Hermitian matrix For $A \in \mathbb{C}^{n \times n}$, we define A^{*} to be its conjugate transpose. A is called Hermitian if

$$
A=A^{*}
$$

Properties of a Hermitian matrix

1. Its eigenvalues are all real.
2. If all of its entries are real, it is symmetric.
3. It is normal matrix. (i.e. $A A^{*}=A^{*} A$.) Therefore, it is diagonalizable, and its eigenvectors form orthogonal basis of \mathbb{C}^{n}.

Rayleigh Quotient If A is Hermitian, we define

$$
r(x)=\frac{x^{*} A x}{x^{*} x},
$$

for all x in \mathbb{C}^{n}.

Note If x is an eigenvector of A, we have that $r(x)=\ldots$.

Restriction to Real Symmetric Matrices In most application, we are interested in matrices with real entries. Therefore, we restrict ourselves to real symmetric matrices.

For real symmetric $A \in \mathbb{R}^{n \times n}$, the Rayleigh quotient is defined by

$$
r(x)=\frac{x^{T} A x}{x^{T} x},
$$

for $x \in \mathbb{R}^{n}$.
Note that if $\|x\|_{2}=1, r(x)$ reduces to $x^{T} A x$.

Stationary point We can consider r as a real-valued function of multivariable. An eigenvector of A is a stationary point of r.

Power Iteration

Choose $u^{(0)}$ such that $\left\|u^{(0)}\right\|_{2}=1$. Then, we repeat the following steps.

1. $w^{(k)}=A u^{(k-1)}$
2. $u^{(k)}=\frac{w^{(k)}}{\left\|w^{(k)}\right\|_{2}}$

Theorem Suppose $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$ and $v_{1}^{T} u^{(0)} \neq 0$.
Then the power iteration satisfies

1. the difference between $u^{(k)}$ and $\left|v_{1}\right|$ is of order $O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$
2. $\left|\lambda^{(k)}-\lambda_{1}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right)$. Here, we define $\lambda^{(k)}=\left(u^{(k)}\right)^{T} A u^{(k)}$.

Assume μ is not an eigenvalue of A. We have that if λ is an eigenvalue of A, then $(\lambda-\mu)^{-1}$ is an eigenvalue of $(A-\mu I)^{-1}$. If λ_{i} is closer to μ than any other eigenvalues of A, we have that $\left(\lambda_{i}-\mu\right)^{-1}$ is much lager than any other $(\lambda-\mu)^{-1}$.

If we apply the power iteration to the matrix $(A-\mu I)^{-1}$, the process will quickly converge to v_{i}, a unit eigenvector corresponding to λ_{i}. We call this...

Inverse Iteration

$$
\text { Choose } u^{(0)} \text { such that }\left\|u^{(0)}\right\|_{2}=1 \text {. }
$$

1. Solve for $w^{(k)}$ from $(A-\mu I) w^{(k)}=u^{(k-1)}$.
2. $u^{(k)}=\frac{w^{(k)}}{\left\|w^{(k)}\right\|_{2}}$

Rayleigh Quotient Iteration We incorporate the Rayleigh quotient to the inverse iteration to approximate both eigenvector and eigenvalue of A.

Choose $u^{(0)}$ such that $\left\|u^{(0)}\right\|_{2}=1$. Then, we have that $\lambda^{(0)}=$ $\left(u^{(0)}\right)^{T} A u^{(0)}$. Then, we repeat the following steps.

1. Solve for $w^{(k)}$ from $(A-\mu I) w^{(k)}=u^{(k-1)}$.
2. $u^{(k)}=\frac{w^{(k)}}{\left\|w^{(k)}\right\|_{2}}$
3. $\lambda^{(k)}=\left(u^{(k)}\right)^{T} A u^{(k)}$

Theorem When $u^{(0)}$ is chosen so that the Rayleigh quotient iteration converges, the convergence rate is cubic. i.e.

$$
\left\|\lambda^{(k+1)}-\lambda_{i}\right\|_{2}=O\left(\left|\lambda^{(k)}-\lambda_{i}\right|^{3}\right)
$$

