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บทคัดย่อ

การค้นคว้าอิสระนี้ได้แรงบันดาลใจจากการศึกษาบทความของอะคิยาม่า จิน เรื่อง การผันกลับได้ของ
ทรงหลายหน้าด้านขนาน สำหรับการศึกษานี้ตรวจสอบการผันกลับได้ของทรงหลายหน้าที่ไม่สามารถเติม
เต็มพื้นที่ โดยการผันกลับแบบการติดกับบานพับ โดยใช้วิธีเพลทผันกลับได้สองแผ่น จากการศึกษาของอะคิ
ยาม่า จิน ทำให้ได้บทแทรกสำหรับการตรวจสอบว่าทรงหลายหน้าที่ไม่สามารถเติมเต็มพื้นที่สามารถใช้วิธี
เพลทผันกลับได้สองแผ่นได้หรือไม่ ซึ่งจากสมบัติการไม่แปรผันของเดห์นพบว่า ลูกบาศก์ปลายตัด, รอมบิค
คิวบอกทาฮีดรอน และ คิวบอกทาฮีดรอนปลายตัด เป็นตัวเลือกที่เป็นไปได้ จากการศึกษา เมื่อพิจารณาถึง
ความเท่ากันของปริมาตร พบว่าคู่ของ รอมบิคคิวบอกทาฮีดรอนและคิวบอกทาฮีดรอนปลายตัด และคู่ของ
ลูกบาศก์ปลายตัดและคิวบอกทาฮีดรอนปลายตัด ไม่สามารถใช้วิธีเพลทผันกลับได้สองแผ่นในการผันกลับ
ระหว่างทรงตันได้

Abstract

In this independent study, we have a motivation from the study of Professor Akiyama Jin
on the topic “On Reversibility among Parallelohedra”. This study examines the reversibility
of non-space-filling polyhedra by hinge dissection using the double reversal plate method.
Using insights from Professor Akiyama Jin’s study, we derive a lemma for peer-checking
whether space filla can be achieved using this method. Our analysis identifies the trun-
cated cube, rhombicuboctahedron, and cuboctahedron as potential candidates because
they are non-space filla with the same Dehn invariant, suggesting potential reversibility
between them. Through further investigation, considering volume equality, we found that
the pair of rhombicuboctahedron and cuboctahedron and the pair of truncated cube and
cuboctahedron cannot be reversed using the double reversal plate method.
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Chapter 1

Introduction

Reversible polyhedra, characterized by their ability to transform into distinct shapes and
then revert to their original forms, represent a fascinating area of study within the realm of
geometry.

Figure 1.1: Reversible Solids from Professor Akiyama Jin [The figures are captured from Jin
Akiyama A Friend and His Mathematics]

This project investigates the concept of reversibility, building upon previous research
conducted by Professor Akiyama Jin utilizing the hinged dissection transformation. While
existing studies have primarily focused on reversible pairs within space-filling parallelo-
hedra, this study seeks to extend the inquiry to non-space-filling scenarios. Specifically,
attention is directed towards the applicability of the Double-Reversal-Plates Method.

In this study, we investigate to determine whether this method can be extended to the
Double-Reversal-Plates Method.

By examining the potential challenges and modifications required for such adaptation,
this study aims to contribute to a broader understanding of reversible transformations.

Scope of the study

This study focuses on the investigation of reversibility through the application of hinged
dissection transformations in Archimedean solids. The primary objective is to analyze the
feasibility of the Double-Reversal-Plates Method.
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Objectives of the study

1. To identify conditions suitable for the Double Reversible Plate Method.
2. To ascertain conditions conducive to reversal in non-space-filling scenarios.
3. To evaluate the feasibility of applying the Double Reversible Plate Method in non-space-
filling.



Chapter 2

Preliminaries

Definition 2.1 (Polyhedron) A polyhedron is a three-dimensional geometric solid bounded
by polygonal faces, edges, and vertices.

There are special polyhedra that satisfy some special properties. Platonic solids or
regular polyhedra are solids in which all faces are the same regular polygons, the polygon
whose edges are equal, and internal angles are equal. It is proved that there exist five
Platonic solids including cube, tetrahedron, octahedron, dodecahedron, and icosahedron.

Figure 2.1: The five regular polyhedra known as Platonic solids [The figures are captured
from Simple equations giving shapes of various convex polyhedra: The regular polyhedra
and polyhedra composed of crystallographically low-index planes].

In the case that a polyhedron is composed of different kinds of regular polygons,
it is called Archimedean solids, including 13 polyhedra as follows: truncated tetrahe-
dron, cuboctahedron, truncated cube, truncated octahedron, rhombicuboctahedron, trun-
cated cuboctahedron, Snub cube, Icosidodecahedron, Truncated dodecahedron, Trun-
cated icosahedron, rhombicosidodecahedron, Truncated icosidodecahedron and Snub do-
decahedron.
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Figure 2.2: The 13 Archimedean solids [The figures are captured from https://xploreandx-
press.blogspot.com/2011/04/fun-with-mathematics-archimedian-solids.html]

Definition 2.2 (Polyhedral net) A polyhedral net is a geometric pattern that can be manip-
ulated by cutting and folding to construct a three-dimensional model representing a solid
shape.

Specially, a net of a polyhedron P which is cut through the edges of the polyhedron
P is said to e-net. Figure 2.3 shows an example of an e-net of a cube.

Figure 2.3: An e-net of a cube
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Name Exact dihedral angle (radians) Volume with the length of a

Tetrahedron arccos (13)
a3

6
√
2

Cube arccos (π
2 ) = 0 a3

Octahedron arccos (−1
3)

1
2

√
2a3

Dodecahedron arccos (−1
3)

15+7
√
5

4 a3

Icosahedron arccos (−1
3)

15+5
√
5

12 a3

Table 2.1: The table of the dihedral angle and the volume of regular polyhedrons

Definition 2.3 (The dihedral angle) The dihedral angle θ at the edge e of a polyhedron
shared between two faces f1 and f2 is the angle between two unit normal vectors n1 and
n2 to f1 and f2, respectively.

