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Abstract

In this paper, we introduced the hyperbolic generalized tribonacci quaternions,
HWn = Wn + Wn+1j1 + Wn+2j2 + Wn+3j3, n ≥ 0, Wn is the generalized tribonacci
number. Several properties of these hyperbolic quaternions are investigated, including the
Binet formulas, generating functions, and finite summation formula. Our results extend
and generalize well-known theorems.

1. Introduction

The Fibonacci sequence is a series of numbers in which each number is the sum
of the two that precede it. Let Fn denote the Fibonacci sequence, which is defined
by the following recurrence relation:

Fn = Fn−1 + Fn−2, n ≥ 2 (1.1)

where F0 = 0 and F1 = 1.
That is, the Fibonacci sequence is {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . }.

Horadam [9] introduced the (p, q)-Fibonacci sequence as a generalized form of
the Fibonacci numbers, defined for positive integer values of p and q. the (p, q)-
Fibonacci sequence is defined by the following recurrence relation:

Fn = pFn−1 + qFn−2, n ≥ 2 (1.2)

where F0 = 0 and F1 = 1.
If we set p = 1 = q, then {Fn} is the well-known Fibonacci sequence.
If we set p = k and q = 1, then {Fn} is the well-known k-Fibonacci sequence.
That is, the (p, q)-Fibonacci sequence is {0, 1, p, p2+ q, p3+2pq, p4+3p2q+ q2, p5+
4p3q + 3pq2, p6 + 5p4q + 6p2q2 + q3, p7 + 6p5q + 10p3q2 + 4pq3, . . .}.

Subsequently, the tribonacci sequence, a generalized form of the Fibonacci se-
quence, was introduced. It consists of numbers where each is the sum of its three
preceding numbers. Tribonacci sequence is defined by the following recurrence re-
lation:

Fn = Fn−1 + Fn−2 + Fn−3, n ≥ 3 (1.3)

where F0 = F1 = 0 and F2 = 1,
That is, the tribonacci sequence is {0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, . . .}.
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The Narayana numbers, named after the 14th-century Indian mathematician
Tadepalli Venkata Narayana, Narayana sequence is defined by the following recur-
rence relation:

Nn = Nn−1 +Nn−3, n ≥ 3 (1.4)

where N0 = 0, N1 = 1, and N2 = 1.
That is, the Narayana sequence is {0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, . . . }.

In 1902, Macfarlane [12] introduced hyperbolic quaternions, which, unlike real
quaternions, lack commutativity, and conducted a study on their properties. Hy-
perbolic quaternions are utilized across diverse fields such as physics, computer
graphics, and geometric algebra [4, 15]. A set of hyperbolic quaternions is repre-
sented as

H = {q = q0 + q1j1 + q2j2 + q3j3| q0, q1, q2, q3 ∈ R}

where j1, j2 and j3 are hyperbolic quaternion units satisfying the conditions

j21 = j22 = j23 = j1j2j3 = 1, j1j2 = j3 = −j2j1, j2j3 = j1 = −j3j2, j3j1 = j2 = −j1j3.

Let h0 = a0 + b0j1 + c0j2 + d0j3 and h1 = a1 + b1j1 + c1j2 + d1j3 denote two
hyperbolic quaternions. Equality, addition, subtraction, and scalar multiplication
and multiplication can be defined as follows:

h0 = h1 ⇔ a0 = a1, b0 = b1, c0 = c1, d0 = d1;

h0 + h1 = (a0 + a1) + (b0 + b1)j1 + (c0 + c1)j2 + (d0 + d1)j3;

h0 − h1 = (a0 − a1) + (b0 − b1)j1 + (c0 − c1)j2 + (d0 − d1)j3;

λh0 = λa0 + λb0j1 + λc0j2 + λd0j3, λ ∈ R;
h0h1 = (a0a1 + b0b1 + c0c1 + d0d1) + (a0b1 + b0a1 + c0d1 − d0c1)j1

+ (a0c1 − b0d1 + c0a1 + d0b1)j2 + (a0d1 + b0c1 − c0b1 + d0a1)j3.

Then, the set H is a vector space over R. Moreover, the conjugate of a hyperbolic
quaternion is established by

h̄ = a− bj1 − cj2 − dj3.

In this paper, we introduced the hyperbolic generalized tribonacci quaternions.
Several properties of these quaternions are investigated, including the Binet formu-
las, generating functions, and summation formula. Our results extend and gener-
alize well-known theorems [1, 16].

