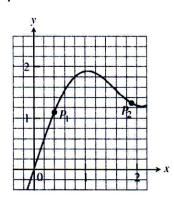
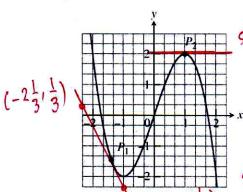
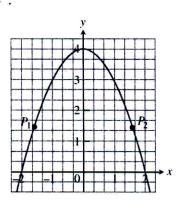

Derivative of Function of One Variable


Slopes & Tangent Lines

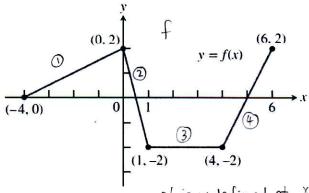
Use the grid and a straight edge to make a rough estimate of the slope of the curve (in y-units per x-unit) at the points P_1 and P_2 .

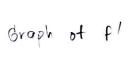

1.



3.

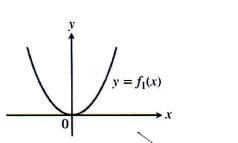
2.

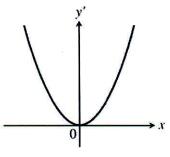

Graphs


① Slope =
$$\frac{2-0}{0-(-4)} = \frac{1}{2}$$

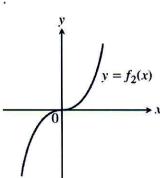
② slope =
$$\frac{-2-2}{1-0}$$
 = -4

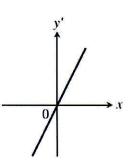
4) slope =
$$\frac{2-(-2)}{6-4}$$
 = 2

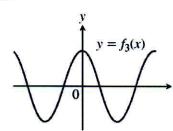

- 1.1 At which points of the interval [-4,6] is f' not defined? Give reasons for your answer.
- 1.2 Graph the derivative of f.

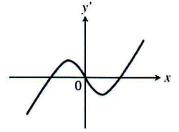


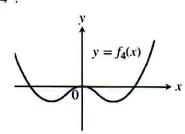
2. Match the functions graphed with the derivatives graphed in Exercises 2.1–2.4 the accompanying figures (a)–(d).

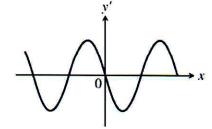

2.1 .


(a) .

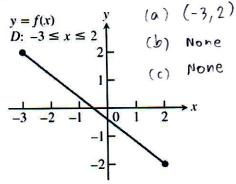

2.2 .

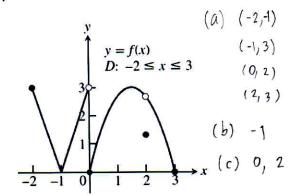

(b) .


2.3 .

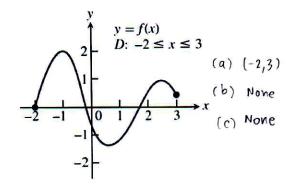

(c) .

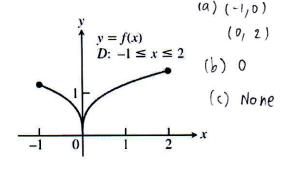
2.4 .

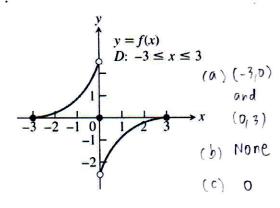

(d) .

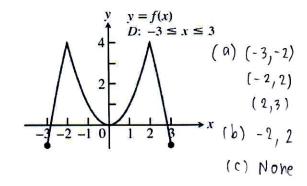

Differentiability & Continuity on an Interval

Each figure in Exercises 1-6 shows the graph of a function over a closed interval D. At what domain points does the function appear to be


- (a) differentiable?
- (b) continuous but not differentiable?
- (c) neither continous nor differentiable?
- 1. .


4. .


2. .


5. .

3. .

6. .

