Limit \& Continuity of Function

Limits from Graphs

1. For the function $g(x)$ graphed here, find the following limits or explain why they do not exist.

2. Which of the following statements about the function $y=f(x)$ graphed here are true, and which are false?

$2.1 \lim _{x \rightarrow 0} f(x)$ exists.
$2.2 \lim _{x \rightarrow 0} f(x)=0$
$2.3 \lim _{x \rightarrow 0} f(x)=1$
$2.4 \lim _{x \rightarrow 1} f(x)=1$
$2.5 \lim _{x \rightarrow 1} f(x)=0$
$2.6 \lim _{x \rightarrow x_{0}} f(x)$ exists at $\forall x_{0} \in(-1,1)$.
$2.7 \lim _{x \rightarrow 1} f(x)$ does not exist.

Existence of Limits

1. Explain why the limits do not exist.
$1.1 \lim _{x \rightarrow 0} \frac{x}{|x|}$
$1.2 \lim _{x \rightarrow 1} \frac{1}{x-1}$
2. Suppose that a function $f(x)$ is defined for all real values of x except $x=x_{0}$. Can anything be said about the existence of $\lim _{x \rightarrow x_{0}} f(x)$? Give reasons for your answer.
3. Suppose that a function $f(x)$ is defined for all x in $[-1,1]$. Can anything be said about the existence of $\lim _{x \rightarrow 0} f(x)$? Give reasons for your answer.
4. If $\lim _{x \rightarrow 1} f(x)=5$, must f be defined at $x=1$? If it is, must $f(1)=5$? Can we conclude anything about the values of f at $x=1$? Explain.
5. If $f(1)=5$, must $\lim _{x \rightarrow 1} f(x)$ exist? If it does, then must $\lim _{x \rightarrow 1} f(x)=5$? Can we conclude anything about $\lim _{x \rightarrow 1} f(x)$? Explain.

Using Limit Rules

1. Suppose $\lim _{x \rightarrow c} f(x)=5$ and $\lim _{x \rightarrow c} g(x)=-2$. Find
$1.1 \lim _{x \rightarrow c} f(x) g(x)$
$1.3 \lim _{x \rightarrow c}(f(x)+3 g(x))$
$1.2 \lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
$1.4 \lim _{x \rightarrow c} \frac{f(x)}{f(x)-g(x)}$

Limits of Average Rates of Change

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

occur frequently in calculus. Evaluate this limit for the given value of x and function f.

1. $f(x)=x^{2}, \quad x=1$
2. $f(x)=x^{2}, \quad x=-2$
3. $f(x)=3 x-4, \quad x=2$
4. $f(x)=1 / x, \quad x=-2$
5. $f(x)=\sqrt{x}, \quad x=7$
6. $f(x)=\sqrt{3 x+1}, \quad x=0$

Theory \& Examples

1. Once you know $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ at an interior point of the domain of f, do you then know $\lim _{x \rightarrow a} f(x)$? Give reasons for your answer.
2. If you know that $\lim _{x \rightarrow c} f(x)$ exists, can you find its value by calculating $\lim _{x \rightarrow c^{+}} f(x)$? Give reasons for your answer.

Continuity from Graphs

Consider the function

$$
f(x)= \begin{cases}x^{2}-1, & -1 \leq x<0 \\ 2 x, & 0<x<1 \\ 1, & x=1 \\ -2 x+4, & 1<x<2 \\ 0, & 2<x<3\end{cases}
$$

graphied in the accompanying figure.

1. Does $f(-1)$ exist ?

Does $\lim _{x \rightarrow-1^{+}} f(x)$ exist?
Does $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$?
Is f continuous at $x=-1$?
2. Does $f(1)$ exist ?

Does $\lim _{x \rightarrow 1} f(x)$ exist?
Does $\lim _{x \rightarrow 1} f(x)=f(1)$?
Is f continuous at $x=1$?
3. Is f defined at $x=2$?

Is f continuous at $x=2$
4. At what values of x is f continuous?
5. What value should be assigned to $f(2)$ to make the extended function continous at $x=2$?
6. To what new value should $f(1)$ be changed to remove the discontiuity?

