Differential Estimates of Change

- 1. The change in the volume $V=(4/3)\pi r^3$ of a sphere when the radius changes from r_0 to r_0+dr
- 2. Estimating volume Estimate the volume of material in a cylindrical shell with height 30 in., radius 6 in., and shell thickness 0.5 in.
- 3. Estimating height of a building A surveyor, standing 30 ft from the base of a building, measures the angle of elevation to the top of the building to be 75°. How accurately must the angle be measured for the percentage error in estimating the height of the building to be less than 4%?
- 4. The effect of flight maneuvers on the heart The amount of work done by the heart's main pumping chamber, the left ventricle, is given by the equation

$$W = PV + \frac{v\delta v^2}{2g}.$$

where W is the work per unit time, P is the average blood pressure, V is the volume of blood pumped out during the unit of time, δ ("delta") is the weight density of the blood, v is the averate locity of the exiting blood, and g is the acceleration of gravity.

When P, V, δ , and v remain constant, W becomes a function of g, and the equation takes the simplified form

$$W = a + \frac{b}{g}$$
 (a, b constant).

As a member of NASA's medical team, you want to know how sensitive W is to apparent changes in g caused by flight maneuvers, and this depends on the initial value of g. As part of your investigation, you decide to compare the effect on W of a given change dg on the moon, where g = 5.2 ft/sec², with the effect the same change dg would have on Earth, where g = 32 ft/sec². Use the simplified equation above to find the ratio of dW_{moon} to dW_{Earth} .

5. The diameter of a sphere is measured as 100 ± 1 cm and the volume is calculated from this measurement. Estimate the percentage error in the volume calculation.