Rates of Change \& Tangents to Curves

Instantaneous Rates of Change

1. Speed of a car The accompanying figure shows the time-to-distance graph for a sports car accelerating from a standstill.

1.1 Estimate the slopes of secants $P Q_{1}, P Q_{2}, P Q_{3}$, and $P Q_{4}$. What are the appropriate units for these slopes?
1.2 Estimate the car's speed at time $t=20 \mathrm{sec}$.
2. The accompanying graph shows the total distance s traveled by a bicyclist after t hours.
2.1 Estimate the bicyclist's average speed over the time intervals [0,1], $[1,2.5]$ and $[2.5,3.5]$.
2.2 Estimate the bicyclist's instantaneous speed at the times $t=1 / 2, t=2$ and $t=3$.
2.3 Estimate the bicyclist's maximum speed and the specific time at which it occurs.

3. The accompanying graph shows the total amount of gasoline A in the gas tank of an automobile after being driven for t days.
3.1 Estimate the average rate of gasoline consumption over the time intervals $[0,3],[0,5]$ and $[7,10]$.
3.2 Estimate the instantaneous rate of gasoline consumption at the times $t=1, t=4$ and $t=8$.
3.3 Estimate the maximum rate of gasoline consumption and the specific time at which it occurs.

4. Object dropped from a tower An object is dropped from the top of a 100-m-high tower. Its height above ground after $t \mathrm{sec}$ is $100-4.9 t^{2} \mathrm{~m}$. how fast it is falling 2 sec after it is dropped?
5. Speed of a rocket At t sec after liftoff, the height of a rocket is $3 t^{2} \mathrm{ft}$. How fast is the rocket climbing 10 sec after liftoff?
6. Circle's changing area What is the rate of change of the area of a circle ($A=\pi r^{2}$) with respect to the radius when the radius is $r=3$?
7. Ball's changing volume What is the rate of change of the volume of a ball ($V=(4 / 3) \pi r^{3}$) with respect to the radius when the radius is $r=2$?
