Related Rate - 8. If a snowball melts so that its surface area decreases at a rate of 1 cm²/min, find the rate at which the diameter decreases when the diameter is 10 cm. - 9. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 5 ft/s along a straight path. How fast is the tip of his shadow moving when he is 40 ft from the pole? - 11. Two cars start moving from the same point. One travels south at 60 mi/h and the other travels west at 25 mi/h. At what rate is the distance between the cars increasing two hours later? - **14.** A baseball diamond is a square with side 90 ft. A batter hits the ball and runs toward first base with a speed of 24 ft/s. - (a) At what rate is his distance from second base decreasing when he is halfway to first base? - (b) At what rate is his distance from third base increasing at the same moment? - 15. The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of 2 cm²/min. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is 100 cm²? - 16. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 8 m from the dock? - **18.** A particle is moving along the curve $y = \sqrt{x}$. As the particle passes through the point (4, 2), its x-coordinate increases at a rate of 3 cm/s. How fast is the distance from the particle to the origin changing at this instant? - 23. Gravel is being dumped from a conveyor belt at a rate of 30 ft³/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high? - 31. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of 2 ft/s, how fast is the angle between the top of the ladder and the wall changing when the angle is $\pi/4$ rad? - **32.** Two carts, A and B, are connected by a rope 39 ft long that passes over a pulley *P* (see the figure). The point *Q* is on the floor 12 ft directly beneath *P* and between the carts. Cart A is being pulled away from *Q* at a speed of 2 ft/s. How fast is cart B moving toward *Q* at the instant when cart A is 5 ft from *Q*?