OPTIMIZING NEURAL ORDINARY DIFFERENTIAL
EQUATIONS WITH LOOKAHEAD OPTIMIZER

NIYATA SANNGAI
STUDENT ID: 630510482

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE
CHIANGMAI UNIVERSITY
SEMESTER 1, ACADEMIC YEAR 2023

OPTIMIZING NEURAL ORDINARY DIFFERENTIAL EQUATIONS
WITH LOOKAHEAD OPTIMIZER

NIYATA SANNGAI

A PROJECT HAS BEEN APPROVED
TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF BACHERLOR OF SCIENCE
IN MATHEMATICS

EXAMINING COMMITTEE:

CHAIRPERSON

........ # M mewmw MEMBER

(Asst. Prof. Dr. Hatairat Yingtaweesittikul)

October 4, 2023

OPTIMIZING NEURAL ORDINARY DIFFERENTIAL EQUATIONS
WITH LOOKAHEAD OPTIMIZER

NIYATA SANNGAI
STUDENT ID: 630510482

A PROJECT HAS BEEN APPROVED
TO BE A PARTTAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF BACHERLOR OF SCIENCE
IN MATHEMATICS
CHIANG MAI UNIVERSITY
2023

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Dr. Nuttawat Sontichai for
his invaluable help and constant encouragement throughout this research. I very much appreciate
him for his support and advice. I would not have achieved this far and this project would not have
been completed without all the care and support that I have always received from him. And also
Dr. Ovidui Bagdasar for giving me an opportunity to working with him and for all his advice and
support while I was in the United Kingdom. The time for living in the United Kingdom passed
smoothly because of his kind.

Next, I sincerely thank Development and Promotion of Science and Technology Talents
Project scholarship for giving me a great opportunity. this Research may not take place, if I receive
financial assistance from them.

I would also like to thank all my friends both in Thailand and the UK for having my back
and for their encouragement. You all are really making my time memorable and I appreciate that
a lot.

Finally, I would like to thank you to myself for not giving up. Even though I'm tired and
discouraged, I still keep doing this project until I make it. So I hope that this research will be
useful in the future.

NIYATA SANNGAI

Title OPTIMIZING NEURAL ORDINARY DIFFERENTIAL EQUATIONS

WITH LOOKAHEAD OPTIMIZER

Author NIYATA SANNGAI

Student ID: 630510482

Advisory Committee Asst. Prof. Dr. Nuttawat Sontichai

Member Asst. Prof. Dr. Hatairat Yingtaweesittikul

Abstract

This study delves into the application of Neural Ordinary Differential Equations (Neural
ODEs) within the machine learning domain, introducing an innovative optimization strategy us-
ing the Lookahead Optimizer. Utilizing Fuler’s Method for both forward and adjoint sensitivity
calculations, we discuss the trade-offs between computational efficiency and numerical accuracy.
Our experimental results indicate that the Lookahead Optimizer converges faster at lower learning
rates and exhibits greater stability at higher learning rates compared to standard Gradient De-
scent. This work provides empirical evidence supporting the efficacy of the Lookahead Optimizer

in Neural ODE contexts and offers an open-source codebase for future research.

ii

Contents

ACKNOWLEDGEMENT!

ABSTRACT

CONTENTS

0_Introductionl

12 Mathematical Background

2.1 Chain Ruled

2.2 Neural Networkl

2.3 [Deep Learning Neural Network]

2.4 Xavier methaod|

2.5 |Gradient Descent algorithm|

2.6 [Residual Neural Networks (ResNets)|

2.7 [Euler’s Method

2.8 Big O notation|

13 Methodology]

3.1 Neural Ordinary Differential Equations (NODEs))

3.2 Lookahead Optimizer: k steps forward, 1 step backl

3.3 mproving Adjustment of NODEs’s Weights

4 Experimental Study|

iii

ii

iii

11

12

13

13

19

20

23

D Conclusion

iv

33

35

37

Chapter 1

Introduction

Ordinary Differential Equations (ODESs) have long been fundumental in applied mathe-
matics, with applications in diverse fields such as physics, engineering, biology, and economics [I].
The recent introduction of Neural Ordinary Differential Equations (Neural ODEs) has extended
the reach of ODEs into machine learning and data science, especially in areas like time-series mod-
eling and generative modeling [, B]. However, the optimizing of Neural ODEs presents unique
challenges, including issues like vanishing gradients and stiff ODEs, which often make traditional
optimization algorithms like Stochastic Gradient Descent (SGD) and Adam ineffective [4, 6].

In this study, we introduce a pioneering method for training Neural ODEs with fixed
initial and target states. Our approach encompasses implementing a Neural ODE with a sigmoid
activation function, utilizing the Euler forward method [I2] for its solution, and exploring the
impact of various optimization techniques, notably standard gradient descent and the Lookahead
optimizer. Additionally, we adopt the Glorot (Xavier) weight initialization [5] to ensure stable
initial weights and maintain fixed parameters such as time intervals, maximum time, and stopping
criteria. This comprehensive strategy is further bolstered by our experiments with distinct hyper-
parameters, including learning rate, time points, and iterations for both standard gradient descent
and lookahead.

The primary contributions of this study are twofold: we provide empirical evidence for the
efficacy of the Lookahead Optimizer in the context of Neural ODEs contexts and we offer an acces-
sible and implement codebase, which will be publicly available for further academic exploration.

This study primarily aims to investigate the performance of the Lookahead Optimizer
within Neural ODEs contexts and to offer an open-source, user-friendly codebase. This will serve
as a practical guide for those new to Neural ODEs and keen or further exploration.

Expected benefits include an enhanced understanding of Neural ODE optimization and

educational value, especially for students and educators in applied mathematics and machine learn-
ing.
Scope of the Study

1. Optimization Algorithms: The study will compare the Lookahead Optimizer with
traditional method, excluding other optimization algorithms.

2. Numerical Methods: The focus will be on Euler’s Method for ODE solutions. Other
techniques like Runge-Kutta will not be explored.

3. Experimental Validation: Validation will be base on predefined experiments to test the
Lookahead Optimizer’s efficacy in Neural ODE contexts. These may not encompass all possible
Neural ODE applications or configurations.

This report is organized into sections covering Mathematical Background, Methodology,
Experimental Study, Conclusion and Discussion. The latter will expand on avenues for future

research, detailing potential research directions and their significance.

Chapter 2

Mathematical Background

2.1 Chain Rules

For any real-valued function f compose of the other real functions p;(x), when i =
1,2,...,n such that f = p,(x) opp—1(x) 0o --opa(z) o p1(x), the rate of change of f with respect to

x is expressed as [
4 _ 4 dpn dp2dp1
dr dpnpdpp—1 dpy dx

2.2 Neural Network

Neural Network (NN) is interconnected layers of small units called nodes that perform
mathematical operations to detect patterns in data. NN algorithms are built in a way that mimics
how human neurons work.

Firstly, we will introduce key terms used when discussing Neural Networks.

1. Neuron or node: a basic building block of a NN. It takes weighted values, performs
mathematical calculations and produces output. It is also called a unit, node or perceptron.

2. Input layer: The layer of information or data from the outside world enters the
neural network.

3. Hidden layers: The layer that take input from the input layer or other hidden
layers. Each hidden layer analyzes the output from the previous layer, processes it further, and
passes it on to the next layer.[8]

4. Output Layer: The layer which give the final result of all the data processing by

the network.

