 2et

8. x1(t) = cos t + 3 sin t + 1√
3

sin
√

3t ,

x2(t) = cos t + 3 sin t − 1√
3

sin
√

3t

10. (a) m1x ′′
1 (t) = −kx1 + k(x2 − x1)

m2x ′′
2 (t) = −k(x2 − x1) + k(x3 − x2)

m3x ′′
3 (t) = −k(x3 − x2) − kx3

(b)

⎧⎪⎪⎪⎪⎪⎪⎩
0.1 cos 2

√
3t + 0.9 cos

√
2t

−0.2 cos 2
√

3t + 1.2 cos
√

2t
0.1 cos 2

√
3t + 0.9 cos

√
2t

⎫⎪⎪⎪⎪⎪⎪⎭
11. p(λ) = (−1)n(λn −an−1λ

n−1 −· · ·−a1λ−a0)

6.3 8. (b) α = 2 (c) α = 3 or α = −1

(d) α = 1 (e) α = 0 (g) all values of α

21. The transition matrix and steady-state vector
for the Markov chain are⎧⎪⎩0.80 0.30

0.20 0.70

⎫⎪⎭ , x =
⎧⎪⎩0.60

0.40

⎫⎪⎭
In the long run we would expect 60% of the
employees to be enrolled.

22. (a) A =
⎧⎪⎪⎪⎪⎪⎩

0.70 0.20 0.10
0.20 0.70 0.10
0.10 0.10 0.80

⎫⎪⎪⎪⎪⎪⎭
(c) The membership of all three groups will

approach 100,000 as n gets large.

24. The transition matrix is

0.85

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1
2 0 1

4

1
3 0 0 1

4

1
3

1
2 0 1

4

1
3 0 1 1

4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+0.15

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
28. (b)

⎧⎪⎩ e e
0 e

⎫⎪⎭
29. (a)

⎧⎪⎪⎪⎩ 3 − 2e

−6 + 6e

1 − e

−2 + 3e

⎫⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
e

1− e

−1+ e

−1+ e

2− e

−1+ e

−1+ e

1− e

e

⎫⎪⎪⎪⎪⎪⎪⎪⎭
30. (a)

⎧⎪⎩e−t

e−t

⎫⎪⎭ (b)
⎧⎪⎩−3et − e−t

et + e−t

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
3et − 2
2 − e−t

e−t

⎫⎪⎪⎪⎪⎪⎭
6.4 1. (a) ‖z‖ = 6, ‖w‖ = 3, 〈z, w〉 = −4 + 4i ,

〈w, z〉 = −4 − 4i

(b) ‖z‖ = 4, ‖w‖ = 7, 〈z, w〉 = −4 + 10i ,
〈w, z〉 = −4 − 10i

2. (b) z = 4z1 + 2
√

2z2

3. (a) uH
1 z = 4 + 2i , zH u1 = 4 − 2i ,

uH
2 z = 6 − 5i , zH u2 = 6 + 5i

(b) ‖z‖ = 9

4. (b) and (f) are Hermitian while (b), (c), (e),
and (f) are normal.

15. (b) ‖Ux‖2 = (Ux)H Ux = xH U H Ux =
xH x = ‖x‖2

16. U is unitary, since U H U = (I − 2uuH )2 =
I − 4uuH + 4u(uH u)uH = I .

27. λ1 = 1, λ2 = −1,

u1 =
(

1√
2
, 1√

2

)T
, u2 =

(
− 1√

2
, 1√

2

)T
,

A = 1

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ + (−1)

⎧⎪⎪⎪⎪⎪⎩
1
2 − 1

2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
6.5 2. (a) σ1 = √

10, σ2 = 0

(b) σ1 = 3, σ2 = 2

(c) σ1 = 4, σ2 = 2

(d) σ1 = 3, σ2 = 2, σ3 = 1. The matrices
U and V are not unique. The reader may
check his or her answers by multiplying
out U�V T .

