
Heat equation

ut = uxx, 0 < x < 1, t > 0 (1a)

u(0, t) = u(1, t) = 0, t > 0 (1b)

u(x, 0) = g(x), 0 ≤ x ≤ 1. (1c)

Forward difference in time

uj,k = λuj+1,k + (1− 2λ)uj,k + λuj+1,k,

where λ =
∆t

h2
.

Vector form

u⃗k+1 = Au⃗k,

where

A =



1− 2λ λ 0 . . . 0

λ 1− 2λ λ . . . 0

... . . . . . . . . . ...

0 . . . λ 1− 2λ λ

0 . . . 0 λ 1− 2λ


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Stability

wk+1 = κwk,

where κ = 1 − 4λ sin2
(
h
2

)
is the amplification factor for this

method. The stability condition for this method is |κ| ≤ 1, which

holds when

λ ≤ 1

2
.

Backward difference in time

Replace ut in (1a) with the backward difference

uj,k − uj,k−1

∆t
,

we get the scheme

−λuj+1,k + (1 + 2λ)uj,k + uj−1,k = uj,k−1
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Vector form

Bu⃗k = u⃗k−1,

where

B =



1 + 2λ −λ 0 . . . 0

−λ 1 + 2λ −λ . . . 0

... . . . . . . . . . ...

0 . . . −λ 1 + 2λ −λ

0 . . . 0 −λ 1 + 2λ


Stability For this implicit method, the amplification factor is given

by

κ =
1

1 + 4λ sin2
(
h
2

)
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Crank-Nicolson method Vector form

(B + I)u⃗k+1 = (A + I)u⃗k

Method of line From equation (1a), we replace uxx by the cen-

tered difference but leave the variable t continuous. This reduces

the PDE to IVP problem

d

dt
u⃗(t) = Cu⃗(t), t > 0,

u⃗(0) = g⃗,

where C =
1

h2



−2 1 0 . . . 0

1 −2 1 . . . 0

... . . . . . . . . . ...

0 . . . 1 −2 1

0 . . . 0 1 −2


.
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Advection equation

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ R, t > 0 (2a)

u(x, 0) = g(x), (2b)

where a > 0.

Method of Characteristics

The idea is to transform the variable x and t into s and r so that

∂

∂r
=

∂

∂t
+ a

∂

∂s
,

which gives

∂u

∂r
= 0.
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Upwind scheme We use backward difference in space to ap-

proximate ux.

uj,k+1 − uj,k
∆t

+ a
uj,k − uj−1,k

h
= 0.

Solving for uj,k+1, we get

uj,k+1 = (1− λ)uj,k + λuj−1,k,

where λ =
a∆t

h
.
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Downwind scheme We use forward difference in space to ap-

proximate ux.

uj,k+1 − uj,k
∆t

+ a
uj+1,k − uj,k

h
= 0.

Solving for uj,k+1, we get

uj,k+1 = −λuj+1,k + (1 + λ)uj,k,

where λ =
a∆t

h
.
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Numerical domain of dependence The grid points along

the x−axis that contribute to the approximation of the solution

at the point (xj, tk) are called numerical domain of dependence.

On the other hand, for the advection equation, the exact value

of u at the point (xj, tk) comes from the value of u at the point

(x̄0, 0) where x̄0 = .....

CFL condition (Courant-Friedrichs-Lewy) The numerical do-

main of dependence must bound, or contain, the domain of de-

pendence for the problem.
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Stability Similar to heat equation, we assume

uj,k = wke
ixj ,

and can show that, for the upwind method

wk = κkw0, where,

κ = 1− λ + λ cos(h)− iλ sin(h).

The stability condition for the upwind method is

|κ| ≤ 1,

which holds when λ ≤ 1. This agrees with the CFL condition.
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Centered difference in space We try using centered difference

in space to approximate ux.

uj,k+1 − uj,k
∆t

+ a
uj+1,k − uj−1,k

2h
= 0.

Solving for uj,k+1, we get

uj,k+1 = −λ

2
uj,k + uj,k +

λ

2
uj−1,k,

where λ =
a∆t

h
.

We can show that the CFL condition for this method is λ ≤ 1.

However, one can show that the amplifying factor for this method

is

κ = 1− iλ sin(h),

which implies that the method is unstable because .....
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