This study aims to introduce the hyperbolic generalized tribonacci quaternions.
We demonstrate that this new hyperbolic quaternion sequence encompasses previ-
ously established sequences such as hyperbolic tribonacci quaternions, hyperbolic
(p, q)-Fibonacci quaternions, and hyperbolic Narayana quaternions. Additionally,
we offer the generating function and Binet’s formula for hyperbolic generalized
tribonacci quaternions, along with a summation formula.
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2. Preliminaries

In 2017, Cerda-Morales [2] defined and provided the binet formula, summation
formula of generalized tribonacci numbers as follows:

Definition 2.1. [2] The generalized tribonacci sequence, {Wn} defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, n ≥ 3, (2.1)

where W0 = a, W1 = b, W2 = c are integers and r, s, t, are real numbers.

Many authors have examined this sequence (see, for example, [3, 5, 13, 18]).
As the elements of this tribonacci-type number sequence provide third order itera-
tive relation, its characteristic equation is x3 − rx2 − sx − t = 0, whose roots are
[2] α = α(r, s, t) = r

3 +A+B, β = r
3 + ωA+ ω2B and γ = r

3 + ω2A+ ωB, where

A =

(
r3

27
+

rs

6
+

t

2
+

√
∆

) 1
3

, B =

(
r3

27
+

rs

6
+

t

2
−

√
∆

) 1
3

,

with ∆ = ∆(r, s, t) = r3t
27 − r2s2

108 + rst
6 − s3

27 + t2

4 and ω = − 1
2 + i

√
3

2 .

In fact, the generalized tribonacci sequence is the generalization of the well-
known sequences like Fibonacci, k-Fibonacci, (p, q)-Fibonacci, tribonacci and Narayana
sequences.

Table 1. represents several numbers of this family according
to initial values and r, s, t values

Name {Wn} = {Wn(a, b, c, r, s, t)} Recurrence Relation
Fibonacci {Fn} = {Wn(0, 1, 1, 1, 1, 0)} Fn = Fn−1 + Fn−2

k-Fibonacci {Fk,n} = {Wn(0, 1, k, k, 1, 0)} Fk,n = kFk,n−1 + Fk,n−2

(p, q)-Fibonacci {Fn} = {Wn(0, 1, p, p, q, 0)} Fn = pFn−1 + qFn−2

tribonacci {Fn} = {Wn(0, 0, 1, 1, 1, 1)} Fn = Fn−1 + Fn−2 + Fn−3

Narayana {Nn} = {Wn(0, 1, 1, 1, 0, 1)} Nn = Nn−1 +Nn−3

Theorem 2.2. [2] The Binet formula for the generalized tribonacci numbers can
be expressed as:

Wn =
d1α

n

(α− β)(α− γ)
− d2β

n

(α− β)(β − γ)
+

d3γ
n

(α− γ)(β − γ)
, (2.2)

where d1 = W2 − (β + γ)W1 + (βγ)W0, d2 = W2 − (α+ γ)b+ (αγ)W0 and
d3 = W2 − (α+ β)b+ (αβ)W0.

Theorem 2.3. [2] The summation of the first n generalized tribonacci numbers:

n∑
i=0

Wi =
1

δ
(Wn+2 +(1− r)Wn+1 + tWn +(r+ s− 1)a+(r− 1)b− c), (2.3)

where δ = δ(r, s, t) = r + s+ t− 1.
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3. Main Resuits

In this part, we will initially provide the definition of the hyperbolic generalized
tribonacci quaternions, we will explore various properties associated with these
hyperbolic quaternions.

Definition 3.1. Let n ≥ 0 be an integer. The n-th hyperbolic generalized tri-
bonacci quaternions is defined by

HWn = Wn +Wn+1j1 +Wn+2j2 +Wn+3j3 (3.1)

where Wn is the tribonacci number and j1, j2, j3 satisfy equalities
j21 = j22 = j23 = j1j2j3 = 1, j1j2 = j3 = −j2j1, j2j3 = j1 = −j3j2, j3j1 = j2 = −j1j3.