From Definition 2.3, we remark that n1 · n2 = cos θ By convention, the normal vectors
point to the exterior of the polyhedron, and the dihedral angle at e is the interior angle.

For example, the dihedral angle along each edge of a cube is π
2 . Table 2.1 shows the

dihedral angles of 5 regular polyhedra, with their volumes.

Definition 2.4 (Reversible polyhedra) A reversible polyhedron is a polyhedron capable of
undergoing a continuous deformation in three-dimensional space, transforming into an-
other shape.

Example 2.5 (Juno’s Spinner-Reversible Dodecahedron Model)

Figure 2.4: Juno’s spinner is a unique polyhedral model that links and transforms. With a
simple twist, straight edges meld into spherical symmetry. [The figures are captured from
https://shop.pluredro.com/products/junos-spinner-dodecahedron-model]
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In real world, each face of the polyhedron is connected to an adjacent face by a hinge
called a piano hinge. Mathematically, the reversible of two polyhedra is considered by
the following definition.

Definition 2.6 (Hinge dissection transformation) A pair of P,Q is said to be hinge inside-out
transformable (or simply reversible) if P and Q satisfy these conditions :

1. The polyhedron P is dissected into several pieces by planes. Such a plane is called
a dissection plane.

2. The pieces are joined by piano hinges into a tree, and
3. If the pieces of P are resembled inside out, then get a polyhedron Q.

Figure 2.5: An example of a piano hinge [1]

Definition 2.7 (Minkowski decomposition) The Minkowski sum of two sets of position vec-
tors P and Q in Euclidean space is formed by adding each vector in P to each vector in
Q:

P +Q = {p+ q | p ∈ P, q ∈ Q}.

Example 2.8 Let A = {(1, 0), (0, 1), (0,−1)} and B = {(0, 0), (1, 1), (1,−1)} then
A+B = {(1, 0), (0, 1), (0,−1), (2, 1), (1, 2), (1, 0), (2,−1), (1, 0), (1,−2)}
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Figure 2.6: The Minkowski sum of A + B [The figures are captured from https://com-
mons.wikimedia.org/wiki/File:Minkowski-sumex4.svg]

Definition 2.9 (Homothety) A homothety is defined as a transformation within an affine
space, characterized by a designated point S, referred to as its center, and a non-zero
scalar value k denoted as its ratio. This transformation effectively maps X ′ to X within
the space according to the following rule:

−−→
SX ′ = k

−→
SX ; k ̸= 0

Figure 2.7: The homothety of the pyramid [The figures are captured from https://
en.wikipedia.org/wiki/Homothety]
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Definition 2.10 (Decomposable) A polyhedron P is decomposable if it is equal to a
Minkowski sumQ+R of two polyhedronQ andR, which are not homothetic to P . [The fig-
ures are captured from https://commons.wikimedia.org/wiki/File:Zentr-streck-pyram-e.svg]

Definition 2.11 (Equidecomposable) Two polyhedra P and Q are equidecomposable if
P,Q can be decomposed into a finite number of polyhedra P1, ..., Pn and Q1, ..., Qn re-
spectively such that P = P1 ∪ P2 ∪ .... ∪ Pn, Q = Q1 ∪Q2 ∪ .... ∪Qn and Pi is congruent
to Qi for all i = 1, 2, 3, .., n

Definition 2.12 (Equicomplementable) For two polyhedra P and Q, polyhedra P̃ and Q̃

equicomplementable if polyhedra P̃ and Q̃ that also have decompositions involving P

and Q of the form P̃ = P ∪P ′
1∪ ....∪P ′

m and Q̃ = Q∪Q′
1∪ ....∪Q′

m where P ′
k is congruent

to Q′
k for all k (1 ! k < m)

Definition 2.13 (Q-linear map ) f : R → Q is called a Q-linear map if a function from the
real numbers to the rationals satisfies three properties:

1. f(v1 + v2) = f(v1) + f(v2) for all v1, v2 ∈ R;
2. f(qv) = qf(v) for all q ∈ Q, v ∈ R;
3. f(π) = 0.

For instance, for any Q-linear map f , we see that f(
3π

2
) =

3

2
· f(π) = 3

2
· 0 = 0.

Let P be a polyhedron that has edges ei(i = 1, 2, ..., n) with length l(ei), and dihedral
angles α(ei), which are the angles of the two faces of P that share the edge ei.

Let Df (P ) =
∑

ei∈P
l(ei) · f(α(ei)), where the summation is taken over all edges ei of

P . Df (P ) is called the Dehn invariant for a polyhedron P. The explanation of how the
Dehn invariant is found is as follows:

Example 2.14 Let C be a unit cube with edges ei(i = 1, 2, ..., 12) in Fig.2.6 Since α(ei) =
π
2

for any i(i = 1, 2, ..., 12), the Dehn invariant for a cube as follow:

Df (C) =
∑

ei∈C
l(ei) · f(α(ei)) = 12 · f(π2 ) = 6f(π) = 0

Theorem 2.15 (Dehn’s Lemma) Suppose that a polyhedra P is decomposable into a finite
number of smaller polyhedra P1, P2, ..., Pn and every dihedral angle of Pi(i = 1, 2, ..., n)

belongs to M . For any Q-linear map, f(π) = 0 then Dehn invariant of P is Df (P ) =

Df (P1) +Df (P2) + ...+Df (Pn)
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Figure 2.8: A cube C with 12 edges ei (i = 1, 2, ..., 12) [1]

Theorem 2.16 For polyhedra P and Q with the same volume. If Df (P ) ̸= Df (Q), then
polyhedra P and Q are neither equidecomposable nor equicomplementable.

Proof. Let P and Q are equidecomposable or equicomplementable. Then there is a
dissection of P into polyhedra P1, P2, ..., Pn. By the Dehn-invariant theorem,

Df (P ) = Df (P1)+Df (P2)+ ...+Df (Pn) = Df (Q1)+Df (Q2)+ ...+Df (Qn) = Df (Q).

Therefore, If Df (P ) ̸= Df (Q), then polyhedra P and Q are neither equidecomposable
nor equicomplementable.