5. Weights: These values explain the strength (degree of importance) of the connection

between any two nodes.

6. Bias: is a constant value added to the sum of the weighed sum of the inpts. It is
used to accelerate or delay the activation of a given node.

7. Activation function: is a function used to introduce the non-linearity phenomenon
into the neural network system. This property enibles the network to learn more complex patterns,
for example

a sigmoid function, a function with a characteristic S-shaped curve.

1

)= T

Domain of a sigmoid function is between (—o0, 00) and range is between (0, 1). Therefore,
it is especially used in binary classification or in models where we have to predict the probability
as an output.

a hyperbolic tangent function is also have S-shaped like logistic sigmoid function.

e —e %

)= aye=
Domain of a tanh function is also (—00,00) but the range of the tanh function is (—1,1).

So it gave better performance than a sigmoid function from having larger gredient.

a ReLU (Rectified Linear Unit) Activation Function

f(x) = max(0, z)

Domain of a ReLU function is (—oo,00) and the range of the function is (0,z). The
gradient of ReLLU is 1 for positive values input and 0 for negative values input.

8. Deep Neural Network (DNN): These are an neural networks with many hidden
layers.

Next, we will explain how does it work by considering simplest neural network called
perceptron, Figure 1. A perceptron was invented by Frank Rosenblatt at the Cornell Aeronautical
Laboratory in 1957. A perceptron has one or more than one inputs, a process, and only one
output. It is used as an algorithm or a linear classifier to facilitate supervised learning of binary
classifiers. the perceptron relies on a linear predictor function combining weights and bias to make
its predictions. Its predictions are based on a combination that includes weights and bias by

algorithm below.

X1
\
X1 w2
1,if Y wxtb>0

m
(wix)tbias 3y flx)= N
W {o, if)y Wxtb<0 y

/ =

x1

/

.)2
Summation

Inputs Weights and Bias Activation Output

Figure 1 : Simply Neural Networks Architecture

https://www.nomidl.com/wp-content /uploads/2022 /04 /image-5.png

Perceptron algorithm

Feed-forward
Input State : Require input X, initial weight wq, initial bias bg
Hidden State : z(t) = woX + by

if 2(t) >0: h(t) =1

else : h(t) =0
Output State : Return h(t)
backpropagation
Require true values Y, learning rate n
Calculate Loss : L = (h(t) — YV)?
Calculate Gradient :aa—meo, gTi
Update Weight and Bias :

wo = wo + 773%0

b():bo-i-ﬂ%

then keep repeating the algorithm untill loss value reach the setisfied error.

5

2.3 Deep Learning Neural Network

Deep learning is a subset of machine learning and which is essentially a neural network
with multiple layers. It distinguishes itself from classical machine learning through the type of data
it processes and the methods it employs for learning. Deep learning neural networks attempt to
mimic the human brain by using a combination of data inputs, weights, and biases. These elements
work in concert to accurately recognize, classify, and describe data.

Deep neural networks comprise of multiple layers of interconnected nodes, Each layers
builds upon the previous one to refine and optimize predictions or categorizations. This sequence
of computations, which processes through the input, hidden, and output layers, is known as feed-

forward propagation.

Feedforward (FINN) Algorithm

In neural networks with ¢ hidden layers, we define the variables as follow

€ 21 hy
xt e s Zt = 5 al’ld ht -
xn Z’Vl hn
1 1 0(1)

when x;, z;, and h; is the input vector, the value from hidden layers, and the vector
at time t, where t = 1,2, ... in order.

The following equations describe the feedforward process

241 — Wy - ht,1 (21)

hy = o(z) (2.2)

here w; = represent the weigh, and o is the activate function.

Wn

Another essential process is backpropagation. This algorithm adjusts the weights
and biases by calculating the derivative of the errors in predictions with respect to the

weights it dose so by moving backward through the layers, as shown below.

Backpropagation Algorithm
We define the error as the loss function L(h;) = o(z;). the weight update equation
is given by :

oL

W =
t

when 7 is leraning rate for updating weight.
Together, feedforward propagation and backpropagation enable a neural network to
make predictions and adjust for errors. As the algorithm iterates, its accuracy improves

gradually.

2.4 Xavier method

For starters, an improper initialization would lead to an unoptimizable model.
Choosing the right initializer is an essential step in training to maximize performance. For
example, if you go with the Xavier initialization, you must ensure this technique is appro-
priate for your model. In addition, initializing weighted neural networks also shortens the
convergence time and minimizes the loss function.

The Xavier initialization[5] is a popular technique for initializing weights in a neural

network. It is a state-of-the-art technique with which anyone interested in neural networks

should be sufficiently acquainted. In the field of deep learning, we use the Xavier method
to initialize the weights of neural networks to mitigate the problem of vanishing gradients
and exploding gradients. This introduced method in 2010. The main purpose of initializing
weights through the Xavier method is to propagate effectively during forward and backward

propagation.

2.5 Gradient Descent algorithm

Gradient descent [14] is one of the most popular algorithm stoper for optimization
because of its simplicity. Gradient descent is a way to minimize an objective function J(0)
parameterized by a models parameters # € R? by updating the parameters in the opposite
direction of the gradient of the objective function V.J(#) with respect to the parameters.
The learning rate n determines the size of the steps we take to reach a local minimum. In
other words, we follow the direction of the slope of the surface created by the objective
function downhill until we reach a local minimum point.

There are three variants of gradient descent, which differ in how much data we use
to compute the gradient of the objective function.

1. Batch gradient descent
batch gradient descent computes the gradient of the cost function with respect

to the parameters 6 for the entire training data set

0=0—nVJo)

As we need to calculate the gradients for the whole data set to perform one
update. So batch gradient descent can be very slow and is intractable for data sets that do
not fit in memory. Batch gradient descent is guaranteed to converge to the global minimum
for convex error surfaces and to a local minimum for non-convex surfaces.

2. Stochastic gradient descent (SGD)
Stochastic gradient descent(SGD) in contrast performs a parameter update

for each training example z; and label y;

SGD performing one update at a time. It is therefore usually much faster
and can also be used to learn online. Due to SGD performs frequent updates, it has a high
variance that cause the objective function to fluctuate heavily. While batch gradient descent
converges to the local minimum of the parameters are placed in, SGDs fluctuation, on the
one hand, enables it to jump to new and potentially better local minimum point. However,
it has been shown that when we slowly decrease the learning rate, SGD shows the same
convergence behaviour as batch gradient descent, almost certainly converging to a local or
the global minimum for non-convex and convex optimization respectively.

3. Mini-batch gradient descent
Mini-batch Gradient Descent finally takes the best of both worlds and per-

forms an update for every mini-batch of n training examples

0=0—-nVJO,Tiir1, Yiit1)

This way, it reduces the variance of the parameter updates, which can lead
to more stable convergence and can make use of highly optimized matrix optimizations.
gradient descent is typically the algorithm of choice when training a neural network and the

term SGD usually is employed also when mini-batches are used.