3. (b) rank of A = 2, A′ =
⎧⎪⎩ 1.2 −2.4

−0.6 1.2

⎫⎪⎭
4. The closest matrix of rank 2 is⎧⎪⎪⎪⎪⎪⎩

−2 8 20
14 19 10

0 0 0

⎫⎪⎪⎪⎪⎪⎭
The closest matrix of rank 1 is⎧⎪⎪⎪⎪⎪⎩

6 12 12
8 16 16
0 0 0

⎫⎪⎪⎪⎪⎪⎭
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5. (a) basis for R(AT ):

{v1 = ( 2
3 , 2

3 , 1
3 )T , v2 = (− 2

3 , 1
3 , 2

3 )T }
basis for N (A): {v3 = ( 1

3 , − 2
3 , 2

3 )T }

6.6 1. (a)

⎧⎪⎪⎪⎩ 3 − 5
2

− 5
2 1

⎫⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 1

2 −1
1
2 3 3

2

−1 3
2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. (a) Q = 1√

2

⎧⎪⎩1 1
1 −1

⎫⎪⎭,
(x ′)2

4
+ (y′)2

12
= 1,

ellipse

(d) Q = 1√
2

⎧⎪⎩ 1 1
−1 1

⎫⎪⎭,(
y′ +

√
2

2

)2

= −
√

2

2
(x ′ − √

2) or

(y′′)2 = −
√

2

2
x ′′, parabola

6. (a) positive definite (b) indefinite

(d) negative definite (e) indefinite

7. (a) minimum (b) saddle point

(c) saddle point (f) local maximum

6.7 1. (a) det(A1) = 2, det(A2) = 3, positive defi-
nite

(b) det(A1) = 3, det(A2) = −10, not posi-
tive definite

(c) det(A1) = 6, det(A2) = 14, det(A3) =
−38, not positive definite

(d) det(A1) = 4, det(A2) = 8, det(A3) = 13,
positive definite

2. a11 = 3, a(1)

22 = 2, a(2)

33 = 4
3

4. (a)

⎧⎪⎪⎩ 1 0
1
2 1

⎫⎪⎪⎭⎧⎪⎩4 0
0 9

⎫⎪⎭⎧⎪⎪⎩1 1
2

0 1

⎫⎪⎪⎭
(b)

⎧⎪⎪⎩ 1 0
− 1

3 1

⎫⎪⎪⎭⎧⎪⎩9 0
0 1

⎫⎪⎭⎧⎪⎪⎩1 − 1
3

0 1

⎫⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0
1
4 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 0 0

0 2 0

0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2

1
4

0 1 −1

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
3 1 0

− 2
3 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

9 0 0

0 3 0

0 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
3 − 2

3

0 1 1

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
5. (a)

⎧⎪⎩2 0
1 3

⎫⎪⎭⎧⎪⎩2 1
0 3

⎫⎪⎭
(b)

⎧⎪⎩ 3 0
−1 1

⎫⎪⎭⎧⎪⎩3 −1
0 1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎩
4 0 0
2

√
2 0

1 −√
2 2

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 1
0

√
2 −√

2
0 0 2

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎪⎩
3 0 0
1

√
3 0

−2
√

3
√

2

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎩

3 1 −2
0

√
3

√
3

0 0
√

2

⎫⎪⎪⎪⎪⎪⎪⎭
6.8 1. (a) λ1 = 4, λ2 = −1, x1 = (3, 2)T

(b) λ1 = 8, λ2 = 3, x1 = (1, 2)T

(c) λ1 = 7, λ2 = 2, λ3 = 0, x1 = (1, 1, 1)T

2. (a) λ1 = 3, λ2 = −1, x1 = (3, 1)T

(b) λ1 = 2 = 2 exp(0),
λ2 = −2 = 2 exp(π i), x1 = (1, 1)T

(c) λ1 = 2 = 2 exp(0),
λ2 = −1 + √

3i = 2 exp
(

2π i
3

)
,

λ3 = −1 − √
3i = 2 exp

(
4π i

3

)
,

x1 = (4, 2, 1)T

3. x1 = 70,000, x2 = 56,000, x3 = 44,000

4. x1 = x2 = x3

5. (I − A)−1 = I + A + · · · + Am−1

6. (a) (I − A)−1 =
⎧⎪⎪⎪⎪⎪⎩

1 −1 3
0 0 1
0 −1 2

⎫⎪⎪⎪⎪⎪⎭
(b) A2 =

⎧⎪⎪⎪⎪⎪⎩
0 −2 2
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭,

A3 =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
7. (b) and (c) are reducible.

