Matrix eigenvalue problems

Recall

1. $A=\left[\begin{array}{cc}1 & -3 \\ 1 & 5\end{array}\right]$

$$
\Rightarrow \sigma(A)=\{2,4\}, \quad v_{1}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

2. $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right], B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$

Applications of eigenvalue

1. System of ODE

Let $v=[y, z]^{T}$. Consider

$$
v^{\prime}=A v, v(0)=[-4,2]^{T} \quad \text { where } A=\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]
$$

2. Eigenvalue decomposition A matrix $A \in \mathbb{C}^{n \times n}$ is called diagonalizable if it can be written as

$$
A=X \Gamma X^{-1},
$$

where $\Gamma=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix whose entries are eigenvalues of A, and $X=\left[x_{1}, \ldots, x_{n}\right]$ is a matrix whose columns are associated eigenvectors.

Gerschgorin Theorem All of the eigenvalues of A must lie in the union of the Gerschgorin disks

$$
K_{i}=\left\{z \in \mathbb{C},\left|z-a_{i, i}\right| \leq r_{i}\right\},
$$

where the radii are

$$
r_{i}=\sum_{j \neq i}\left|a_{i, j}\right|
$$

Example
Consider the matrix $A=\left[\begin{array}{ccc}1+0.5 i & 0.5 & 0.1 \\ 0.3 & 1-0.5 i & 0.5 \\ 0.4 & 0 & -0.5\end{array}\right]$.

Remark

Because the set of eigenvalues of A is the same as that of the transpose of $A \in \mathbb{C}^{n \times n}$, it follows that....

The power method

Sometimes, we may need to compute only the largest eigenvalue (in terms of absolute value) instead of all of them. Suppose the eigenvalues of A are arranged in descending order

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|,
$$

and that the associated eigenvectors

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}
$$

make up a basis of \mathbb{C}^{n}. We can write $u^{(0)} \in \mathbb{C}^{n}$ as

$$
u^{(0)}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n} .
$$

Define the iteration process to be

$$
u^{(k+1)}=A u^{(k)}, k=0,1,2, \ldots
$$

we have that $u^{(1)}=\ldots .$.

Assume $u^{(0)}$ is chosen so that $a_{1} \neq 0$, and that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we have

$$
\lim _{k \rightarrow \infty} \frac{u^{(k)}}{\lambda_{1}^{k}}=\ldots .
$$

Thus, the quotients $q_{i}^{(k)}=\frac{u_{i}^{(k)}}{u_{i}^{(k-1)}}, \quad u_{i}^{(k-1)} \neq 0$, satisfies

$$
\lim _{k \rightarrow \infty} q_{i}^{(k)}=\ldots \ldots
$$

given that the $\mathrm{i}^{\text {th }}$ component of $\overrightarrow{v_{1}}$ is not zero.