2.6 Residual Neural Networks (ResNets)

Residual Networks or ResNets, are a specific type of neural network introduced in
2015 by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun in their paper Deep
Residual Learning for Image Recognition . [13]

One of the most effective properties of ResNets is their ability to mitigate the van-

ishing gradient problem commonly encountered in deep learning architectures.

f\:‘

F(x) identity

x + F(x) Y

Figure 2 : ResNets Architecture

Source : https://neurohive.io/en/popular-networks/resnet/

The ResNets architecture can be described by a sequence of tranformations to the hidden

state as follow :

he = o(z) + 2 (2.3)

Zt — Wy - ht—l (24)

Before delving into how ResNets solve the vanishing gradient problem, It’s important
to note that the issue arises when the gradients of the loss function with respect to the weights
of the early layers become vanishingly small. As a result, these layers receive little to no
updates during backpropagation, leading to slow convergence or even stagnation.

In a standard Artificial Neural Network, the iteration can be described by (21) and
o)

Using the chain rule, we find

OL(h,) OL(hy) Ohy

ow, Oh; Ow;
 OL(hy) Ohy Oz
" Ohy 0z Ow,

aL(hy)
= agbtt)O' (Zt)ht—l

In deep networks, this can be further expanded as

0L(h1) . 0L(ht) aht aht_l 0h2 8h1 821

Ow, by OhyOhyy Oy 9z 0wy
OL(h / ! !
= 85@ t)U/<Zt)wtO'/(zt—1>wt—1 -+ 0'(23) w30’ (22) w0 (21) ho
t
OL(h
= P o (zrma) ' (o) (i - wion()
t

OL(h) =
B aglt)U (2¢) <i110 (Zi)wz‘+1> T

While using gradient base activate function, there are also cases where Hf;,lc o'(h;)
approaches zero, especially when k£ € N and k£ < ¢ — 1. In such cases, dL(hy)/Owy, also

converges to zero. This result in minimal height updates in the early layers, contributing to

10

the vanishing gradient problem.
In ResNets, the sequence of tranformations to the hidden state can also be described

by (23) and (Z4). The gradient can be computed as

OL(hy) OL(h)) Ohy Ohyy Ohy Oy Oz

ow, Ohy Ohy_y Ohy—s Ohy 0z 0wy
8L(ht) ! / /
= oh [0'(z) + Hwlo'(ze-1) + w1+ -+ [0'(21) + 1w (2)

See that even though o’(2;) lead to zero, term []._,[0"(2) + 1] still not converge to

zero. So here was how ResNets solve a vanising gradeint problem.

2.7 Euler’s Method

Euler’s Method [12] is the most basic explicit method for the numerical integration
of ordinary differential equations (ODEs) with a given initial value.When defining an ODE

of order N as

y ™M (@) = flay(@),y'(2), ...y V()

The process begins with an initial value 7y by setting step size h and

The variable are then updated until a satisfied error level is reached, according to

fiJrl == fl +h

11

and

Yi+1 Yi + hy;
Yit1 yi + hyi
Yit1 = : =
Yisr g+ hy™)
yirt o™ hf (@), v,y (@)

The above formula is implemented iteratively until an approximation of the solution to the

ODEs is reached.

2.8 Big O notation

Big O notation (O) is a mathematical notation that describes the limiting behavior
of a function when the argument tends towards a particular value or infinity. The letter O
stand for Ordnung, meaning the order of approximation.

In computer science, big O notation is used to classify algorithms according to how
their run time or space requirements grow as the input size grows.

Big O can also be used to describe the error term in an approximation to a math-
ematical function. The most significant terms are written explicitly, and then the least-
significant terms are summarized in a single big O term. Consider, for example, the expo-

nential series

2 1’3
F=ltrd gt
ZE2
:1+x+§+0(x3)

=1+z+ O(2?

12

Chapter 3
Methodology

3.1 Neural Ordinary Differential Equations (NODEs)

Neural Ordinary Differential Equations (NODESs) represent a new family of deep
neural network introduced by Ricky chen, Yulia Rubanova, Jesse Bettencourt, and David
Duvenaud [2] this work recived the "Best Paper Awards" at the Neural Information Processing
Systems (NeurIPS) conference in 2018 due to its innovative perspective on neural network
architecture.

In NODEs, rather than specifying a discrete sequence of hidden layers, the model’s
parameterize the derivative of the hidden layer states to create continuous-depth models.
This allows to training of models using ODEs, considering forward propagation in a neural
network as the one-step discretization of an ODE. Starting with ResNets, the model composes
a sequence of tranformations to the hidden state in (E33)), these the model similar to Euler’s
Method for first-order ODEs. Subsequently the model modulates ResNets by adding layers
and taking a smaller steps, then parameterizes the continuous dynamics of hidden units

using an ordinary differential equation in form

dhy

% = f(h'btae)

For the feedforward algorithm, the model starts from input layer ho, X, and defines
the output layer hr as the solution. This value can be computed by a black-box differential
equation solver, which evaluates the hidden unit dynamics f wherever necessary to achieve

the desired accuracy. This distinguishes ResNets and NODEs as shown in Figure 3.

13

Residual Network ODE Network

I

—5 -5 0 5
Input/Hidden/Output Input/Hidden/Output

Figure 3 : Contrasts between two approaches.

Soucre : Neural Ordinary Differential Equations. [Z]

the main difficulty in training continuous- depth network lies in performing back-
propagation through the ODE solver. While, calculating the derivative through the operation
of feedforward is strightforward , it incurs a high memory costs and introduces additional
numerical errors.

Therefore, the ODE solver is treated as a black box. Gradients are cumputed using
the adjoint sensitivity method, which solves a second, augmented ODE backward in time.
This method is applicable to all ODE solvers, scales linearly with problem size, has low
memory costs, and controls numerical errors effectively.

The loss function is defined as

L(z(t1)) =L (z(to) + /t 1 f(z(t),t, Hdt)) = L(ODESolve(z(to), f,to,t1,0))

gradients with respect to # are required. The first step is to assign the gradient of the loss
with respect to hidden state z(t) at each time t. This quantity is defined as the adjoint
a(t) = OL/0z(ty).

Consider
dL

dz(t)

a(t) =

In standard neural networks, the gradient of hidden layer h; depends on the gradient

of hidden layer h;.1 by chain rule

AL dL dhyy
dhy dheyr dhy

With a continuous hidden state, we can write the transformation after an € change

14

in time as

t+e
z(t+¢€) = /t f(z(t),t,0)dt + z(t) = T-(2(t), 1)

and chain rule can also be applied

dL dL dz(t+e) B
L0 " dtre e & A =alite)

IT.(2(t),t)
0z(t

(3.1)

~—

then consider

da(t) — lim a(t +¢) —a(t)
dt e—0+ €
. a(t+e) —a(t+ 6)%@)7—;(2’@))
e—0t €
L alt+) — alt +)5l (10 + £ ((0,1,6) + O)
N ai%a' 9
at+¢) —a(t +¢) (I + e EOLN 0(52))
sir(%‘ g
. —ea(t + 5)—8f(§i2’)t’0) + O(e?)
e—0t 15

= lim —a(t + e)%&’;’@)

+ 0(?)

So its dynamics are governed by another ODE

doft) _ _ yrdfG0.1.0)

dt 0z (3:2)

Finding that adjoint method (BI) is similar to backpropagation(82) because the
adjoint state needs to be solved backward in time. Then we specify the constraint on the
last time point, the gradient of the loss with respect to the last time point, and obtian the
gradient with respect to the hidden state at any time, including the initial value.