The first few terms of hyperbolic generalized tribonacci quaternions

HW0 = W0 +W1j1 +W2j2 +W3j3,

= a+ bj1 + cj2 + (rc+ sb+ ta)j3,

HW1 = W1 +W2j1 +W3j2 +W4j3,

= b+ cj1 + (rc+ sb+ ta)j2 + [r(rc+ sb+ ta) + sc+ tb)]j3,

HW2 = W2 +W3j1 +W4j2 +W5j3,

= c+ (rc+ sb+ ta)j1 + [r(rc+ sb+ ta) + sc+ tb]j2

+ [r2(rc+ sb+ ta) + r(sc+ tb) + s(rc+ sb+ ta) + tc]j3,

HW3 = W3 +W4j1 +W5j2 +W6j3,

= (rc+ sb+ ta) + [r(rc+ sb+ ta) + sc+ tb]j1

+ [r2(rc+ sb+ ta) + r(sc+ tb) + s(rc+ sb+ ta) + tc]j2

+ [r3(rc+ sb+ ta) + r2(sc+ tb) + rs(rc+ sb+ ta) + rtc

+ sr(rc+ sb+ ta) + s2c+ stb+ t(rc+ sb+ ta)]j3,

HW4 = W4 +W5j1 +W6j2 +W7j3,

= [r(rc+ sb+ ta) + sc+ tb]

+ [r2(rc+ sb+ ta) + r(sc+ tb) + s(rc+ sb+ ta) + tc]j1

+ [r3(rc+ sb+ ta) + r2(sc+ tb) + rs(rc+ sb+ ta) + rtc

+ sr(rc+ sb+ ta) + s2c+ stb+ t(rc+ sb+ ta)]j2

+ [r4(rc+ sb+ ta) + r3(sc+ tb) + r2s(rc+ sb+ ta) + r2tc

+ sr2(rc+ sb+ ta) + r(s2c+ stb) + rt(rc+ sb+ ta)

+ sr2(rc+ sb+ ta) + sr(sc+ tb) + s2(rc+ sb+ ta) + stc

+ tr(rc+ sb+ ta) + tsc+ t2b]j3,

...

Next, we present the recurrence relations of hyperbolic generalized tribonacci quater-
nions.
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Lemma 3.2. Assume n ≥ 3, Then

HWn = rHWn−1 + sHWn−2 + tHWn−3, (3.2)

Proof. Using (2.1) and (3.1), we obtain

HWn = Wn +Wn+1j1 +Wn+2j2 +Wn+3j3

= (rWn−1 + sWn−2 + tWn−3) + (rWn + sWn−1 + tWn−2)j1

+ (rWn+1 + sWn + tWn−1)j2 + (rWn+2 + sWn+1 + tWn)j3

= rWn−1 + sWn−2 + tWn−3 + rWnj1 + sWn−1j1 + tWn−2j1

+ rWn+1j2 + sWnj2 + tWn−1j2 + rWn+2j3 + sWn+1j3 + tWnj3

= (rWn−1 + rWnj1 + rWn+1j2 + rWn+2j3)

+ (sWn−2 + sWn−1j1 + sWnj2 + sWn+1j3)

+ (tWn−3 + tWn−2j1 + tWn−1j2 + tWnj3)

= r(Wn−1 +Wnj1 +Wn+1j2 +Wn+2j3)

+ s(Wn−2 +Wn−1j1 +Wnj2 +Wn+1j3)

+ t(Wn−3 +Wn−2j1 +Wn−1j2 +Wnj3)

= rHWn−1 + sHWn−2 + tHWn−3.

□

The next lemma shows the relationship between hyperbolic generalized tribonacci
quaternions and their conjugates:

Lemma 3.3. Assume n ≥ 0, the following equalities are valid:

HWn +HWn = 2Wn (3.3)

HWn −HWn = 2(Wn+1j1 +Wn+2j2 +Wn+3j3) (3.4)

HWnHWn = W 2
n −W 2

n+1 −W 2
n+2 −W 2

n+3. (3.5)

Proof. It is evident that equation (3.3)-(3.4) hold. we will demonstrate the validity
of equation (3.5). By (3.1), we have

HWnHWn

= (Wn +Wn+1j1 +Wn+2j2 +Wn+3j3)(Wn −Wn+1j1 −Wn+2j2 −Wn+3j3)

= WnWn −WnWn+1j1 −WnWn+2j2 −WnWn+3j3 +Wn+1j1Wn

−Wn+1j1Wn+1j1 −Wn+1j1Wn+2j2 −Wn+1j1Wn+3j3 +Wn+2j2Wn

−Wn+2j2Wn+1j1 −Wn+2j2Wn+2j2 −Wn+2j2Wn+3j3 +Wn+3j3Wn

−Wn+3j3Wn+1j1 −Wn+3j3Wn+2j2 −Wn+3j3Wn+3j3

= W 2
n −W 2

n+1j
2
1 −W 2

n+2j
2
2 −W 2

n+3j
2
3

= W 2
n −W 2

n+1 −W 2
n+2 −W 2

n+3.