To define a space filla property, we first mention the basic term in a two-dimensional
object called tessellation as follows:

Definition 2.17 (A tessellation or tiling) A tessellation or tiling is the covering of a surface,
often a plane, using one or more geometric shapes, called tiles, with no overlaps and no
gaps.
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Figure 2.9: Tilling of regular polygons: equilateral triangles, squares, and hexagons. [The
figures are captured from https://plus.maths.org/content/trouble-five]

Subsequently, we will elucidate the rationale behind the exclusive utilization of three
regular polygons in achieving the tiling of space.

Theorem 2.18 There are only three regular tessellations, including triangles, squares, and
hexagons.

Proof. Since the summation of angles at any given point among adjacent polygons equates

to 2π radians and the interior angles in any polygon are
π(n− 2)

n
where n represents the

number of sides in the polygon.

since
π(n− 2)

n
is a multiple of 2π, then

(n− 2)

n
is multiple of 2.

which implies that

(n− 2) | 2n.

It means that

2n = k(n− 2) ⇒ k =
2n

n− 2
=

2n− 4 + 4

n− 2
= 2 +

4

n− 2
.

Where k ∈ N, this means that n− 2 | 4 ⇒ n− 2 = 1, 2, 4. Therefore, n = 3, 4, 6, which
are triangles, squares, and hexagons.

Definition 2.19 (space-filling polyhedron) A space-filling polyhedron is a polyhedron that
can be used to generate a tessellation of space.

Examples of space-filling polyhedra are truncated octahedron and rhombicuboctahe-
dron as shown in Figure 2.10.
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Figure 2.10: Truncated octahedron and rhombicuboctahedron filling space [The figures are
adapted from https://polytope.miraheze.org/wiki/File:HC-A4.png]

We remark that Dehn invariant Df (P ) = 0 is a necessary but not sufficient condition
for a polyhedron to be space-filling.

Definition 2.20 (parallelohedra) A parallelohedron is a polyhedron that, within 3-dimensional
Euclidean space, can be translated without rotations to fill the space in such a manner as
to form a honeycomb.

There are 5 parallelohedra as follows: the cube, hexagonal prism, rhombic dodecahe-
dron, elongated dodecahedron, and truncated octahedron.

Figure 2.11: The five types of parallelohedron

Moreover, the concept of the Dehn invariant can be extended beyond the confines of
a cube to encompass a parallelepiped. In this context, a parallelepiped exhibits a Dehn
invariant of 0, as demonstrated by the following elucidation.
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Theorem 2.21 The Dehn invariant of a parallelepiped is equal to 0.

Proof. Let P be a parallelepiped edge ei(i = 1, 2, ..., 12). Since P is a parallelepiped, there
exist solely two distinct values for the dihedral angle.

Without loss of generality, let α(ei) = α < π
2 where (i = 1, 2, ..., 6) and α(ej) = γ > π

2

where (i = 7, 8, ..., 12), which is α(ei) + α(ej) = α + γ = π.
Where n < m the Dehn invariant for a parallelepiped is :

Df (P ) =
∑

ei∈P

l(ei) · f(α(ei))

= 4n · f(α(ei)) + 4n · f(α(ej)) + 2m · f(α(ei)) + 2m · f(α(ej))

= 4n · (f(α(ei) + f(α(ej)) + 2m · (f(α(ei) + f(α(ej))

= 4n · f(π) + 2m · f(π)

= 0.

Figure 2.12: A Parallelepiped with the length m,n, and the dihedral angle α, γ

In this study, we also consider finding roots of cubic equations. It is well known that
finding the cube root is complicated however, Cardano’s method enables us to find all
roots as follows. We state it without proof.

Consider a cubic equation with the unknown x and fixed complex coefficients a, b, c,
(where a ̸= 0):
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ax3 + bx2 + cx+ d = 0

To solve this cubic equation to find x, it is convenient to divide both sides by a and
complete the first two terms to a full cube (x+ b

3a)
3 In other words, setting

y = x+
b

3a
.

we replace x with the simpler equation

y3 + py + q = 0

with the unknown y (and some constant coefficients p, q). However, as any pair of
numbers u, v satisfies the binomial formula (u+ v)3 = u3 + 3u2v + 3uv2 + v3 , i.e.,

(u+ v)3 − 3uv(u+ v)− (u3 + v3).

we will find a solution y in the form

y = u+ v

provided that we have managed to choose (complex) numbers u, v in such a way that

p = −3uv

and

q = (u3 + v3).

The numbers u, v will also satisfy

−p3

27
= u3v3.

So their cubes u3, v3 will be the two roots of the quadratic equation

t2 + qt− p3

27
= 0

with the unknown t; in fact, we have the identity

(t− u3)(t− v3) = t2 − (u3 + v3)t+ u3v3

Now we obtain the following expressions for all solutions, known as Cardano’s for-
mula:

y1 = u+ v (2.1)

y2 = (−1

2
+ i

√
3

2
)u+ (−1

2
− i

√
3

2
)v (2.2)

y3 = (−1

2
− i

√
3

2
)u+ (−1

2
+ i

√
3

2
)v (2.3)
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Example 2.22 To solve x3 + 6x2 + 9x+ 3 = 0.
Let y = x+ 6

3 = x+ 2 rewrite as the simpler equation

y3 − 3y + 1 = 0

we need to find u, v with

uv = 1, u+ v = −1

and u3, v3 are the roots of the equation

t2 + t+ 1 = 0

We obtain

u3 =
−1 + i

√
3

2
= e

2π
3 , v3 =

−1− i
√
3

2
= e−

2π
3

Thus
u = e

2π
9

and
v = e−

2π
3

Hence,
y1 = 2 cos

2π

9
, y2 = 2 cos

8π

9
, y3 = 2 cos

4π

9

.



Chapter 3

Methodology

To the research conducted by Jin Akiyama, as outlined in reference [1], the proposal entails
the utilization of the Double-Reversal-Plates method to effectuate the reversal of each pair
of parallelohedra.