By initial condition

dL
CL(tN) == dz(tN) (33)
alte) = alty) + /t dc;(tt)dt:a(tN)— /t a(t)TWdt (3.4)

15

Assume that loss function L depends only on the last point ¢y.But if function L
depends on intermediate time point, we can repeat te adjoint step for each of the intervals
[tn_1,tN], [EN—2, tn_1] in the backward order and sum up the obtained gradient.

We can generalize (B72) to obtain gradients with respect to 0, a constant with respect
to ¢, the initial ¢y, and end time ty. We view € and ¢ as states with constant differential
equations and write

00(t)

o 0 and e =1

then form an augmented state with corresponding differential equation and adjont

state,

z f([z,0,t])
d
E 0 (t) = 0 :faU9<[Zv'97t])
t 1
a
dL dL
aaug = ay when Qg (t) = m and at(t) = F(t)
ag
consider the Jacobian of f
of of of
0z 00 Ot
8faug
Sl e t
[z, 0,1] o 0 oW
0 0 0

where each 0 is a metrix of zeros with appropriate dimensions. After that with (B=2)

16

we obtain

daaug(t) _ afaug
a7 |a) a) a®)| a5 6.0
~ o o a|©

Next, setting ag(ty) =0

consider

dL
E = ag(to)
_ _/toa(t)af(zgg,t,m

and consider gradients with respect to ¢y, and ¢y

AL dL dz(ty)
dtN N dZ(tN) dt]v

=a(ty)f(z(tn), tn,0)

dto o0

tn

i = a;(to) = a,(tn) — / i a(t)—af(z<t>’t’9)

(3.5)

(3.6)

(3.7)

from (B2), B3), B4), (BH), (BE), and (BXZ) we have gradients for all possible

inputs to an initial value problem solver. So NODEs can be composed as the algorithm

shown below.

17

Algorithm 1 : NODEs Algorithm.

Feed-forward

Require : Input values hg, activation function o, and initial weight 6, learning rate 7

Define : dh/dt = o(z,0)

Reverse-mode

oL

Require: to,t1,0,2(t1), loss gradient REe)

Define initial augmented state:

so = [2(t1), 5557+ Opel

Define dynamics on augmented state:
def aug-dynamics([z(%), a(t),], t, 0)

return [f(z,t,0), —a(t)T%, —a(t)T Y]

Solve reverse-time ODE:

[2(to), —22— 9L] — ODESolve(s, aug-dynamics, t1, to,)

? partialz(to)’ 80

. 0L 9L
Return.—az(to), 50

Adjust weight:

18

3.2 Lookahead Optimizer: k£ steps forward, 1 step back

Nowadays, many successful deep neural networks employ Stochastic Gradient De-
scent (SGD) algorithms to training. Recent improvements in SGD can be categorized into
two tyoes: adapting learning rate and accelerating the speed of convergence. However, these
improvements often required extensive hyperparameter tuning, This is where the Lookahead
optimizer comes into play.

Lookahead is orthogonal to these two previous approaches. It maintains a set of
"slow weights ¢” and "fast weights 6”7, which get synced with the fast weights every k
updates. The fast weights are updated by applying any standard optimization algorithm A,
to batches of training examples sampled from the dataset D. After that, the slow weights
are updated toward the fast weights by linearly interpolating in weightspace, § — ¢. We
denote the slow weights learning rate as «. After each slow weight has been updated, its
current value is considered as the fast weights for the next iteration.

To update the slow weight, we characterize the trajectory as an Exponential Moving
Average (EMA) of the final fast weights with in each inner-loop, regard less of the inner

optimizer. After k inner-loop steps, we have

i1 = v + (O — &1)

=affir+ (1 —a)f_1p+ ...+ (1 =) i) + (1 —a)eo

For The fast weights, within each inner-loop, the trajectory of the fast weights
depends on the choice of underlying optimizer. Given an optimization algorithm A that
takes in an objective function L and the current mini-batch training examples d, the update
rule for the fast weights is

Oriv1 = 0ri + A(L,0;;1,d)

19

Algorithm 2 : Lookahead Optimizer

Require : initial parameter ¢, slow weight step size «,

Objective function L, Synchronization period k, Optimizer A

fort=1,2,...

9t,0 = ¢t—1

fort=1,2,...,k

sample mini batch ofdata d

Oriv1 = Ori + A(L, 05, d)

then

Gre1 = v + (O — &1)

Return : ¢

Standard optimization methods stypically require carefully tuned learning rates to
prevent oscillation and slow convergence. Lookahead, however,benefits from a larger learning
rate in the inner loop. When oscillating in the high curvature directions, the fast weights
updates make rapid progress along the low curvature directions, while the slow weights
help smooth out the oscillations through parameter interpolation. The combination of fast
weights and slow weights improves learning in high curvature directions, reduces variance,

and enables Lookahead to converge rapidly in practice.

3.3 Improving Adjustment of NODEs’s Weights

After delving about Neural Ordinary Differential Equations (NODESs) in section 3.1

and Lookahead optimizer in section 3.2, we now pivot th task of intergrating these two

20

algorithms together. The purpose of this integration is to explat the strengths of NODESs in
modeling intricate , continuous-time dynamics along with the robust optimization features

offered by the Lookahead algorithnm.

Algorithm 3 : NODEs with Lookahead Optimizer.

Feed-forward Algorithm

Require : Input values zj, activate function o, and initial weight 6

Define : dz/dt = o(z,0)

Revrese-mode algorithm

oL

Require : t,t1,0, 2(t1), loss gradient 92(t1)

Define initial augmented state :
so = [2(t1), %aow]
Define dynamics on augmented state :
def aug-dynamics([z(t), a(t), -], t, 0)
return [f(z,t,0), —a(t)T%, —a(t)TY]
Solve reverse-time ODE :

[2(t0), 0L/0z(to), 0L /0] = ODESolve(sg, aug-dynamics, t1, to,)

Return :0L/0z(ty),0L/00

21

Algorithm 4 : Adjust Weight Algorithm

Require : initial parameter ¢, slow weight step size «,

Objective function L, Synchronization period k, Optimizer A

initialization:

9t,0 = ¢t—1

Forward Updates:

fori=1,2,--- ,k

sample mini batch of data d

Oriv1 = O + A(L, 044, d)

Update Slow Weights:

Gry1 = O + (O — Dr)

Return : ¢

22

Chapter 4

Experimental Study

The primary aim of this chapter is to conduct an experimental study on the training
of Neural ODEs with fixed initial and target states. For the purpose of this experimental
study, we consider a simple test scenario with fixed initial and target states

Initial State zo = (1,2)

Target State = (2,4)

In The course of this experimental study, we focused on the following

1. Implementing a Neural ODE with a sigmoid activation function.

2. Utilizing the Glorot (Xavier) weight initialization set the initial weights.

3. Fixed Parameters

- Time Interval (dt): Set at 0.2.
- Maximum Time (t max): Set at 2.
- Stopping Criterion (stop_loss_diff): Algorithm halts if the difference between
consecutive loss values falls below 0.0007.
4. Hyperparameters:
- Learning Rate (Ir): 0.01, 0.05 and 0.1.
- Lookahead Steps (k_lookahead): 4, 6 and 8.

5. Using the Fuler forward method for solving the Neural ODE.

6. Investigating the impact of different optimization techniques, namely standard
gradient descent and the Lookahead optimizer, on the training process.

