Newton's Method

1. Use Newton's method to estimate the two zeros of the function $f(x)=2 x-x^{2}+1$. Start with $x_{0}=0$ for the left-hand zero and with $x_{0}=2$ for the zero on the right. Then, in each case, find x_{2}.
2. The sonobuoy problem In submarine location problems, it is often necessary to find a submarine's closest point of approach (CPA) to a sonobuoy (sound detector) in the water. Suppose that the submarine travels on the parabolic path $y=x^{2}$ and that the buoy is located at the point $(2,-1 / 2)$.

2.1 Show that the value of x that minimizes the distance between the submarine and the buoy is a solution of the equation $x=1 /\left(x^{2}+1\right)$.
2.2 Solve the equation $x=1 /\left(x^{2}+1\right)$ with Newton's method.
3. Finding an ion concentration While trying to find the acidity of a saturated solution of magnesium hydroxide in hydrochloric acid, you derive the equation

$$
\frac{3.64 \times 10^{-11}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+3.6 \times 10^{-4}
$$

for the hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. To find the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, you set $x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and convert the equation to

$$
x^{3}+3.6 x^{2}-36.4=0
$$

You the solve this by Newton's method. What do you get for x ? (Make it good to two decimal places.) For $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