Definition 3.1 (plate) The plate P of a polyhedron P is a dissection of P in such a way
that the cut of P corresponds to a net N of P

3.1 The Double-Reversal-Plates Method for Parallelohedra

In the Double-Reversal-Plates Method, the dissection piece of two polyhedrons is placed
on both sides (Head and Tail) of the same net (plate). In this case, the net (plate) for
parallelohedra is a parallel pipe (cube).

Figure 3.1: For each of the two plate sides, there are two dissections of the box. [1]
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Figure 3.2: Example of the Double-Reversal-Plates Method [1]

According to the concept proposed by Professor Akiyama Jin, the (B,O)-chimera su-
perimposition refers to the resultant dissection obtained upon overlaying B (box) and O

(octahedron).
Nest, the methodology for dissecting reversible parallelohedra pairs will be demon-

strated.

3.1.1 A Ham (Box) to A Pig (Truncated Octahedron)

Initially, the volumes of a pig and a ham are the same; that is, a truncated octahedron with
side length

√
2
2 and a box of size

√
2×

√
2×

√
2 have volume = 2

√
2. By an (B,O)-chimera

superimposition, then each copy of a pig (truncated octahedron) and each copy of B must
be dissected into P1, P2, P3, ..., P6 (Fig. 3.3). The nets of a truncated octahedron and a
box are considered by chimera superimposition, culminating in the implementation of a
hinged dissection technique.
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Figure 3.3: An (B,O)-chimera superimposition gives the dissections. [1]

Then we got the dissection of a pig (a truncated octahedron) into the box (Fig. 3.4).

Figure 3.4: The dissected pieces of a pig into a ham [1].

Figure 3.5: A ham to a pig [1].

Thus, the reversible pair of a pig (truncated octahedron) and a ham (box) can be ob-
tained as Figure 3.5.

3.1.2 A Ham (Box) to A Fox (Rhombic Dodecahedron)

Let us examine a reversible pair of a fox and a ham, a Rhombic Dodecahedron R with a
side length

√
3
2 and the box B of 1 × 1 × 2 have volume = 2. So, in an (B,O)-chimera
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superimposition, each R and B are dissected into six pieces.

Figure 3.6: The dissected pieces of a R into B [1]

3.1.3 A Ham (Box) to A Honeycomb (Hexagonal Prism)

The volume of the hexagonal prism and the box is the same as in the preceding instance.
Then, superimposed to create a superimposition of (B,O) chimeras. A (B,O)-chimera su-
perimposition guides on dissection.

Figure 3.7: A (B,O)-chimera superimposition gives 8 pieces of dissection. [1]
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Figure 3.8: A ham to a honeycomb [1]

3.2 Properties of Reversibility using the Double-Reversal-Plates Method

We know that the box and the considered solid have the same volume from the earlier
examples. There are two parts of the box when we superimposed it over the considered
solid: the part that is inscribed in the solid (blue part in Fig. 3.9) and the part that is not
engraved in the solid under consideration (green part in Fig. 3.9).

Figure 3.9: Two parts of the box when superimpose with the considered solid [1]

We will refer to the blue portion as the inscribed box I going forward. Based on
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observation, the volume of the two parts is equal.
We denote the notation Vinscribed as the volume of the inscribed polyhedron, and

Vconsidered as the volume of the considered solid. The following lemma is implied as follows:

Lemma 3.2 If the volume Vinscribed is not equal to the half of Vconsidered, then the polyhedron
can not be applied to the Double-Reversal-Plates Method.

We can determine whether the considered solid is capable of using the Double-Reversal
Plates Method based on Lemma 3.2. We will provide some example cases after that.

3.2.1 Octahedron

Without loss of generality, assume that an octahedron is oriented on the first octant, i.e.
it is placed on the positive side of X,Y, Z axis in three-dimensional space. Therefore, we
assume that each edge has a length equal to

√
2, and each vertex has coordinates as

follows: A(0, 0, 0), B(0,
√
2, 0), C(

√
2, 0, 0), D(

√
2,
√
2, 0), E(

√
2
2 ,

√
2
2 , 1).

Let us now proceed to ascertain the maximum volume achievable for the inscribed
box within the octahedron.

Theorem 3.3 There is no inscribed box of an octahedron satisfying the condition of Lemma
3.2.

Figure 3.10: Stimulation of Octahedron with side length
√
2 inscribed box
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Proof. Consider an octahedron with length
√
2. Since the octahedron exhibits symmetry

concerning the xy plane, without loss of generality, we will focus our consideration on the
maximum rectangular box contained within one-half of the octahedron.

Firstly, select a single point (H) on AE = ⟨
√
2
2 ,

√
2
2 , 1⟩ ; 0 < t < 1

Since △AEC ∼ △EHC and AE = AC , we can obtain that EH = HN .
Hence, HN=

√
2− t

√
(
√
2
2 )2 + (

√
2
2 )2 + 12 =

√
2− t

√
2.

Since the base is square and the height is t, the volume of an inscribed box is Vi =

t(
√
2− t

√
2)2.

We would find the maximum volume of an inscribed box of the upper octahedron.
Therefore, we find the derivative of Vi concerning t; i.e., we find t such that dV

dt = 0.
Therefore,

dVi

dt
= 2(3t2 − 4t+ 1) = 0

t =
4±

√
16− 12

6

t =
4± 2

6
= 1,

1

3

Given that t < 1, t = 1
3 . The maximum volume is Vi =

1
3(
√
2 −

√
2
3 )2 and the volume

of one half of the octahedron with the edge length
√
2 is VO = (

√
2)3

√
2
6

Vi

VO
=

1
3(
√
2−

√
2
3 )2

(
√
2)3

√
2
6

=
4

9
<

1

2

Therefore, the maximum volume of a box inscribed within an octahedron is strictly less
than half of the volume of the octahedron.

In this part, we conclude that the octahedron is unable to use the Double-Reversal
Plates method because the maximum volume of the inscribed box is less than the haft of
the octahedron’s volume.