The loss function is defined as the squared Euclidean distance between the final state

and the target state, with the objective being to minimize this loss through optimization.

23

Forward Pass

Source Code

Listing4.1: Forward pass

1 def sigmoid(x):

2 return 1 / (1 + np.exp(-x))

3

4 def neural_ode_forward(z, t, W, b):
5 dzdt = sigmoid(np.dot(W, z) + b)
6 return dzdt

7

8 def euler_forward(z0, t, W, b, dt):
9 z =20

10 z_history = [z0]

11 for _ in t[1:]:

12 z = z + dt * neural_ode_forward(z, _, W, b)
13 z_history.append(z)

14 return z, np.array(z_history)

15

The forward pass of the neural ODE is governed by the ordinary differential equation

dz

Here, o(z) is the sigmoid activation function, W is the weight matrix, b is the bias vector,
and z is the state vector.

Using Euler’s method, the forward pass can be approximated as

Zt+1 = Rt + At - O'(WZt + b)

24

for example with hyperparameters

Then the forward pass process as

2(0.5)

z(1.5)

)

Target = 2 1

y b = 1 1 and dt =0.5

dz

2(0) +dt (dt)
2(0) + dto(w - z(0) + b)

1.44 1.48

1.9 1.97

2.37 247

25

Backward Pass (Adjoint Sensitivity)

Source Code

Listing4.2: Backward pass

1 def euler_backward(z_history, grad_output, W, b, dt):
2 adjoint = grad_output

3 grad_W = np.zeros_like(W)

4 grad_b = np.zeros_like(b)

5 for z in reversed(z_history[:-1]):

6 grad_W += dt * np.outer(adjoint, z)

7 grad_b += dt * adjoint

8 adjoint = adjoint - dt * np.dot(W.T, adjoint *

sigmoid(z) *

9 (1 - sigmoid(z)))

10 return grad_W, grad_b

11

The backward pass aims to compute the gradients g—‘f, and %, where L is the loss
function.

The adjoint sensitivity method introduces an adjoint state a, which is the gradient

of the loss with respect to the state z

oL
a=—
0z
The adjoint equation is
d
d_(tl = —-(Wra® o' (Wz +b)

Here, ® denotes element-wise multiplication, and o’(x) is the derivative of the sigmoid
function.

Using Euler’s method, the adjoint equation can be approximated as

a1 =a, — At - (Wha,) © o' (Wz, +b)

26

The gradients g—VLV and % can be updated as

oL
W‘F:At'at@fé’t
oL
%%—:At-at

Here, ® denotes the outer product.

Lookahead Optimizer

Source Code

Listing4.3: Lookahead Optimizer

1 class Lookahead:

2 def __init__(self, alpha=0.5, k=5):

3 self.alpha = alpha

4 self .k = k

5 self.count = O

6 self.slow_weights_W = None

7 self.slow_weights_b = None

8

9 def step(self, W, b, grad W, grad_b, 1lr):

10 if self.slow_weights_W is None:

11 self.slow_weights_W, self.slow_weights_b =

12 W.copy(), b.copy()

13 W -=1r *x grad_W

14 b -= 1r % grad_b

15 self.count += 1

16 if self.count ¥ self.k ==

17 self.slow_weights_W +=

18 self.alpha * (W - self.slow_weights_W)

19 self.slow_weights_b +=

20 self.alpha * (b - self.slow_weights_b)

21 W, b =

22 self.slow_weights_W.copy(), self.slow_weights_b.copy
0O

23 return W, b

24

27

| |

The Lookahead optimizer involves two sets of weights, the "fast weights" Wy, by and

the "slow weights" Wy, b,. The fast weights are updated more frequently, while the slow
weights are updated less often but guide the overall optimization.

The update rules for Lookahead are

oL
V=W = o
oL
by =br =gy

Every k steps, the slow weights are updated as

Wy =W, + a(Wr — W)

bs = bs + a(by — b)

And then the fast weights are set to the slow weights

Wy =W,
by = b,

Here, 7 is the learning rate, and « is the interpolation parameter for Lookahead.

Experimental Setup and Results

To evaluate the stability and efficiency of these optimization strategies of these
methods, we varied two key hyperparameters

e Lookahead Steps (k)

We tested three different values for £ in the Lookahead optimizer k = 4, 6and8

e Learning Rate

For each value of k, we experimented with four different learning rates Ir = 0.01,
0.05 and 0.1

e Data Collection

The loss function, defined as the squared Euclidean distance between the final and

target states, was recorded at each iteration for all combinations of £ and learning rate.

28

e Results and Figures

The results are visualized through a series of graphs that plot the loss function
against the number of iterations. These graphs provide insights into the convergence behavior
and stability of each optimization method under different hyperparameters.

when k = 4 we have

Loss Function Over Iterations (Learning Rate: 0.01)

—— Standard
—~—- Lookahead

1.50 4

1.25 4

1.00 4

Loss

0.75 4

Standard Iterations: 28
Lookahead (Slow) Iterations: 14

0.50 1\,

\

\
0254

\\
0.00 4) ————osss
5 10 15 20 25
Iteration

Figure 4 : Illustrates the loss function when & =4 and Ir = 0.01.

Loss Function Over Iterations (Learning Rate: 0.05)

—— Standard
1.2 —~=- Lookahead
1.0 4
0.8
a
S 064
Standard Iterations: 9
0.4 Lookahead (Slow) Iterations{ 5
0.2 4
0.0 === S
1 2 3 4 5 6 7 8

Iteration
Figure 5 : Illustrates the loss function when k£ = 4 and Ir = 0.05.

Loss Function Over Iterations (Learning Rate: 0.1)

124 —— Standard
——- Lookahead

1.0 1

0.8
@
g 0.6+

Standard Iterations: 50
041 Lookahead (Slow) Iterations;{ 32

Iteration

Figure 6 : Illustrates the loss function when £ =4 and Ir = 0.1.

29

when k = 6 we have

Loss Function Over Iterations (Learning Rate: 0.01)

—— Standard

—-- Lookahead
2.0

1.5 A
"
g
1.0 1
Standard Iterations: 27
Lookahead (Slow) Iterations{ 9
0.5 4
\
\
S
0.0 T
T T T T T
5 10 15 20 25
Iteration

Figure 7 : Illustrates the loss function when & = 6 and Ir = 0.01.

Loss Function Over Iterations (Learning Rate: 0.05)

3.5 4 —— Standard
—~=- Lookahead
3.0 1
2.5
2.0
@
S
1.5 A
Standard Iterations: 11
1.0 1 Lookahead (Slow) Iterations] 4
0.5 4
0.0 {—===mmmm T
1 2 3 4 5 6 7 8 9 10

Iteration
Figure 8 : Illustrates the loss function when k£ = 6 and 1Ir = 0.05.

Loss Function Over Iterations (Learning Rate: 0.1)

2.00 4
—— Standard

175 4 —-- Lookahead

1.50 4

1.254

1.00 4

Loss

0.75 4
Standard Iterations: 50

Lookahead (Slow) Iterations: 26
0.50

0.25 4

0.00 4

10 20 30 40 50
Iteration

Figure 9 : Illustrates the loss function when k = 6 and Ir = 0.1.