CHAPTER TEST A
1. True 2. False 3. True 4. False 5. False
6. False 7. False 8. False 9. True 10. False
11. True 12. True 13. True 14. False
15. True

Chapter 7
7.1 1. (a) 0.231 × 104 (b) 0.326 × 102

(c) 0.128 × 10−1 (d) 0.824 × 105

2. (a) ε = −2 δ ≈ −8.7 × 10−4

(b) ε = 0.04 δ ≈ 1.2 × 10−3

(c) ε = 3.0 × 10−5 δ ≈ 2.3 × 10−3

(d) ε = −31 δ ≈ −3.8 × 10−4

3. (a) 0.10101 × 25 (b) 0.10100 × 2−1

(c) 0.10111 × 24 (d) −0.11010 × 2−3

4. (a) 10,420, ε = −0.0018, δ ≈ −1.7 × 10−7

(b) 0, ε = −8, δ = −1
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(c) 1 × 10−4, ε = 5 × 10−5, δ = 1

(d) 82,190, ε = 25.7504, δ ≈ 3.1 × 10−4

5. (a) 0.1043 × 106

(b) 0.1045 × 106

(c) 0.1045 × 106

8. 23

7.2 1. A =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0

−3 2 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 2 −1
0 0 3

⎫⎪⎪⎪⎪⎪⎭
2. (a) (2, −1, 3)T (b) (1, −1, 3)T

(c) (1, 5, 1)T

3. (a) n2 multiplications and n(n − 1) additions

(b) n3 multiplications and n2(n−1) additions

(c) (AB)x requires n3 + n2 multiplications
and n3 − n additions A(Bx) requires 2n2

multiplications and 2n(n − 1) additions.

4. (b) (i) 156 multiplications and 105 additions,
(ii) 47 multiplications and 24 additions,
(iii) 100 multiplications and 60 additions

8. 5n − 4 multiplications/divisions, 3n − 3 addi-
tions/subtractions

9. (a) [(n − j)(n − j + 1)]/2 multiplications
[(n − j − 1)(n − j)]/2 additions

(c) It requires on the order of 2
3 n3 additional

multiplications/divisions to compute A−1,
given the LU factorization.

7.3 1. (a) (1, 1, −2)

(b)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0
0 3 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 −2
0 1 8
0 0 −23

⎫⎪⎪⎪⎪⎪⎭
2. (a) (1, 2, 2) (b) (4, −3, 0) (c) (1, 1, 1)

3. P =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭, L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2 − 1

3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

U =
⎧⎪⎪⎪⎪⎪⎩

2 4 −6
0 6 9
0 0 5

⎫⎪⎪⎪⎪⎪⎭ , x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
6

− 1
2

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
4. P = Q =

⎧⎪⎩0 1
1 0

⎫⎪⎭,

PAQ = LU =
⎧⎪⎪⎩ 1 0

1
2 1

⎫⎪⎪⎭⎧⎪⎩4 2
0 2

⎫⎪⎭,

x =
⎧⎪⎩ 3

−2

⎫⎪⎭

5. (a) ĉ = Pc = (−4, 6)T ,
y = L−1ĉ = (−4, 8)T ,
z = U−1y = (−3, 4)T

(b) x = Qz = (4, −3)T

6. (b) P =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭, Q =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭,

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

− 1
2 1 0
1
2

2
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

U =
⎧⎪⎪⎪⎪⎪⎩

8 6 2
0 6 3
0 0 2

⎫⎪⎪⎪⎪⎪⎭
7. Error −2000ε

0.6 ≈ −3333ε. If ε = 0.001, then
δ = − 2

3 .

8. (1.667, 1.001)

9. (5.002, 1.000)

10. (5.001, 1.001)

7.4 1. (a) ‖A‖F = √
2, ‖A‖∞ = 1, ‖A‖1 = 1

(b) ‖A‖F = 5, ‖A‖∞ = 5, ‖A‖1 = 6

(c) ‖A‖F = ‖A‖∞ = ‖A‖1 = 1

(d) ‖A‖F = 7, ‖A‖∞ = 6, ‖A‖1 = 10

(e) ‖A‖F = 9, ‖A‖∞ = 10, ‖A‖1 = 12

2. 2

7. ‖I‖1 = ‖I‖∞ = 1, ‖I‖F = √
n

12. (a) 10 (b) (−1, 1, −1)T

27. (a) ‖Ax‖∞ ≤ ‖Ax‖2

≤ ‖A‖2‖x‖2 ≤ √
n‖A‖2‖x‖∞

29. cond∞ A = 400

30. The solutions are
⎧⎪⎩−0.48

0.8

⎫⎪⎭ and
⎧⎪⎩−2.902

2.0

⎫⎪⎭
31. cond∞(A) = 28

33. (a) A−1
n =

⎧⎪⎩1 − n n
n −n

⎫⎪⎭
(b) cond∞ An = 4n

(c) limn→∞ cond∞ An = ∞
34. σ1 = 8, σ2 = 8, σ3 = 4

35. (a) r = (−0.06, 0.02)T and the relative
residual is 0.012

(b) 20

(d) x = (1, 1)T , ‖x − x′‖∞ = 0.12

36. cond1(A) = 6

37. 0.3



482 Answers to Selected Exercises

38. (a) ‖r‖∞ = 0.10, cond∞(A) = 32

(b) 0.64

(c) x = (12.50, 4.26, 2.14, 1.10)T , δ = 0.04

7.5 1. (a)