3.3 Properties of Reversibility for Polyhedra

By Lemma 3.2 we can also conclude that an octahedron is not reversible to a rectan-
gular box since the octahedron in the previous example has an unequal Dehn invari-
ant, it cannot be reversed to be a parallel pipe (box). In the study ”On Angles Whose
Squared Trigonometric Functions are Rational” [2], the Dehn Invariant of Archimedean
Solid is shown in Figure 3.10.
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Figure 3.11: The Dehn invariant for the non-snub unit edge Archimedean polyhedra [2]

Beside the space filler group, which is the class of Dehn Invariant equal to 0, as you can
see in Fig. 3.11., the Dehn Invariant of the truncated cube, rhombicuboctahedron, and
cuboctahedron are the same. The purpose of this study is to apply the double reversible
method to other polyhedra where the Dehn invariant is not equal to 0.

It is established that the Dehn invariant of a parallelepiped is equal to zero. The
subsequent inquiry pertains to whether the Dehn invariant of a prism also equals zero.
This prompts further investigation into the Dehn invariant of prisms.

3.3.1 Dehn invariant of prisms

A point worth mentioning is the concept of tilling properties, These are the three regu-
lar tilings, which are each made up of identical copies of a regular polygon: equilateral
triangles, squares, and hexagons, as mentioned in Theorem 2.18.

It can now be established that parallelohedra and prisms are unsuitable candidates as
plates for non-space-filling purposes due to their Dehn invariant being equal to zero.

Lemma 3.4 A prism Pm with polygon P has a Dehn invariant equal to 0.

Proof. Let Pm denote a unit prism comprising regular polygonal faces and tilling space,
where ei(i = 1, 2, ..., n) represents the edge of the non-square polygonal face P , and
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ej(i = 1, 2, ...,m) denotes as the edge of the square polygonal face. Since α(ei) =
π
2 for

any i(i = 1, 2, ..., n), then we can obtain that

Df (Pm) =
∑

ei∈P

l(ei) · f(α(ei)) +
∑

ej∈P

l(ei) · f(α(ej))

= n · f(π
2
) +Df (P )

= 0 +Df (P )

= Df (P ).

Consider Df (P ) = n · f(π(n−2)
n ) = f((n− 2)π) = (n− 2) · f(π) = 0.

Hence, a prism Pm with polygon P has a Dehn invariant equal to 0.

Figure 3.12: ei is represented by the blue line, and ej by the green line.

3.3.2 Equality of volume

The study by Akiyama [1] explored the idea of reversibility among parallelohedra, espe-
cially those are space-filling. A key question raised was whether non-space-filling can
also be reversible. Based on previous knowledge suggesting that polyhedra with similar
Dehn invariants can be reversible, this study aims to find another condition for reversibility.
Akiyama’s study [1] showed that the relationships between the lengths of edges in poly-
hedra go beyond just having the same volume. Therefore, this investigation will look into
how these length relationships play out, using examples like the rhombic dodecahedron
and parallelepiped.
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The volume relation between a rhombic dodecahedron and a cube

Rhombic dodecahedron has a side length equal to
√
3
2 and a box of 1×1×2 which is 2 unit

cubes. Since Volume of rhombic dodecahedron : VR = 16
√
3a3

9 and Vcube = b3; where a, b are
edge sides of rhombic dodecahedron and cube respectively, we will consider VR = 2Vcube

(from the lemma 3.2). Therefore, a = k
√
3 where k ∈ Q. Then VR = 16

√
3a3

9 = 16k3 = 2b3.
Thus 8k3 = b3 or 2k = b. Without loss of generality, let b = 1, then we can obtain that
a =

√
3
2 when b = 1.

This example implies that the situation in which VR = 2VC occurs when a =
√
3
2 if b = 1.

Next, we will ascertain the relationships between the edges of the candidate polyhedra.
As we previously stated in Figure 3.11, the Dehn Invariant of the truncated cube, rhom-

bicuboctahedron, and cuboctahedron are the same. Therefore, we can consider P and
Q to be reversible if they have the same volume, We will consider the equality of the
volume of the pairs of these three polyhedra.

VCuboctahedron;VC =
5
√
2a3

3
(3.1)

VRhombicuboctahedron;VR =
2

3
b3(6 + 5

√
2) (3.2)

VTruncatedCube;VT = (7 +
14
√
2

3
)c3 (3.3)

A number of a is said to be a pure irrational number if a is written as a multiple of a
root of a number without any addition of rational numbers.

We denote the notation Q′
∗ as a set of impure irrational numbers. For example, a1 =

b
√
2 is said to be an impure irrational number whereas a2 = c+ d

√
2 such that c, d ∈ Q is

an impure irrational number but not a pure irrational number.

Case 1. The pair of cuboctahedron and rhombicuboctahedron

Lemma 3.5 For a volume VC as defined in (3.1) and VR as defined in (3.2) there is no b ∈ Q
and b ∈ Q′

∗ whereas a ∈ Q such that VC = kVR or VR = kVC for some integer k.

Proof. Assume that there exists b ∈ Q and b ∈ Q′
∗ satisfies the condition VC = kVR or

VR = kVC . Since a ∈ Q, VC =
5
√
2a3

3
is a pure irrational number, which means that kVR

is an irrational number for all integer k satisfying the condition. Without loss of generality,

assume that k = 1. Consider VR =
2

3
b3(6 + 5

√
2) =

5
√
2a3

3
= VC
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In the case that b ∈ Q, then VR ∈ Q′
∗, a contradict to VR the fact that is an irrational

number.
Suppose that b ∈ Q′

∗ then b = r + q and r ∈ Q, q ∈ Q′. The fact that VR = 2
3b

3(6 +

5
√
2) = (r3 + 3r2q + 3rq2 + q3)(6 + 5

√
2)23 . From the equation, at least r3 ∈ Q and

3r2q ∈ Q′, then b3 ∈ Q′
∗, That means VR ∈ Q′

∗, a contradict to the fact that VR is an pure
irrational number.

Hence, there is no b ∈ Q and b ∈ Q′
∗ satisfies the condition VC = kVR or VR = kVC for

some integer k if a ∈ Q.