30

when k = 8 we have

Loss Function Over Iterations (Learning Rate: 0.01)

1.0
—— Standard

—-- Lookahead

0.8 1

0.6

Loss

0.4 4

Standard Iterations: 23
Lookahead (Slow) Iterations;|

0291

0.0 4

r T r T r T
25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iteration

Figure 10 : Illustrates the loss function when k = 8 and Ir = 0.01.

Loss Function Over Iterations (Learning Rate: 0.05)

—— Standard
—~=- Lookahead
2.0
1.5
@
3 1.0 1
Standard Iterations: 10
Lookahead (Slow) Iterations; 2
0.5 4
0.0 ==~~~
1 2 3 4 5 6 7 8 9

Iteration
Figure 11 : Illustrates the loss function when k = 8 and Ir = 0.05.

Loss Function Over Iterations (Learning Rate: 0.1)

—— Standard
——- Lookahead

0.8 4

0.6
«
4
S
0.4
Standard Iterations: 19
ead (Slow) Iterations{ 24
0.21
0.0 T
T T T T
5 10 15 20
Iteration

Figure 12 : Illustrates the loss function when k = 8 and Ir = 0.1.

31

Our experimental evaluation focused on the performance of Neural ODEs under
two optimization strategies: Standard Gradient Descent and the Lookahead Optimizer. We
investigated three different scenarios for each optimization methodas, as depicted in Figures
4-12.

for all tested learning rate and all tested values of k£ in both optimization methods,
the method converged as can be seen in Figure 4-6 for k = 4, Figure 7-9 for £k = 6, and
Figure 10-12 for £ = 8. However, the Lookahead optimizer, in particular, showed faster
convergence compared to Standard Gradient Descent, a trend that is evident from the fewer
member of iterations required for converge in the aforementioned figures. This suggests
that the Lookahead optimizer’s ability to focus on long-term updates provides a significant
advantage in terms of convergence speed.

Moreover, while the Lookahead optimizer exhibited a smooth convergence, the Stan-
dard Gradient Descent occasionally showed oscillatory behaviors, especially at higher learn-
ing rates. This suggests that the Lookahead optimizer’s ability to focus on long-term updates
provides a significant advantage in terms of convergence speed and stability.

Summary of Results

Our experiments, supported by the results presented in Figure 4-12, provide empir-
ical evidence of the effectiveness of the Lookahead optimizer in the context of Neural ODEs.
Specifically, the Lookahead optimizer demonstrates in

1. Accelerating convergence at lower learning rates.

2. Offering greater initial stability at higher learning rates where Standard Gradient
Descent tends to or oscillate.

These findings contribute valuable insights into the optimization landscape of Neural ODEs

and set the stage for future research in this area.

32

Chapter 5

Conclusion

Our experimental study has yielded valuable insights into the optimization of Neural
Ordinary Differential Equations (Neural ODEs) through the Lookahead Optimizer. Specifi-
cally, we found that the Lookahead Optimizer facilitates faster convergence at lower learning
rates and provides greater initial stability at higher learning rates [9]. These findings con-
tribute to the growing body of empirical evidence supporting the effectiveness of Lookahead
Optimizers in the context of Neural ODEs [2, 9].

Beyond the immediate results, the implications of using the Lookahead Optimizer
with Neural ODEs are manifold. The Lookahead Optimizer’s robustness to higher learning
rates makes it a particularly strong candidate for Neural ODEs, which often exhibit sen-
sitivity to hyperparameter settings [2]. This robustness could translate to computational
efficiency, as faster convergence would reduce the number of required iterations. Further-
more, the Lookahead Optimizer’s flexibility across a range of learning rates suggests its
potential as a versatile optimization strategy for Neural ODEs, which could be particularly
beneficial for complex or large-scale problems [49]. Given the widespread application of ODEs
in various scientific disciplines, these benefits could extend to real-world problems in physics,
biology, and engineering [12].

The promising results of this study open several avenues for future research. One
immediate direction is the formal mathematical investigation of the Lookahead Optimizer’s
properties, particularly its convergence and stability when applied to Neural ODEs [2]. Ad-
ditionally, the use of more advanced ODE solvers like Runge-Kutta methods could offer
improvements in numerical stability and accuracy [I2]. The exploration of adaptive learning

rate methods such as Stochastic Gradient Descent (SGD) or Adam could also yield more nu-

33

anced insights into the optimization landscape of Neural ODEs [2, []. Finally, extending this
work to include more complex Neural ODE architectures or different activation functions
could provide a comprehensive understanding of the Lookahead Optimizer’s effectiveness

and limitations [2].

34

References

1] Coddington, E. A., & Levinson, N. (1955). Theory of Ordinary Differential Equations.
McGraw-Hill.

2] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural

Ordinary Differential Equations. In Advances in Neural Information Processing Systems.

3] Kidger, P., Lyons, T., & Morrill, J. (2020). Universal Differential Equations for Scientific
Machine Learning. arXiv preprint arXiv:2001.04385.

4] Zhang, J., Mitliagkas, I., & Rabbat, M. (2019). YellowFin and the Art of Tuning Hy-

perparameters. arXiv preprint arXiv:1706.03471.

5] Glorot, X., & Bengio, Y., (2010), Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics (pp. 249-256).

6] Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980.

7] Cheney W. (2001), "The Chain Rule and Mean Value Theorems', Analysis for Applied

Mathematics, New York: Springer, page 121125.

8] Gavril Ognjanovski (2019), Toward Data Science, accessed 21 september 2023,
<https://towardsdatascience.com/everything-you-need-to-know-about-neural-

networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3da>

9] Zhang, M., Lucas, J., Hinton, G., & Ba, J. (2019). Lookahead Optimizer: k steps
forward, 1 step back. arXiv preprint arXiv:1907.08610.

[10] Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons.

35

[11] Ruthotto, L., & Haber, E. (2018). Deep Neural Networks motivated by Partial Differ-

ential Equations. arXiv preprint arXiv:1804.04272.

[12] Hairer, E., Nrsett, S. P., & Wanner, G. (1993). Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer-Verlag.

[13] Kaiming H., Xiangyu Zh., Shaoqing R., & Jian S. (2015), Deep Residual Learning for

Image Recognition, - arXiv preprint, <arXiv:1809.00916>.