□
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Theorem 3.4. (Binet formula for hyperbolic generalized tribonacci quaternions)
Let α, β, γ be the roots of x3 − rx2 − sx− t = 0. Assume n ≥ 0, then

HWn =
d1α

nα̂

(α− β)(α− γ)
+

d2β
nβ̂

(β − α)(β − γ)
+

d3γ
nγ̂

(γ − α)(γ − β)
, (3.6)

where α̂ = 1 + αj1 + α2j2 + α3j3, β̂ = 1 + βj1 + β2j2 + β3j3 and γ̂ = 1 + γj1 +
γ2j2 + γ3j3.

Proof. By using (2.2) and (3.1), we have

HWn = Wn +Wn+1j1 +Wn+2j2 +Wn+3j3

=
d1α

n

(α− β)(α− γ)
+

d2β
n

(β − α)(β − γ)
+

d3γ
n

(γ − α)(γ − β)

+

(
d1α

n+1

(α− β)(α− γ)
+

d2β
n+1

(β − α)(β − γ)
+

d3γ
n+1

(γ − α)(γ − β)

)
j1

+

(
d1α

n+2

(α− β)(α− γ)
+

d2β
n+2

(β − α)(β − γ)
+

d3γ
n+2

(γ − α)(γ − β)

)
j2

+

(
d1α

n+3

(α− β)(α− γ)
+

d2β
n+3

(β − α)(β − γ)
+

d3γ
n+3

(γ − α)(γ − β)

)
j3

=

(
d1α

n

(α− β)(α− γ)
+

d1α
n+1j1

(α− β)(α− γ)
+

d1α
n+2j2

(α− β)(α− γ)
+

d1α
n+3j3

(α− β)(α− γ)

)
+

(
d2β

n

(β − α)(β − γ)
+

d2β
n+1j1

(β − α)(β − γ))
+

d2β
n+2j2

(β − α)(β − γ)
+

d2β
n+3j3

(β − α)(β − γ)

)
+

(
d3γ

n

(γ − α)(γ − β)
+

d3γ
n+1j1

(γ − α)(γ − β)
+

d3γ
n+2j2

(γ − α)(γ − β)
+

d3γ
n+3j3

(γ − α)(γ − β)

)
=

d1α
n

(α− β)(α− γ)

(
1 + αj1 + α2j2 + α3j3

)
+

d2β
n

(β − α)(β − γ)

(
1 + βj1 + β2j2 + β3j3

)
+

d3γ
n

(γ − α)(γ − β)

(
1 + γj1 + γ2j2 + γ3j3

)
=

d1α
nα̂

(α− β)(α− γ)
+

d2β
nβ̂

(β − α)(β − γ)
+

d3γ
nγ̂

(γ − α)(γ − β)
.

□

Theorem 3.5. The summation for the first n+1 terms of hyperbolic generalized
tribonacci quaternions is

n∑
i=0

HWi =
1

δ
(HWn+2 + (1− r)HWn+1 + tHWn + ω) , (3.7)

where δ = δ(r, s, t) = r + s+ t− 1,

λ = λ(r, s, t) = (r + s− 1)a+ (r − 1)b− c,

ω = ω(r, s, t) = λ+ (λ− δa)j1 + (λ− δ(a+ b))j2 + (λ− δ(a+ b+ c))j3.
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Proof. By using (3.1), we have

n∑
i=0

HWi = HW0 +HW1 +HW2 + ...+HWn

= (W0 +W1j1 +W2j2 +W3j3) + (W1 +W2j1 +W3j2 +W4j3)

+ ...+ (Wn +Wn+1j1 +Wn+2j2 +Wn+3j3)

= (W0 +W1 +W2 + ...+Wn) + (W1 +W2 +W3 + ...+Wn+1)j1

+ (W2 +W3 +Wk,4 + ...+Wn+2)j2 + (W3 +W4 +W5 + ...+Wn+3)j3

=

n∑
i=0

Wn + (

n+1∑
i=0

Wn −W0)j1 + (

n+2∑
i=0

Wn −
1∑

i=0

Wn)j2 + (

n+3∑
l=0

Wn −
2∑

i=0

Wn)j3.

