Laplace's equation

$$
\begin{align*}
& \nabla^{2} u=0, \quad(x, y) \in D \tag{1a}\\
& u=g(x, y), \quad(x, y) \in \partial D \tag{1b}
\end{align*}
$$

Finite difference approximation

Let $D \cup \partial D=[0, a] \times[0, b]$. We discretize x and y into

$$
\begin{aligned}
& x_{j}=j \Delta x, \quad j=0, \ldots, N+1 \\
& y_{k}=k \Delta y, \quad k=0, \ldots, M+1
\end{aligned}
$$

where $\Delta x=a /(N+1)$ and $\Delta y=b /(M+1)$.
Approximate the second derivatives in (1a) with the centered differences to get the scheme

$$
\begin{equation*}
-\lambda^{2} u_{j+1, k}+2\left(1+\lambda^{2}\right) u_{j, k}-\lambda^{2} u_{j-1, k}-u_{j, k-1}-u_{j, k-1} \tag{2}
\end{equation*}
$$

for $j=1, \ldots, N$ and $k=1, \ldots, M$. Here, $\lambda=\frac{\Delta y}{\Delta x}$.
The boundary condition (1b) gives the values for the points on the boundary: $u_{0, k}, u_{N+1, k}, u_{j, 0}$, and $u_{j, M+1}$.

Vector form Let g be defined such that $g:=g_{L}, g_{R}, g_{T}, g_{B}$ on the left, right, top, and bottom of ∂D respectively. We can then write the scheme (2) in vector-matrix form as:

$$
A v=b
$$

where A is an $M N \times M N$ matrix. The vector \vec{v} is defined by $\vec{v}=$ $\left[\vec{v}_{1}, \ldots, \vec{v}_{M}\right]^{T}$, where $\vec{v}_{k}=\left[u_{1, k}, \ldots u_{N, k}\right]^{T}$. Because the matrix A is large, we need a numerical method to approximate A^{-1}.

Matrix eigenvalue problems

Definitions We define $\mathbb{C}^{n \times n}$ to be the set of all $n \times n$ complex matrices. The set of complex vectors of size $n \times 1$ is called \mathbb{C}^{n}.

1. Let A be in \mathbb{C}^{n}, we say $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a non-zero vector $x \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
A x=\lambda x \tag{3}
\end{equation*}
$$

2. The vector x satisfying (3) is called eigenvector of A associated with λ. We denote the subspace of \mathbb{C}^{n} that contains all eigenvectors associated with λ by E_{λ}. It is called eigenspace.
3. The geometric multiplicity of an eigenvalue λ is the dimension of the eigenspace E_{λ}.
4. The set of all eigenvalues of A is called spectrum of A. It is denoted by $\sigma(A)$.
5. The characteristic polynomial of A, denoted p_{A}, is the n-degree polynomial

$$
p_{A}(z)=\operatorname{det}(z I-A) .
$$

Note λ is an eigenvalue of A if and only if λ is a root of p_{A}.
6. The algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as a root of p_{A}.

Note The algebraic multiplicity of λ is greater than or equal to the geometric multiplicity of λ.

Examples

1. $A=\left[\begin{array}{cc}1 & -3 \\ 1 & 5\end{array}\right]$
2. $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right], B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$

Applications of eigenvalue

1. System of ODE

Let $v=[y, z]^{T}$. Consider

$$
v^{\prime}=A v, v(0)=[-4,2]^{T} \quad \text { where } A=\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]
$$

2. Eigenvalue decomposition A matrix $A \in \mathbb{C}^{n \times n}$ is called diagonalizable if it can be written as

$$
A=X \Gamma X^{-1},
$$

where $\Gamma=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix whose entries are eigenvalues of A, and $X=\left[x_{1}, \ldots, x_{n}\right]$ is a matrix whose columns are associated eigenvectors.

Gerschgorin Theorem All of the eigenvalues of A must lie in the union of the Gerschgorin disks

$$
K_{i}=\left\{z \in \mathbb{C},\left|z-a_{i, i}\right| \leq r_{i}\right\},
$$

where the radii are

$$
r_{i}=\sum_{j \neq i}\left|a_{i, j}\right|
$$