[14] S. Ruder, "An overview of gradient descent', NUI galway Aylien Ltd., Dublin, - arXiv
preprint, <arXiv:1609.04747>, 2016

36

Appendix

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Listing5.1: Code

import numpy as np

import matplotlib.pyplot as plt

def sigmoid(x):

return 1 / (1 + np.exp(-x))

def neural_ode_forward(z, t, W, b):
dzdt = sigmoid(np.dot(W, z) + b)

return dzdt

def euler_forward(z0, t, W, b, dt):
z = z0
z_history = [z0]
for _ in t[1:]:
z = z + dt * neural_ode_forward(z, _, W, b)
z_history.append(z)

return z, np.array(z_history)

def euler_backward(z_history, grad_output, W, b, dt):
adjoint = grad_output
grad_W = np.zeros_like (W)
grad_b = np.zeros_like(b)
for z in reversed(z_history[:-1]):
grad_W += dt * np.outer(adjoint, z)
grad_b += dt * adjoint

adjoint = adjoint - dt * np.dot(W.T, adjoint * sigmoid(z) *

37

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

61

62

(1 - sigmoid(z)))

return grad_W, grad_b

class Lookahead:

def __init__(self, alpha=0.5, k=5):

self.alpha = alpha

self .k = k

self.count = 0O
self.slow_weights_W = None
self.slow_weights_b = None

def step(self, W, b, grad_W, grad_b, 1lr):
if self.slow_weights_W is None:
self.slow_weights_W, self.slow_weights_b =
W.copy(), b.copy(O
W -=1r * grad_W
b -= 1r * grad_b
self.count += 1
if self.count % self.k ==
self.slow_weights_W +=
self.alpha * (W - self.slow_weights_W)
self.slow_weights_b +=
self.alpha * (b - self.slow_weights_b)
W, b=
self.slow_weights_W.copy(), self.slow_weights_b.copy()

return W, b

Xavier/Glorot Initialization

n_input = 2 # Number of input features

n_output = 2 # Number of output features
initial_W = np.random.randn(n_input, n_output) *
np.sqrt(2. / (n_input + n_output))

initial_b = np.random.randn(n_output) *

np.sqrt(2. / (n_input + n_output))

Copy initial parameters for both training methods

38

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

W_standard = initial_W.copy()

b_standard = initial_b.copy()

W_lookahead = initial_W.copy()

b_lookahead = initial_b.copy()

Hyperparameters

1r = 0.01
dt = 0.2
t_max=2

t = np.linspace(0, t_max, int(t_max/dt) + 1)
iterations_standard = 50

k_lookahead = 5

iterations_lookahead = iterations_standard * k_lookahead

stop_loss_diff = 0.0007

Initialize variables to keep track of previous loss
prev_loss_standard = None

prev_loss_lookahead = None

Training data (dummy)
z0 = np.array([1.0, 2.0])

target = np.array([2.0, 4.0])

For standard training

losses_standard = []
For Lookahead
lookahead = Lookahead(alpha=0.5, k=k_lookahead)

losses_lookahead = []

For Lookahead with slow weight updates only at multiples of k

losses_lookahead slow = []

Standard training loop

for k in range(l, iterations_standard + 1):

39

99

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

z, z_history = euler_forward(z0, t, W_standard, b_standard, dt)
loss = np.sum((z - target)*x2)
if prev_loss_standard is not Nome:
loss_diff = prev_loss_standard - loss
if 0 < loss_diff < stop_loss_diff:
print(f"Stopping criterion met at iteration {k} (Standard
). Loss Difference: {loss_diff}")
break
prev_loss_standard = loss
grad_output = 2 * (z - target)
grad_W, grad_b = euler_backward(z_history, grad_output,
W_standard, b_standard, dt)
W_standard -= 1lr * grad_W
b_standard -= 1lr * grad_b
losses_standard.append(loss)
print(f"Iteration {k}
(Standard), Loss: {loss}")
print(f"Total number of iterations (Standard): {k}")

total_iterations_standard = k

Lookahead training loop
for k in range(l, iterations_lookahead + 1):
z, z_history = euler_forward(zO, t, W_lookahead, b_lookahead, dt)
loss = np.sum({(z - target)**2)
if prev_loss_lookahead is not None:
loss_diff = prev_loss_lookahead - loss
if 0 < loss_diff < stop_loss_diff:
print(f"Stopping criterion met at iteration {k} (
Lookahead). Loss Difference: {loss_diff}")
break
prev_loss_lookahead = loss
grad_output = 2 * (z - target)
grad_W, grad_b = euler_backward(z_history, grad_output,
W_lookahead, b_lookahead, dt)
W_lookahead, b_lookahead = lookahead.step(W_lookahead,

b_lookahead, grad_W, grad_b, 1lr)

40

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

if k <= 100:
losses_lookahead.append(loss)
if k % lookahead.k == 0:
losses_lookahead_slow.append(loss)
if k <= 100:
print(f"Iteration {k} (Lookahead), Loss: {loss}")
print(f"Total number of iterations (Lookahead): {k}")
print(f"Total number of slow weight updates (Lookahead): {k //
lookahead.k}")
total_iterations_lookahead = k

total_iterations_lookahead_slow = k // lookahead.k

Plotting the loss

plt.figure()

plt.plot(range(l, len(losses_standard) + 1), losses_standard, label=’
Standard’)

plt.plot(range(l, len(losses_lookahead) + 1), losses_lookahead,
label=’Lookahead’)

plt.plot(range(l, len(losses_lookahead_slow) + 1),
losses_lookahead_slow, label=’Lookahead’, linestyle=’--’)

plt.xlabel(’Iteration’)

plt.ylabel(’Loss’)

plt.title(f’Loss Function Over Iterations (Learning Rate: {lr})’)

plt.xlim(1, max(len(losses_standard), len(losses_lookahead_slow)))

Annotate the number of iterations for each method

annotation_text = f"Standard Iterations: {total_iterations_standard}\

annotation_text += f'"Lookahead Iterations: {
total_iterations_lookahead}\n"

annotation_text += f"Lookahead (Slow) Iterations: {

total_iterations_lookahead_slow}"

plt.annotate (annotation_text, xy=(0.6, 0.3), xycoords=’axes fraction’

41

161

162

163

168

169

170

plt.

plt.

legend ()

show ()

Plotting the forward Euler (Last iteration)

plt

plt

.figure()
.plot(t, np.array(z_history)[:, 0], label=’x-component’)

.plot(t, np.array(z_history)[:, 1], label=’y-component’, linestyle

.x1abel (’Time’)

.ylabel(’State Value’)

.title(’Forward Euler State Evolution (Last Iteration)’)
.legend ()

.show()

42

OPTIMIZING NEURAL ORDINARY DIFFERENTIAL EQUATIONS
WITH LOOKAHEAD OPTIMIZER

NIYATA SANNGAI STUDENT ID : 650510482

ADVISOR : ASST. PROF. DR.INUTTAWAT SONTICHAI

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY

ABSTRACT

THIS STUDY DELVES INTO THE APPLICATION OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NODES) WITHIN THE MACHINE LEARNING DOMAIN, INTRODUCING AN INNOVATIVE OPTIMIZATION
STRATEGY USING THE LOOKAHEAD OPTIMIZER. BY UTILIZING EULER'S METHOD FOR BOTH FORWARD AND ADJOINT SENSITIVITY CALCULATIONS. OUR EXPERIMENTAL RESULTS INDICATE THAT THE
LOOKAHEAD OPTIMIZER CONVERGES FASTER AT LOWER LEARNING RATES AND EXHIBITS GREATER STABILITY AT HIGHER LEARNING RATES COMPARED TO STANDARD GRADIENT DESCENT. THIS
WORK PROVIDES EMPIRICAL EVIDENCE SUPPORTING THE EFFICACY OF THE LOOKAHEAD OPTIMIZER IN NEURAL ODE CONTEXTS AND OFFERS AN OPEN-SOURCE CODEBASE FOR FUTURE

RESEARCH.

METHODOLOGY

e NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NODES)

NODES OFFER A NEW FAMILY OF DEEP NEURAL NETWORK ARCHITECTURES THAT HAVE THE
PERSPECTIVE TO SEAMLESSLY COMPUTE INTERMEDIATE DERIVATIVES OF FLOW OF HIDDEN
LAYER STATES, CREATING CONTINUOUS-DEPTH MODELS BY LET

] 1t

— = (he.1.6)

THIS METHOD ALLOWS US TO TRAIN MODELS BY USING NODES WHICH CAN BE CONSIDERED AS
APPROXIMATIONS BASED ON ONE-STEP DISCRETIZATION OF CONTINUOUS DYNAMICS.