⎧⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
√

3
2 − 1

2

1
2

√
3

2

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩− 4
5

3
5

− 3
5 − 4

5

⎫⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 0 4

5

0 1 0
4
5 0 − 3

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

0

− 1√
2

− 1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 1
2

√
3

2

0
√

3
2 − 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 −
√

3
2

1
2

0 1
2

√
3

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. H = I − 1

β
vvT for the given β and v.

(a) β = 9, v = (−1, −1, −4)T

(b) β = 7, v = (−1, 2, 3)T

(c) β = 18, v = (−2, 4, −4)T

4. (a) β = 9, v = (0, −1, 4, 1)T

(b) β = 15, v = (0, 0, −5, −1, 2)T

5. (a) β = 18, v = (−3, 1, 1, 5)T

(b) HA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
6 0 6
0 2 0
0 −4 −6
0 4 −6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
6. (a) H2 H1 A = R, where Hi = I − 1

βi
vi vT

i ,
i = 1, 2, and β1 = 6, β2 = 5.

v1 =
⎧⎪⎪⎪⎪⎪⎩

−2
2

−2

⎫⎪⎪⎪⎪⎪⎭ , v2 =
⎧⎪⎪⎪⎪⎪⎩

0
−1

3

⎫⎪⎪⎪⎪⎪⎭ ,

R =
⎧⎪⎪⎪⎪⎪⎩

3 4 −2
0 5 10
0 0 −5

⎫⎪⎪⎪⎪⎪⎭ ,

b(1) = H2 H1b = (11, 5, 5)T

(b) x = (−1, 3, −1)T

7. (a) G =
⎧⎪⎪⎪⎪⎪⎩

3
5

4
5

4
5 − 3

5

⎫⎪⎪⎪⎪⎪⎭ , x =
⎧⎪⎩−1

1

⎫⎪⎭
8. It takes three multiplications, two additions,

and one square root to determine H . It takes
four multiplications/divisions, one addition,
and one square root to determine G. The
calculation of GA requires 4n multiplications
and 2n additions, while the calculation of HA
requires 3n multiplications/divisions and 3n
additions.

9. (a) n − k + 1 multiplications/divisions,
2n − 2k + 1 additions

(b) n(n − k + 1) multiplications/divisions,
n(2n − 2k + 1) additions

10. (a) 4(n − k) multiplications/divisions,
2(n − k) additions

(b) 4n(n − k) multiplications,2n(n − k) addi-
tions

11. (a) rotation (b) rotation
(c) Givens transformation
(d) Givens transformation

7.6 1. (a) u1 =
⎧⎪⎩1

1

⎫⎪⎭ (b) A2 =
⎧⎪⎩2 0

0 0

⎫⎪⎭
(c) λ1 = 2, λ2 = 0 the eigenspace corre-

sponding to λ1 is spanned by u1.

2. (a) v1 =
⎧⎪⎪⎪⎪⎪⎩

3
5
3

⎫⎪⎪⎪⎪⎪⎭, u1 =
⎧⎪⎪⎪⎪⎪⎩

0.6
1.0
0.6

⎫⎪⎪⎪⎪⎪⎭,

v2 =
⎧⎪⎪⎪⎪⎪⎩

2.2
4.2
2.2

⎫⎪⎪⎪⎪⎪⎭, u2 =
⎧⎪⎪⎪⎪⎪⎩

0.52
1.00
0.52

⎫⎪⎪⎪⎪⎪⎭,

v3 =
⎧⎪⎪⎪⎪⎪⎩

2.05
4.05
2.05

⎫⎪⎪⎪⎪⎪⎭
(b) λ′

1 = 4.05 (c) λ1 = 4, δ = 0.0125
3. (b) A has no dominant eigenvalue.

