Math 455: Homework 8 (due Friday, October 24, 2014) Work in group of 4-5 people.

1. Define cubic B-Spline on the set of evenly distributed points $x_{i}=i \cdot h, h>0$ by

$$
B_{i}(x)=\frac{1}{6 h^{3}} \begin{cases}\left(x-x_{i}\right)^{3}, & x_{i} \leq x<x_{i+1} \\ h^{3}+3 h^{2}\left(x-x_{i+1}\right)+3 h\left(x-x_{i+1}\right)^{2}-3\left(x-x_{i+1}\right)^{3}, & x_{i+1} \leq x<x_{i+2} \\ h^{3}+3 h^{2}\left(x_{i+3}-x\right)+3 h\left(x_{i+3}-x\right)^{2}-3\left(x_{i+3}-x\right)^{3}, & x_{i+2} \leq x<x_{i+3} \\ \left(x_{i+4}-x\right)^{3}, & x_{i+3} \leq x<x_{i+4} \\ 0, & \text { otherwise }\end{cases}
$$

Recall that we can interpolate f at x_{o}, \ldots, x_{n} using a cubic spline s given by

$$
s(x)=\sum_{i=-3}^{n-1} \alpha_{i} B_{i}(x)
$$

where two more conditions on the boundary are needed. There well-known options for boundary conditions are:

1. Natural end conditions
$s^{\prime \prime}\left(x_{0}\right)=0$ and $s^{\prime \prime}\left(x_{n}\right)=0$.
2. Hermite end conditions
$s^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ and $s^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$.
3. Periodic end conditions
$s^{\prime}\left(x_{0}\right)=s^{\prime}\left(x_{n}\right)$ and $s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)$.
Using the first two options, write MATLAB code to find α_{i} for $s(x)$ that interpolates $f(x)=e^{x} \cos (2 \pi x)$ on $\left[x_{0}, x_{n}\right]=[0,1]$ with $h=1 / 10$.
Plot the graphs of f and s with title and legend. Label all points.
4. Show that the multistep method

$$
y_{n+1}=\sum_{j=0}^{p} a_{j} y_{n-j}+h \sum_{j=-1}^{p} b_{j} f\left(x_{n-j}, y_{n-j}\right), \quad n \geq p, \quad a_{p} \neq 0 \text { or } b_{p} \neq 0
$$

is consistent if and only if

$$
\sum_{j=0}^{p} a_{j}=1, \quad-\sum_{j=0}^{p} j a_{j}+\sum_{j=-1}^{p} b_{j}=1 .
$$

3. Derive the Adams-Bashforth method and the Adams-Moulton method with $p=2$. Find the truncation errors and orders of accuracy.
i.e. find explicit and implicit three-step methods. For the Adam-Bashforth method, you need to use the values of f at x_{n}, x_{n-1}, x_{n-2}. For the Adams-Moulton method, you need to use the values of f at $x_{n+1}, x_{n}, x_{n-1}, x_{n-2}$.
