Differential Estimates of Change

1. The change in the volume $V=(4 / 3) \pi r^{3}$ of a sphere when the radius changes from r_{0} to $r_{0}+d r$
2. Estimating volume Estimate the volume of material in a cylindrical shell with height 30 in., radius 6 in., and shell thickness 0.5 in.
3. Estimating height of a building A surveyor, standing 30 ft from the base of a building, measures the angle of elevation to the top of the building to be 75°. How accurately must the angle be measured for the percentage error in estimating the height of the building to be less than 4% ?
4. The effect of flight maneuvers on the heart The amount of work done by the heart's main pumping chamber, the left ventricle, is given by the equation

$$
W=P V+\frac{v \delta v^{2}}{2 g}
$$

where W is the work per unit time, P is the average blood pressure, V is the volume of blood pumped out during the unit of time, δ ("delta") is the weight density of the blood, v is the averate locity of the exiting blood, and g is the acceleration of gravity.

When P, V, δ, and v remain constant, W becomes a function of g, and the equation takes the simplified form

$$
W=a+\frac{b}{g} \quad(a, b \text { constant }) .
$$

As a member of NASA's medical team, you want to know how sensitive W is to apparent changes in g caused by flight maneuvers, and this depends on the initial value of g. As part of your investigation, you decide to compare the effect on W of a given change $d g$ on the moon, where $g=5.2 \mathrm{ft} / \mathrm{sec}^{2}$, with the effect the same change $d g$ would have on Earth, where $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. Use the simplified equation above to find the ratio of $d W_{\text {moon }}$ to $d W_{\text {Earth }}$.
5. The diameter of a sphere is measured as $100 \pm 1 \mathrm{~cm}$ and the volume is calculated from this measurement. Estimate the percentage error in the volume calculation.