Lemma 3.6 For a volume VC as defined in (3.1) and VR as defined in (3.2) there is no b ∈ Q
and b ∈ Q′

∗ whereas a ∈ Q′ such that VC = kVR or VR = kVC for some integer k.

Proof. Assume that there exists b ∈ Q and b ∈ Q′
∗ satisfies the condition VC = kVR or

VR = kVC . Without loss of generality, assume that k = 1.
Since a ∈ Q′, in the case of a =

√
2 then VC ∈ Q. Thus VR =

2

3
b3(6+5

√
2). Obviously,

there is no b ∈ Q and b ∈ Q′
∗ that VR ∈ Q

In the case of a ̸=
√
2, then VC ∈ Q′ so VR ∈ Q′.

Suppose that b ∈ Q then VR ∈ Q′
∗, a contradict to the fact that VR ∈ Q′.

Assume that b ∈ Q′
∗ then b = r + q : r ∈ Q, q ∈ Q′ Therefore, VR = 2

3b
3(6 + 5

√
2) =

(r3+3r2q+3rq2+ q3)(6+5
√
2)23 . From the equation, at least r3 ∈ Q and 3r2q ∈ Q′, then

b3 ∈ Q′
∗, which means VR ∈ Q′

∗, a contradict to the fact that VR ∈ Q′.
Thus, there is no b ∈ Q and b ∈ Q′

∗ satisfies the condition VC = kVR or VR = kVC for
some integer k if a ∈ Q′.

Initially, we establish that certain values of a /∈ Q and a /∈ Q′. Then we can obtain
that a ∈ Q′

∗ Subsequently, we propose an assumption regarding the permissible range of
values for a = p + q

√
2 based on VR has the term of

√
2. Next, we will formally explore

the relationship between the volumes of VC and VR and a specific parameter a = p+q
√
2.

Lemma 3.7 For a volume VC as defined in (3.1) and VR as defined in (3.2) there is no
a ∈ Q′

∗ : a = p + q
√
2, where p, q ∈ Q and p, q ̸= 0 such that VC = kVR or VR = kVC for

some integer k.

Proof. Assume that there exists a = p + q
√
2 ; p, q ̸= 0, then VC =

5
√
2(p+ q

√
2)3

3
.

Remark that VC =
5
√
2(p3 + 3p2q

√
2 + 6pq2 + 2q3

√
2)

3
=

5
√
2

3
[(p3 + 6pq2) + (3p2q

√
2 +
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2q3
√
2)]. Without loss of generality, assume that k = 1 then VC =

5
√
2(p+ q

√
2)3

3
=

2k(6b3 + 5b3
√
2)

3
= VR. Equating the corresponding coefficients now results in this:

1. In the case of the term of
√
2 :

5
√
2(p3 + 6pq2)

3
=

5
√
2(2kb3)

3
(3.4)

2. In the case of the term without
√
2 :

30p2q + 20q3

3
=

12kb3

3
(3.5)

Solving it results in:
p3 + 6pq2 = 2kb3 (3.6)

15p2q + 10q3 = 6kb3 (3.7)

From (3.6) and (3.7), we can obtain that 3p3 + 18pq2 = 15p2q + 10q3 which means that
3p3 − 15p2q + 18pq2 − 10q3 = 0

From Cardano’s method, Let p = x + 5q
3 then we can obtain the reduced form 3x3 −

7q2x− 70q3

9 = 0, Let x = u+ v rewrite above equation as follow:

3(u+ v)3 − 7q2(u+ v)− 70q3

9
= 0 (3.8)

3u3 + 3v3 + 9u2v + 9uv2 − 7q2(u+ v)− 70q3

9
= 0 (3.9)

3u3 + 3v3 + (u+ v)(3uv − 7q2)− 70q3

9
= 0 (3.10)

Setting 3uv − 7q2 = 0, the above equation become 3u3 + 3v3 − 70q3

9 = 0 in this way,
we can obtain the system below

u3 + v3 =
70q3

27
(3.11)

u3v3 =
343q6

27
(3.12)

It allows us to identify a quadratic equation with u3 and v3 as its roots. This equation
is :

t2 − 70q3t

27
+

343q6

27
= 0 (3.13)

Where u3 = q3(7027 +
√

4900
729 − 1372

27 ) and v3 = q3(7027 −
√

4900
729 − 1372

27 )
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Thus x = q( 3

√
70
27 −

√
4900
729 − 1372

27 + 3

√
70
27 +

√
4900
729 − 1372

27 )

Therefore p = q( 3

√
70
27 −

√
4900
729 − 1372

27 + 3

√
70
27 +

√
4900
729 − 1372

27 + 5
3)

since
√

4900
729 − 37044

729 is a complex number, a contradict to p ∈ Q.
Hence, there is no a ∈ Q′

∗ : a = p + q
√
2, where p, q ̸= 0 such that VC = kVR or

VR = kVC for some integer k. For a volume VC as defined in (3.1) and VR as defined in
(3.2).

Based on our comprehensive analysis, it has been established that there is no dis-
cernible correlation between the lengths of cuboctahedron and rhombicuboctahedron.
Consequently, we can infer that employing the Double-Reversal-Plates Method is not fea-
sible for a pair of cuboctahedron and rhombicuboctahedron.

Case 2. The pair of cuboctahedron and truncated cube

Lemma 3.8 For a volume VC as defined in (3.1) and VT as defined in (3.3) there is no b ∈ Q
and b ∈ Q′

∗ whereas a ∈ Q such that VC = kVT or VT = kVC for some integer k.

Proof. Assume that there exists c ∈ Q and c ∈ Q′ such that satisfies these conditions :
VC = kVT or VT = kVC Without loss of generality, assume that k = 1.

Since a ∈ Q, VC =
5
√
2a3

3
∈ Q′ which means that VT ∈ Q′. Therefore, VT = (7 +

14
√
2

3
)c3 =

5
√
2a3

3
∈ Q′ .

In the case that c ∈ Q, then VT ∈ Q′
∗, a contradict to the fact that VT ∈ Q′.

Suppose that c ∈ Q′
∗ then c = r + q : r ∈ Q, q ∈ Q′ .