4. A2 =
⎧⎪⎩ 3 −1

−1 1

⎫⎪⎭, A3 =
⎧⎪⎩3.4 0.2

0.2 0.6

⎫⎪⎭,

λ1 = 2 + √
2 ≈ 3.414, λ2 = 2 − √

2 ≈ 0.586
5. (b) H = I − 1

β
vvT , where β = 1

3 and

v = (− 1
3 , − 2

3 , 1
3 )T

(c) λ2 = 3, λ3 = 1,

HAH =
⎧⎪⎪⎪⎪⎪⎩

4 0 3
0 5 −4
0 2 −1

⎫⎪⎪⎪⎪⎪⎭
7.7 1. (a) (

√
2, 0)T (b) (1 − 3

√
2, 3

√
2, −√

2)T
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(c) (1, 0)T (d) (1 − √
2,

√
2, −√

2)T

2. xi = di bi + ei bn+i

d2
i + e2

i

, i = 1, . . . , n

4. (a) σ1 = √
2 + ε2, σ2 = ε

(b) λ′
1 = 2, λ′

2 = 0, σ ′
1 = √

2, σ ′
2 = 0

11. A+ =
⎧⎪⎪⎪⎪⎪⎩

1
4

1
4 0

1
4

1
4 0

⎫⎪⎪⎪⎪⎪⎭
12. (a) A+ =

⎧⎪⎪⎪⎪⎪⎩
1

10 − 1
10

2
10 − 2

10

⎫⎪⎪⎪⎪⎪⎭ (b) A+b =

⎧⎪⎩1
2

⎫⎪⎭
(c)

{
y

∣∣∣∣ y =
⎧⎪⎩1

2

⎫⎪⎭ + α

⎧⎪⎩−2
1

⎫⎪⎭}
14. ‖A1 − A2‖F = ε, ‖A+

1 − A+
2 ‖F = 1/ε.

As ε → 0, ‖A1 − A2‖F → 0 and
‖A+

1 − A+
2 ‖F → ∞.

CHAPTER TEST A
1. False 2. False 3. False 4. True 5. False
6. False 7. True 8. False 9. False 10. False
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INDEX
A
Absolute error, 388
Addition

of matrices, 29
in R

n , 112
of vectors, 113

Adjacency matrix, 54
Adjoint of a matrix, 99
Aerospace, 185, 289
Angle between vectors, 41,

103, 199, 205
Approximation of functions,

250–253
Astronomy

Ceres orbit of Gauss, 223
ATLAST, xiii, 456
Augmented matrix, 7
Automobile leasing, 311
Aviation, 185

B
Backslash operator, 459
Back substitution, 5, 395, 396
Basis, 138

change of, 144–153
orthonormal, 243

Bidiagonalization, 443
Binormal vector, 105
Block multiplication, 70–73

C
C[a, b], 114
Cauchy–Schwarz inequality,

201, 236
Characteristic equation, 286
Characteristic polynomial, 286
Characteristic value(s), 285
Characteristic vector, 285
Chebyshev polynomials, 273

of the second kind, 276
Chemical equations, 20
Cholesky decomposition, 369
Closure properties, 113

C
n , 324

Coded messages, 101–102
Coefficient matrix, 7
Cofactor, 87
Cofactor expansion, 87
Column space, 154, 216
Column vector notation, 28
Column vector(s), 27
Communication networks, 54
Companion matrix, 296
Compatible matrix norms, 405
Complete pivoting, 402
Complex

eigenvalues, 291, 300–301
matrix, 326

Computer graphics, 182
Condition number, 409–414

formula for, 411
Conic sections, 352–357
Consistency Theorem, 34, 155
Consistent, 2
Contraction, 182
Cooley, J.W., 255
Coordinate metrology, 229
Coordinate vector, 145, 150
Coordinates, 150
Correlation matrix, 210
Correlations, 208
Covariance, 210
Covariance matrix, 210
Cramer’s rule, 100
Cross Product, 102
Cryptography, 101–102

D
Dangling Web page, 315
Data fitting, least squares,

226–229
Defective matrix, 310
Definite quadratic form, 359
Deflation, 431
Determinant(s), 84–108

cofactor expansion, 87

definition, 89
and eigenvalues, 286
of elementary matrices, 94
and linear independence, 132
of a product, 96
of a singular matrix, 94
of the transpose, 89
of a triangular matrix, 90