ResNet
INPUT OUTPUT
E— —_—G 00— —
. . ¥ ¥
PRl PRl PRl PRl
i Wi :l ‘ ! TN {) (wN:l
\x__/ \x__/ i w ,‘ \x../ \x.-’
Su’
t
INPUT OUTPUT
Neural ODEs

FOR BACK PROPAGATION THEY USING THE ADJOINT SENSITIVITY. THIS METHOD IS APPLICABLE
TO ALL ODE SOLVERS, SCALES LINEARLY WITH PROBLEM SIZE, HAS LOW MEMORY COSTS, AND
CONTROLS NUMERICAL ERRORS EFFECTIVELY.

THE GRADIENT OF THE LOSS WITH RESPECT TO HIDDEN STATE Z(T) AT EACH TIME IS DEFINED
AS THE ADJOINT

dL

) = T

SO WE CAN COMPUTE A GRADIENT OF LOSS WITH RESPECT TO WEIGHT TO

dL o Of(2(t),t,0)
ah - /t) =59

N

ADJOINT SENSITIVITY METHOD CAN BE WRITTEN IN ALGORITHM BELOW

Algorithm Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time %, stop time %, final state z(¢,), loss gradient 9L/9z(t,)
so = (z(t1), #(Lrﬁ 0] > Define initial augmented state

def aug_dynamics(|z(t), a(t), -], t, 0): > Define dynamics on augmented state
return [f(z(t),t,0), —a(t)T%é, —a(t)T%g] > Compute vector-Jacobian products
z(to), 37?(?0)’ 3‘3] = ODESolve (s, aug_dynamics, 1, to, 0) > Solve reverse-time ODE

oL oL
Oz(to)’ 00

return > Return gradients

e LOOKAHEAD OPTIMIZER: K STEPS FORWARD, 1 STEP BACK

THE LOOKAHEAD OPTIMIZER ADAPTS LEARNING RATES TO IMPROVE CONVERGENCE
SPEED. IT MAINTAINS A SET OF SLOW WEIGHTS AND FAST WEIGHTS, WITH THE FORMER
SERVING AS A REFERENCE FOR THE LATTER, WHICH GET SYNCED WITH THE FAST
WEIGHTS EVERY K UPDATES.

Ht.,i'-—l—l — Hf,i =+ fl(L Ht,i—l_‘ d)

OPTIMIZATION THAT ALIGNS AND UPDATES WEIGHTS BY LINEARLY INTERPOLATING
TOWARD THE FAST WEIGHTS.

(:L-'{Jf_|_1 = (f)f + Q’(Htﬁ — (Dt)

ONCE THE FAST WEIGHTS ARE UPDATED, THEIR CURRENT VALUE IS CONSIDERED AS THE
REFERENCE FOR THE NEXT ITERATION.

CIFAR-100 accuracy surface with Lmkapggq_fnferpolation

=&~ Slow weights ¢
===+ Fast weights @

Algorithm 1 Lookahead Optimizer:

Require: Initial parameters ¢g, objective function L
Require: Synchronization period £, slow weights step
size «v, optimizer A
fort=1.,2,... do
Synchronize parameters 0; o < ¢;_
for:=1,2.....kdo
sample minibatch of data d ~ D
Ori < 6i1+ A(L,0;i1,d)
end for
Perform outer update ¢; < ¢y + (b . — dr—1)
end for
return parameters ¢

e NEURAL ODE OPTIMIZATION WORKFLOW WITH LOOKAHEAD OPTIMIZER

Neural ODEs
Forward (Euler's Method) ‘\

Target Value

—>

“Fast” Weights Lookahead “Slow” Weights

Lookahead
Optimizer

Optimal
Weights

Backward
(Euler’'s Method)

Adjoint
Method

EXPERIMENTAL STUDY

THE PRIMARY AIM OF THIS CHAPTER IS TO CONDUCT AN EXPERIMENTAL STUDY ON THE
TRAINING OF NEURAL ODES. WE CONSIDERED A SIMPLE TEST SCENARIO WITH FIXED
HYPERPARAMETERS, INITIAL STATES, AND TARGET STATES WHICH ARE PRESENTED BELOW

INITIAL STATES : (1,2)

TARGET STATES : (2,4)
LEARNING RATES : 0.01, 0.05, 0.1
LOOKAHEAD STEPS (K) : 4, 6, 8

MOREOVER WE USING THE XAVIER INITIALIZATION METHOD, SHOWN BELOW, TO SET UP
THE INITIAL WEIGHTS.

RESULTS

K=4 K=6 K=8

Loss Function Over Iterations (Learning Rate: 0.01) Loss Function Over Iterations (Learning Rate: 0.01)

Loss Function Over Iterations (Learning Rate: 0.01)

1.0 A

—— Standard
=== Lookahead

— Standard
—==- Lookahead

—— Standard

1.75 A -=- Lookahead

0.8 1
1.50 A

1.25 0.6 4

1.00 1

0.4 4
0.75 A

Standard Iterations: 23
Lookahead (Slow) Iterations:

Standard Iterations: 27
Lookahead (Slow) Iterations; 9

Standard Iterations: 28

0.50 {* Lookahead (Slow) Iterations: 14
i 0.2\

0254 "\,

0_00 - D.O 9

2r5 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
lteration Iteration lteration

Loss Function Over Iterations (Learning Rate: 0.1) Loss Function Over Iterations (Learning Rate: 0.1) Loss Function Over Iterations (Learning Rate: 0.1)

1.2 —— Standard 2007 —— Standard

--- Lookahead ===
175 - Lookahead

1.0 0.8 -
1.50 4

—— Standard
—=== Lookahead

0.8 1 1.25 0.6 1

E 0.6 - 2 1.00

0.4 1
" 0.75
Standard Iterations: 50

Lookahead (Slow) Iterations:; 32

Standard Iterations: 19
ead (Slow) Iterations: 24

Standard Iterations: 50

i Lookahead (Slow) Iterations:| 26

0.50 4
0.2 7

0.2 4 0254|

D-D a T T T T DLDO 1 T T T T 0.0 L T T T T
10 20 30 40 50 10 20 30 a0 50 5 10 15 20

CONCLUSION

THE LOOKAHEAD OPTIMIZER EXHIBITS QUICKER CONVERGENCE THAN STANDARD
GRADIENT DESCENT. THIS EFFICIENCY SUGGESTS THAT FEWER ITERATIONS ARE NEEDED
FOR CONVERGENCE. THE LOOKAHEAD OPTIMIZER'S ADAPTIVE UPDATE MECHANISM
OFFERS ADVANTAGES IN TERMS OF SPEED AND STABILITY, ESPECIALLY AT HIGHER
LEARNING RATES.

THIS WORK WAS SUPPORTED BY A SCHOLARSHIP
FROM THE DEVELOPMENT AND PROMOTION OF
SCIENCE AND TECHNOLOGY TALENTS PROJECT
(DPST).

MATH

diversily @cMu

FACULTY OF SCIENCE
CHIANG MAI UNIVERSITY

