Midterm practice 1

1. Let $f(x)= \begin{cases}4|x-2|+1 & x<2 \\ x^{2}-3 & x \geq 2\end{cases}$
(a) Find $\lim _{\Delta x \rightarrow 0^{-}} \frac{f(2+\Delta x)-f(2)}{\Delta x}$.
(b) Find $\lim _{\Delta x \rightarrow 0^{+}} \frac{f(2+\Delta x)-f(2)}{\Delta x}$.
(c) Is $f^{\prime}(2)$ defined? Why or why not?
2. The number of cells, y, in an experiment at time t (minutes) is given by

$$
y(t)=y_{0}\left(5 t^{2}-3 t\right) ; \quad 0 \leq t \leq 100
$$

where y_{0} is the number of cells at the beginning of the experiment. Find the rate of change of the number of cells with respect to time when $t=40$ if there are 100 cells at the beginning of the experiment.
3. Find a point where $y=2 e^{(1-x)}$ is tangent to the line through $(0,3),(5,-2)$.
4. Find derivatives of the following functions
(a) $y=x^{2}+\sqrt{2 x-1}-\cot x+2$
(b) $y=\frac{e}{x}+\log _{2} x-\sec \left(x^{2}+1\right)$
(c) $y=\frac{\pi^{x}}{\arccos x}+(\ln x)^{2}$
(d) $y=\tan \left(3 x^{2}+x-1\right)+2^{\cos x}$
(e) $(\ln x) \cdot(\csc 2 x)$
(f) $\sin \left(\frac{1}{x}\right)-e^{\left(\frac{1}{x}\right)}$
5. Let $f(x)=(2 x)^{100}-x^{99}+1$.
(a) Find k such that the $k^{\text {th }}$ derivative is a non-zero constant.
(b) Find $f^{(k)}(x)$ where k is the answer from previous step.
6. Find $\frac{d y}{d x}$ if $\ln (x+y)=x \sin y+7$.
7. Use logarithmic differentiation to find $\frac{d y}{d x}$ if $y=\frac{x^{\sin x} \cdot e^{e x+e}}{\sqrt[3]{\ln (3 x)}}, x>\frac{1}{3}$.
8. Use differential to approximate $\ln (1.9)$ to two decimal places. Use $\ln 2=0.69$
9. A semi-spherical dome has radius of 10 meters. The measurement of the radius has an error of ± 0.05 meter.
(a) Let V be volume inside the dome, r be radius. Write V in terms of r.
(b) Use differential to approximate the error from computing the volume.
10. Use Newton-Raphson (Newton's method) with $x_{0}=3$ to find x_{1} which approximates $\sqrt[3]{\frac{78}{3}}$. Use two decimal places.
11. (a) Find the third-degree Taylor polynomial of $f(x)=\cos x$ about $x=\pi$.
(b) Use the polynomial obtained from the previous step to approximate $\cos (3.04)$. Here, use $\pi=3.14$.
12. Find the limits.
(a) $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}$
(b) $\lim _{x \rightarrow+\infty}\left[\ln \left(\frac{1}{x}\right)-\frac{x^{3}}{2 x+1}\right]$
13. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{7^{x}-5^{x}}{x}$
(b) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{1-e^{-x}}-\frac{1}{x}\right)$
(c) $\lim _{\pi} \sin (4 x-\pi) \cdot \cot (2 x-\pi)$
$x \rightarrow \frac{\pi}{2}$
(d) $\lim _{x \rightarrow+\infty}\left(\frac{x+e}{x+2 e}\right)^{x}$