DFT, 255
Diagonal matrix, 64
Diagonalizable matrix, 307
Diagonalizing matrix, 307
Digital imaging, 347
Dilation, 182
Dimension, 140

of row space and column
space, 157

Dimension Theorem, 269
Direct sum, 218
Discrete Fourier transform,

253–255
Distance

in 2-space, 199
in n-space, 205
in a normed linear space, 239

Dominant eigenvalue, 314

E
Economic models, 21–23
Edges of a graph, 54
Eigenspace, 286
Eigenvalue(s), 282–381

complex, 291
computation of, 428–437
definition, 285
and determinants, 286
product of, 292
sensitivity of, 449
of similar matrices, 293
and structures, 282, 288, 379
sum of, 292
of a symmetric positive

definite matrix, 360

485
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Eigenvector, 285
Electrical networks, 19
Elementary matrix, 58

determinant of, 94
inverse of, 60

Equivalent systems, 3–5, 58
Euclidean length, 199
Euclidean n-space, 27

F
Factor analysis, 211
Fast Fourier Transform,

255–257
Filter bases, 427
Finite dimensional, 140
Floating point number, 387
FLT axis system, 186
Forward substitution, 395, 396
Fourier coefficients, 252

complex, 252
Fourier matrix, 255
Francis, John G. F., 434
Free variables, 13
Frobenius norm, 235, 403
Frobenius theorem, 375
Full rank, 162
Fundamental subspaces, 215
Fundamental Subspaces

Theorem, 216

G
Gauss, Carl Friedrich, 222
Gauss–Jordan reduction, 17
Gaussian elimination, 13

algorithm, 392
algorithm with interchanges,

399
complete pivoting, 402
with interchanges, 398–402
without interchanges,

391–398
partial pivoting, 402

Gaussian quadrature, 275
Gerschgorin disks, 452
Gerschgorin’s theorem, 437
Givens transformation, 425,

451
Golub, Gene, 443

Golub-Reinsch Algorithm, 445
Google, 315
Gram–Schmidt process,

259–268
modified version, 267

Graph(s), 54

H
Harmonic motion, 303
Hermite polynomials, 273
Hermitian matrix, 327

eigenvalues of, 327
Hessian, 363
Hilbert matrix, 449
Homogeneous coordinates,

184
Homogeneous system, 20

nontrivial solution, 20
Hotelling, H., 349
Householder transformation,

418–423, 450

I
Idempotent, 57, 294
Identity matrix, 50
Ill conditioned, 409
Image, 172
Inconsistent, 2
Indefinite

quadratic form, 359
Infinite dimensional, 140
Information retrieval, 39, 206,

315, 348
Initial value problems, 297,

302
Inner product, 74, 232

complex inner product, 325
for C

n , 325
of functions, 232
of matrices, 232
of polynomials, 233
of vectors in R

n , 232
Inner product space, 232

complex, 325
norm for, 233, 237

Interpolating polynomial, 226
Lagrange, 274

Invariant subspace, 295, 331

Inverse
computation of, 62–63
of an elementary matrix, 60
of a product, 52

Inverse matrix, 51
Inverse power method, 436
Invertible matrix, 51
Involution, 57
Irreducible matrix, 374
Isomorphism

between row space and
column space, 220

between vector spaces, 117

J
Jacobi polynomials, 273
Jordan canonical form, 314

K
Kahan, William M., 443
Kernel, 172
Kirchhoff’s laws, 19

L
Lagrange’s interpolating

formula, 274
Laguerre polynomials, 273
Latent semantic indexing, 208
L DLT factorization, 368
Lead variables, 13
Leading principal submatrix,

365
Least squares problem(s),

222–231, 247, 437–448
Ceres orbit of Gauss, 223
fitting circles to data, 229

Least squares problem(s),
solution of, 223

by Householder
transformations, 438

from Gram–Schmidt Q R,
265

from normal equations, 225,
437

from Q R factorization, 438
from singular value

decomposition, 440–443
Left inverse, 161
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Left singular vectors, 340
Legendre polynomials, 272
Legendre, A. M., 222
Length

of a complex scalar, 325
in inner product spaces, 233
of a vector in C

n , 325
of a vector in R

2, 103, 111,
199

of a vector in R
n , 205

Length of a walk, 55
Leontief input–output models

closed model, 21–23, 376
open model, 372–374

Leslie matrix, 49
Leslie population model, 49
Linear combination, 34, 121
Linear differential equations

first order systems, 296–301
higher order systems,

301–305
Linear equation, 1
Linear operator, 167
Linear system(s), 1

equivalent, 58
homogeneous, 20
inconsistent, 2
matrix representation, 32
overdetermined, 14
underdetermined, 15

Linear transformation(s),
166–195

contraction, 182
definition, 166
dilation, 182
image, 172
inverse image, 175
kernel, 172
one-to-one, 175
onto, 175
range, 172
reflection, 182
from R

n to R
m , 170

standard matrix
representation, 176

Linearly dependent, 129
Linearly independent, 129

in Cn , 135–137

in Pn , 134–135
Loggerhead sea turtle, 48, 80
Lower triangular, 63
LU factorization, 65, 393