Thus,

VT = (7 +
14
√
2

3
)c3 = (7 +

14
√
2

3
)(r3 + 3r2q + 3rq2 + q3)

. From the equation, at least r3 ∈ Z and 3r2q ∈ Q′, then b3 ∈ Q′
∗, which means that

VT ∈ Q′
∗, a contradict to the fact that VT ∈ Q′.

Therefore, there is no b ∈ Q and b ∈ Q′
∗ whereas a ∈ Q satisfies these conditions :

VC = kVR or VR = kVC for some integer k.

Lemma 3.9 For a volume VC as defined in (3.1) and VT as defined in (3.3) there is no b ∈ Q
and b ∈ Q′

∗ whereas a ∈ Q′ such that VC = kVT or VT = kVC for some integer k.

Proof. Assume that there exists c ∈ Q and c ∈ Q′ such that satisfies these conditions :
VC = kVT or VT = kVC Without loss of generality, assume that k = 1.
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In the case that a =
√
2, then VC ∈ Q. Thus, VT = (7 + 14

√
2

3 )c3. Obviously, there is no
c ∈ Q and c ∈ Q′ that VR ∈ Q

In the case that a ̸=
√
2, then VC ∈ Q′ so VT ∈ Q′ .

Suppose that c ∈ Q then VT ∈ Q′
∗, a contradict to the fact that VT ∈ Q′.

Assume that c ∈ Q′
∗ then c = r + q : r ∈ Q, q ∈ Q′. Thus,

VT = (7 +
14
√
2

3
)c3 = (7 +

14
√
2

3
)(r3 + 3r2q + 3rq2 + q3)

. From the equation, at least r3 ∈ Z and 3r2q ∈ Q′, then b3 ∈ Q′
∗, which means that

VT ∈ Q′
∗, a contradict to the fact that VT ∈ Q′.

Therefore, there is no b ∈ Q and b ∈ Q′
∗ whereas a ∈ Q′ such that VC = kVT or

VT = kVC for some integer k.

Following a similar line of reasoning as in Case 1, we deduce that a = p + q
√
2 based

on VT having the term of
√
2. Next, we will formally explore the relationship between the

volumes of VC and VT with a = p+ q
√
2.

Lemma 3.10 For a volume VC as defined in (3.1) and VT as defined in (3.3) there is no
a ∈ Q′

∗ : a = p + q
√
2, where p, q ∈ Q and p, q ̸= 0 such that VC = kVT or VT = kVC for

some integer k.

Proof. Assume that there exists a = p+q
√
2 ; p, q ̸= 0 then VC =

5
√
2(p+ q

√
2)3

3
. Without

loss of generality, assume that k = 1 then VC = VT . Thus,

VC =
5
√
2(p+ q

√
2)3

3
= (7 +

14
√
2

3
)kc3 = VT

. Equating the corresponding coefficients now results in this:
1. In the case of the term

√
2 :

5
√
2(p3 + 6pq2)

3
=

14
√
2(kc3)

3
(3.14)

2. In the case of the term without
√
2 :

30p2q + 20q3

3
= 7kc3 (3.15)

Solving it results in:

5p3 + 30pq2 = 14kc3 (3.16)

30p2q + 20q3 = 21kc3 (3.17)
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From the results, we can obtain that 3
2(5p

3 + 30pq2) = 30p2q + 20q3 which means that

3p3 − 12p2q + 18pq2 − 8q3 = 0 (3.18)

From Cardano’s method, Let p = x + 4q
3 then we can obtain the reduced form 3x3 +

2q2x+ 16q3

9 = 0, Letting x = u+ v rewrite above equation as follows:

3(u+ v)3 + 2q2(u+ v) +
16q3

9
= 0 (3.19)

3u3 + 3v3 + 9u2v + 9uv2 + 2q2(u+ v) +
16q3

9
= 0 (3.20)

3u3 + 3v3 + (u+ v)(9uv + 2q2) +
16q3

9
= 0 (3.21)

Setting 9uv + 2q2 = 0, the above equation become 3u3 + 3v3 + 16q3

9 = 0 in this way,
we can obtain the system below:

u3 + v3 = −16q3

27
(3.22)

u3v3 = − 8q6

729
(3.23)

It allows us to identify a quadratic equation with u3 and v3 as its roots. This equation
is :

t2 +
16q3t

27
− 8q6

729
= 0 (3.24)

Where u3 = q3(−16
27 +

√
256
729 +

32
729) and v3 = q3(−16

27 −
√

256
729 +

32
729)

Thus x = q( 3

√
−16

27 −
√
288
27 + 3

√
−16

27 +
√
288
27

Therefore p = q
3(

3
√

−16−
√
288 +

3
√

−16 +
√
288), Thus p is an irrational number, a

contradicts to p ∈ Q.
Hence, there is no a ∈ Q′

∗ : a = p + q
√
2, where p, q ∈ Q and p, q ̸= 0 such that

VC = kVT or VT = kVC for some integer k.

Based on the evidence presented in the proof above, we conclude that both cubocta-
hedron and truncated cube are not suitable candidates for the application of the Double-
Reversal-Plates Method.
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Remarks on the case of rhombicuboctahedron and truncated cube

When we employ a similar strategy to the previous cases, we found that c3 =
2b3

7
(−2 +

3
√
2) as follows:

Proof. Consider VT = (7 + 14
√
2

3 )c3 and VR = 2
3b

3(6 + 5
√
2)

Assume that VT = VR then

(7 +
14
√
2

3
)c3 =

2

3
b3(6 + 5

√
2)

(7 + 14
√
2

3 )c3

2

3
b3(6 + 5

√
2)

= 1

c3

b3
=

2
3(6 + 5

√
2)

(7 + 14
√
2

3 )

c3

b3
=

(12 + 10
√
2)

(21 + 14
√
2)

c3

b3
=

2

7

(6 + 5
√
2)

(3 + 2
√
2)

c3

b3
=

2

7
(6 + 5

√
2)(3− 2

√
2)

c3

b3
=

2

7
(−2 + 3

√
2)

Due to VR and VT being components of the same term, no definitive conclusions
can be drawn. However, based on the orientation analysis between truncated cube and
rhombic cuboctahedron, we have a conjecture that they are unsuitable candidates for the
proposed method.
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Figure 3.13: The picture of truncated cube and rhombic cuboctahedron [The figures are
adapted from https://www.geogebra.org/m/rgqyn3vt]



Chapter 4

Conclusion

Firstly, our project thoroughly examined the Double-Reversal-Plates Method to see if it
could work for different polyhedra. We developed a criterion called Lemma 3.2 to help
us decide if a polyhedron could be dissected effectively using this method.