From (2.3), we can write

δ

n∑
i=0

HWi = Wn+2 + (1− r)Wn+1 + tWn + λ

+ (Wn+3 + (1− r)Wn+2 + tWn+1 + λ− δa)j1

+ (Wn+4 + (1− r)Wn+3 + tWn+2 + λ− δ(a+ b))j2

+ (Wn+5 + (1− r)Wn+4 + tWn+3 + λ− δ(a+ b+ c))j3

= (Wn+2 +Wn+3j1 +Wn+4j2 +Wn+5j3)

+ ((1− r)Wn+1 + (1− r)Wn+2j1 + (1− r)Wn+3j2 + (1− r)Wn+4j3)

+ (tWn + tWn+1j1 + tWn+2j2 + tWn+3j3)

+ λ+ (λ− δa)j1 + (λ− δ(a+ b))j2 + (λ− δ(a+ b+ c))j3

= HWn+2 + (1− r)HWn+1 + tHWn + ω,

Finally,
n∑

i=0

HWi =
1

δ
(HWn+2 + (1− r)HWn+1 + tHWn + ω) .

□

Theorem 3.6. The generating function for hyperbolic generalized tribonacci quater-
nions is

∞∑
n=0

HWnx
n =

HW0 + x(HW1 − rHW0) + x2(HW2 − rHW1 − sHW0)

1− rx− sx2 − tx3
.

(3.8)

Proof. Suppose that the generating function of the hyperbolic generalized tribonacci
quaternions HWn has the form f(x) =

∑∞
n=0 HWnx

n. Then

f(x) = HW0 +HW1x+HW2x
2 +HW3x

3 + ...+HWnx
n + ...

Multiplying f(x) on both side by rs, sx2 and then tx3, we have

rxf(x) = rHW0x+ rHW1x
2 + rHW2x

3 + ...+ rHWn−1x
n + rHWnx

n+1 + ...

sx2f(x) = sHW0x
2 + sHW1x

3 + sHW2x
4 + ...+ sHWn−1x

n+1 + sHWnx
n+2 + ...

tx3f(x) = tHW0x
3 + tHW1x

4 + tHW2x
5 + tHW3x

3 + ...+ tHWn−1x
n+2 + tHWnx

n+3...
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By Lemma 3.2,

(1− rx− sx2 − tx3)f(x) = (HW0 +HW1x+HW2x
2 +HW3x

3 + ...+HWnx
n...)

− (rHW0x+ rHW1x
2 + rHW2x

3 + ...+ rHWn−1x
n + rHWnx

n+1 + ...)

− (sHW0x
2 + sHW1x

3 + sHW2x
4 + ...+ sHWn−1x

n+1 + sHWnx
n+2 + ...)

− (tHW0x
3 + tHW1x

4 + tHW2x
5 + tHW3x

3 + ...+ tHWn−1x
n+2 + tHWnx

n+3...)

= HW0 − x(−HW1 + rHW0)− x2(−HW2 + rHW1 + sHW0)

−
∞∑
i=3

(−HWi + (rHWi−1 + sHWi−2 + tHWi−3))x
i

= HW0 − x(−HW1 + rHW0)− x2(−HW2 + rHW1 + sHW0)−
∞∑
i=3

(−HWi +HWi)x
i

= HW0 + x(HW1 − rHW0) + x2(HW2 − rHW1 − sHW0).

Therefore,

f(x) =
HW0 + x(HW1 − rHW0) + x2(HW2 − rHW1 − sHW0)

1− rx− sx2 − tx3
.

□
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[4] Demir, S., Tanışlı, M., & Candemir, N. (2010). Hyperbolic quaternion formulation of electro-
magnetism. Advances in Applied Clifford Algebras, 20, 547-563.

[5] Elia, M. (2001). Derived sequences, tribonacci recurrence and cubic forms. The Fibonacci
Quarterly, 37, 107-115.

[6] Feinberg, M. (1963). Fibonacci-tribonacci. The Fibonacci QSuarterly, 1(3), 71–74.

[7] Flaut, C. & Shpakivskyi, V. (2012). On generalized Fibonacci quaternions and Fibonacci-
Narayana quaternions. arXiv preprint arXiv:1209.0584

[8] Hamilton, W. R. (1866). Elements of quaternions. London: Longmans, Green, & Company.

[9] Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American
Mathematical Monthly, 70(3), 289-291.
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