Math 455: Homework 9 (due Friday, November 7, 2014)
Work in group of 4-5 people.

1. Gauss-Legendre quadrature is an approximation of $\int_{-1}^{1} f(x) d x$ using

$$
\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where $x_{i}, i=1, \ldots, n$ are the roots of n-degree Legendre polynomials.
Use 16-point Gauss-Legendre quadrature to find \tilde{p}, the least square approximation of

$$
f(x)=\sin \left(2 \pi x^{2} e^{x}\right), \quad x \in[-1,1]
$$

from P_{6}. You can find all w_{i} 's and x_{i} 's for the 16-point Gauss-Legendre quadrature from the course homepage. The Legendre polynomials of order upto six are given by:

$$
\begin{gathered}
\mathcal{L}_{0}(x)=1, \mathcal{L}_{1}(x)=x, \mathcal{L}_{2}(x)=\frac{3 x^{2}-1}{2}, \mathcal{L}_{3}(x)=\frac{5 x^{3}-3 x}{2}, \mathcal{L}_{4}(x)=\frac{35 x^{4}-30 x^{2}+3}{8} \\
\mathcal{L}_{5}(x)=\frac{63 x^{5}-70 x^{3}+15 x}{8}, \quad \mathcal{L}_{6}(x)=\frac{231 x^{6}-315 x^{4}+105 x^{2}-5}{16}
\end{gathered}
$$

Plot both \tilde{p} and f on the same axes to compare. Include title, legend and labels.
2. Let $I_{1} \ldots, I_{20}$ be the uniform subintervals of $[-1,1]$. Use 16 -point Gauss-Legendre quadrature (with the change of variable) to find the least square approximation $\tilde{p}_{j}, j=$ $1, \ldots, 20$, for the function

$$
f(x)=\sin \left(2 \pi x^{2} e^{x}\right), \quad x \in I_{j}
$$

from P_{2}. Plot f and all \tilde{p}_{j} on the same axes. Include title, legend and labels.
3. Show that the Heun's method

$$
\begin{aligned}
y^{*} & =y_{n}+h f\left(x_{n}, y_{n}\right) \\
y_{n+1} & =y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y^{*}\right)\right]
\end{aligned}
$$

has order 2.
4. Implement the shooting method using forward Euler with $h=1$ to solve the boundary value problem below by hand.

$$
y^{\prime \prime}-2 y^{\prime}-y=x(x-1), \quad y(0)=-12, \quad y(3)=-6
$$

Use $z_{0}=0$ and $z_{0}=10$ for your first two initial guesses. Keep decimals upto third place.