Secondly, we explored the idea of reversibility among non-space-filling polyhedra, using
Dehn invariants as our guide. We found that some polyhedra, like the Cuboctahedron,
Truncated Cube, and Rhombicuboctahedron, showed potential for being reversible.

In summary, we found that some polyhedra like the Cuboctahedron, Truncated Cube,
and Rhombicuboctahedron showed promisisng for being reversible. However, Cuboctahe-
dron and Truncated Cube, and Cuboctahedron and Rhombicuboctahedron, do not have
a clear volume relationship needed for the Double-Reversal-Plates Method to work.

In conclusion, our project represents a significant contribution to the field of geometric
analysis and properties of reversibility, offering both theoretical insights and practical impli-
cations for the application of the Double-Reversal-Plates Method. Moreover, it underscores
the ongoing need for further research and refinement in understanding the properties of
reversibility among polyhedral forms, with a particular emphasis on enhancing methodolo-
gies for identifying suitable dissections.
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7 Conclusion

5 Dehn invariant

3 Scope of the study

1 Introduction

2 Objective

6 Equality of volume

4 Methodology
In the Double-Reversal-Plates Method, the dissection piece of two polyhedrons is
placed on both sides (Head and Tail) of the same net (plate). In this case, the net
(plate) for parallelohedra is a parallel pipe (cube). 
We can determine whether the considered solid is capable of using the Double-
Reversal Plates Method based on Lemma 3.2 :  If the volume V(inscribed) is not
equal to the half of V(considered), then the polyhedron can not be applied to the
Double-Reversal-Plates Method.

Our project explored the Double-Reversal-Plates Method for dissecting polyhedra, introducing Lemma 3.2 as a criterion for effectiveness. We also investigated reversibility among
polyhedra using Dehn invariants, identifying potential reversibility in the Cuboctahedron, Truncated Cube, and Rhombicuboctahedron. However, the volume relationships of some
pairs hindered the method's applicability. Our findings contribute to understanding reversibility in polyhedra, emphasizing the need for further research and improved dissection
methodologies.

Beside the space filler group, which is the class of Dehn Invariant equal to 0,  the
Dehn Invariant of the truncated cube, rhombicuboctahedron, and cuboctahedron
are the same. The purpose of this study is to apply the double reversible method
to other polyhedra where the Dehn invariant is not equal to 0

This study focuses on the investigation of reversibility through the application of
hinged dissection transformations in Archimedean solids. The primary objective is
to analyze the feasibility of the Double-Reversal-Plates Method.

REVERSIBLE PROPERTIES 
OF POLYHEDRA

In this independent study, we have a motivation from the study of Professor Akiyama Jin on the topic “On Reversibility among
Parallelohedra”. This study examines the reversibility of non-space filling polyhedra by hinge dissection using the double reversal
plate method. Using insights from Professor Akiyama Jin’s study, we derive a lemma for peer-checking whether space filla can be
achieved using this method. Our analysis identifies the trun-cated cube, rhombicuboctahedron, and cuboctahedron as potential
candidates because they are non-space filla with the same Dehn invariant, suggesting potential reversibility between them. Through
further investigation, considering volume equality, we found that the pair of rhombicuboctahedron and cuboctahedron and the pair of
truncated cube and cuboctahedron cannot be reversed using the double reversal plate method.

In this study, we investigate to determine whether this method can be extended to the
Double-Reversal-Plates Method.
By examining the potential challenges and modifications required for such adaptation,
this study aims to contribute to a broader understanding of reversible transformations

To identify conditions suitable for the Double Reversible Plate Method. 
To ascertain conditions conducive to reversal in non-space-filling scenarios. 
To evaluate the feasibility of applying the Double Reversible Plate Method in
non-space-filling.
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Example of the Double-Reversal-Plates Method

A point worth mentioning is the concept of tilling properties, These are the three
regular tilings, which are each made up of identical copies of a regular polygon:
equilateral triangles, squares, and hexagons, as mentioned in Theorem 2.18. It can
now be established that parallelohedra and prisms are unsuitable candidates as
plates for non-space-filling purposes due to their Dehn invariant being equal to
zero.

The study by Akiyama [1] explored the idea of reversibility among parallelohedra,
espe�cially those are space-filling. A key question raised was whether non-space-filling
can also be reversible. Based on previous knowledge suggesting that polyhedra with
similar Dehn invariants can be reversible, this study aims to find another condition for
reversibility. Akiyama’s study [1] showed that the relationships between the lengths of
edges in poly�hedra go beyond just having the same volume. 

Case 1. The pair of cuboctahedron and rhombicuboctahedron

Case 2. The pair of cuboctahedron and truncated cube 

Remarks on the case of rhombicuboctahedron and truncated cube 

Based on our comprehensive analysis, it has been established that there is no dis�cernible
correlation between the lengths of cuboctahedron and rhombicuboctahedron. Consequently,
we can infer that employing the Double-Reversal-Plates Method is not feasible for a pair of
cuboctahedron and rhombicuboctahedron.

Based on the evidence presented in the proof above, we conclude that both cubocta�hedron
and truncated cube are not suitable candidates for the application of the Double�Reversal-
Plates Method. 

Due to volume of rhombicuboctahedron and volume of truncated cube being components of
the same term, no definitive conclusions can be drawn. However, based on the orientation
analysis between truncated cube and rhombic cuboctahedron, we have a conjecture that they
are unsuitable candidates for the proposed method.
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