M
Machine epsilon, 346, 389
Markov chain(s), 42, 146,

311–315, 376
Markov process, 42, 146, 311
MATLAB, 456–467

array operators, 464
built in functions, 461
entering matrices, 457
function files, 462
graphics, 464
help facility, 78, 466
M-files, 461
programming features, 461
relational and logical

operators, 463
script files, 461
submatrices, 458
symbolic toolbox, 465

MATLAB path, 462
Matrices

addition of, 29
equality of, 29
multiplication of, 35
row equivalent, 61
scalar multiplication, 29
similar, 192

Matrix
coefficient matrix, 7
column space of, 154
condition number of, 411
correlation, 210
covariance, 210–211
defective, 310
definition of, 7
determinant of, 89
diagonal, 64
diagonalizable, 307
diagonalizing, 307
elementary, 58
Fourier, 255
Hermitian, 327
identity, 50

inverse of, 51
invertible, 51
irreducible, 374
lower triangular, 63
negative definite, 359
negative semidefinite, 359
nonnegative, 372
nonsingular, 51
normal, 334
null space of, 120
orthogonal, 244
positive, 372
positive definite, 359
positive semidefinite, 359
powers of, 46
projection, 225, 249
rank of, 154
reducible, 374
row space of, 154
singular, 52
sudoku matrix, 415
symmetric, 39
transpose of, 38
triangular, 63
unitary, 327
upper Hessenberg, 432
upper triangular, 63

Matrix algebra, 44–57
algebraic rules, 44
notational rules, 38

Matrix arithmetic, 27–44
Matrix exponential, 318
Matrix factorizations

Cholesky decomposition, 369
Gram–Schmidt Q R, 263
L DLT , 368
L DU , 368
LU factorization, 65, 393
Q R factorization, 422, 425,

438
Schur decomposition, 329
singular value

decomposition, 337
Matrix generating functions,

458
Matrix multiplication, 35

definition, 35
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Matrix norms, 403–409
1-norm, 407
2-norm, 406, 408
compatible, 405
Frobenius, 235, 403
infinity norm, 407
subordinate, 405

Matrix notation, 27
Matrix representation theorem,

179
Matrix, adjoint of, 99
Maximum

local, 363
of a quadratic form, 360

Minimum
local, 363
of a quadratic form, 360

Minor, 87
Mixtures, 298
Modified Gram–Schmidt

process, 267
Moore–Penrose pseudoinverse,

440–441
Multipliers, 393

N
nth root of unity, 259
Negative correlation, 210
Negative definite

matrix, 359
quadratic form, 359

Negative semidefinite
matrix, 359
quadratic form, 359

Networks
communication, 54
electrical, 19

Newtonian mechanics, 103
Nilpotent, 294
Nonnegative matrices,

372–378
Nonnegative vector, 372
Nonsingular matrix, 51, 61
Norm

1-norm, 238
in C

n , 325
infinity, 238
from an inner product, 233,

237
of a matrix, 404
of a vector, 237

Normal equations, 225, 437
Normal matrices, 333–334
Normal vector, 203
Normed linear space, 237
Null space, 120

dimension of, 156
Nullity, 157
Numerical integration, 274
Numerical rank, 346

O
Ohm’s law, 19
Operation count

evaluation of determinant, 96
forward and back

substitution, 396
Gaussian elimination, 392
Q R factorization, 423, 426

Ordered basis, 144
Origin shifts, 435
Orthogonal complement, 215
Orthogonal matrices, 244–247

definition, 244
elementary, 418
Givens reflection, 423, 425
Householder transformation,

418–423
permutation matrices, 246
plane rotation, 423, 425
properties of, 246

Orthogonal polynomials,
269–276

Chebyshev polynomials, 273
definition, 270
Hermite, 273
Jacobi polynomials, 273
Laguerre polynomials, 273
Legendre polynomials, 272
recursion relation, 271
roots of, 275

Orthogonal set(s), 241
Orthogonal subspaces, 214
Orthogonality

in n-space, 205
in an inner product space, 233

in R
2 or R

3, 201
Orthonormal basis, 243
Orthonormal set(s), 241–259
Outer product, 74
Outer product expansion, 74

from singular value
decomposition, 344, 348

Overdetermined, 14

P
Page rank, 315
PageRank algorithm, 315
Parseval’s formula, 243
Partial pivoting, 402
Partitioned matrices, 68–73
Pascal matrix, 383
Pearson, Karl, 349
Penrose conditions, 440
Permutation matrix, 246
Perron’s theorem, 374
Perturbations, 386
Pitch, 185
Pivot, 8
Plane

equation of, 203
Plane rotation, 423, 425
Pn , 115
Population migration, 145
Positive correlation, 210
Positive definite matrix, 359,

364–372
Cholesky decomposition, 369
definition, 359
determinant of, 365
eigenvalues of, 360
L DLT factorization, 368
leading principal submatrices

of, 365
Positive definite quadratic

form, 359
Positive matrix, 372
Positive semidefinite

matrix, 359
quadratic form, 359

Power method, 430
Principal Axes Theorem, 358
Principal component analysis,

211, 212, 349
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Projection
onto column space, 224
onto a subspace, 249

Projection matrix, 225, 249
Pseudoinverse, 440
Psychology, 211
Pythagorean law, 205, 234

Q
Q R factorization, 263, 422,

425, 438
Quadratic equation

in n variables, 357
in two variables, 352

Quadratic form
in n variables, 357
negative definite, 359
negative semidefinite, 359
positive definite, 359
positive semidefinite, 359
in two variables, 352

R
R

m×n , 113
R

n , 27
Range, 172

of a matrix, 216
Rank deficient, 162
Rank of a matrix, 154
Rank-Nullity Theorem, 156
Rayleigh quotient, 336
Real Schur decomposition, 331
Real Schur form, 331
Reduced row echelon form, 16
Reducible matrix, 374
Reflection, 182
Reflection matrix, 423, 425
Regular Markov process, 315,

376
Relative error, 388
Relative residual, 410
Residual vector, 223
Right inverse, 161
Right singular vectors, 340
Roll, 185
Rotation matrix, 177, 423, 425,

451
Round off error, 388

Row echelon form, 13
Row equivalent, 61
Row operations, 5
Row space, 154
Row vector notation, 28
Row vector(s), 27, 154

S
Saddle point, 360, 363
Scalar multiplication

for matrices, 29
in R

n , 112
in a vector space, 113

Scalar product, 31, 74, 199
in R

2 or R
3, 199–202

Scalar projection, 202, 236
Scalars, 27
Schur decomposition, 329
Schur’s theorem, 328
Sex-linked genes, 317, 381
Signal processing , 253–255
Similarity, 189–195, 293

definition, 192
eigenvalues of similar

matrices, 293
Singular matrix, 52
Singular value decomposition,

41, 208, 212, 337, 451
compact form, 340
and fundamental subspaces,

340
and least squares, 440
and rank, 340

Singular values, 337
and 2-norm, 408
and condition number, 409

Skew Hermitian, 333, 336
Skew symmetric, 98, 333
Solution set of linear system, 2
Space shuttle, 289
Span, 121
Spanning set, 123
Spearman, Charles, 211
Spectral Theorem, 329
Square matrix, 7
Stable algorithm, 386
Standard basis, 142–143

for Pn , 143

for R
2×2, 142

for R
3, 138

for R
n , 142

State vectors, 312
Stationary point, 358
Steady-state vector, 284
Stochastic matrix, 146, 312
Stochastic process, 311
Strict triangular form, 5
Subordinate matrix norms, 405
Subspace(s), 117–126

definition, 118
Sudoku, 415
Sudoku matrix, 415
Sylvester’s equation, 336
Symmetric matrix, 39

T
Trace, 195, 241, 293
Transition matrix, 147, 151

for a Markov process, 312
Translations, 183
Transpose

of a matrix, 38
Triangle inequality, 237
Triangular factorization,

64–65, see LU
factorization

Triangular matrix, 63
Trigonometric polynomial, 251
Trivial solution, 20
Tukey, J. W., 255

U
Uncorrelated, 210
Underdetermined, 15
Uniform norm, 238
Unit round off, 346
Unit vector, 103
Unitary matrix, 327
Upper Hessenberg matrix, 432
Upper triangular, 63

V
Vandermonde matrix, 67, 97

in MATLAB, 97, 449
Vector projection, 202, 213,

236
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Vector space
axioms of , 113
closure properties, 113
of continuous functions, 114
definition, 113
of m × n matrices, 113
of polynomials, 115
subspace of, 118

Vector(s), 27
Vectors in R

n , 27

Vertices of a graph, 54
Vibrations of a structure, 305

W
Walk in a graph, 55
Wavelets, 427
Web searches, 42, 315
Weight function, 233
Weights, 232
Well conditioned, 409

Wronskian, 136

Y
Yaw, 185

Z
Zero

matrix, 30
subspace, 118
vector, 113
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