More Trig. identities

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

If you can remember these identities, you can derive formulas (4)-(9).

Homework Due Monday, November 17, 2014. Late homework will NOT be accepted.

1. Evaluate $\int \tan ^{-1 / 2}(2 x) \sec ^{4}(2 x) d x$.
2. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sin x+\sec x, y=0, x=0$, and $x=\pi / 3$ about the $x-$ axis. Use disk method.
3. Find the area of the region in the first quadrant that is enclosed by the coordinate axes and the curve $y=\left(2-x^{2}\right)^{3 / 2}$.
(1)

$$
\begin{array}{ll}
& \int \tan ^{-\frac{1}{2}}(2 x) \sec ^{4}(2 x) d x=\int \tan ^{-\frac{1}{2}}(2 x) \sec ^{2}(2 x) \sec ^{2}(2 x) d x \\
= & \int \tan ^{-\frac{1}{2}}(2 x)\left(1+\tan ^{2}(2 x)\right) \sec ^{2}(2 x) d x \\
= & \frac{1}{2} \int u^{-\frac{1}{2}}\left(1+u^{2}\right) d u \\
= & \frac{1}{2} \int u^{-\frac{1}{2}}+u^{\frac{3}{2}} d u \\
= & \frac{1}{2}\left[2 u^{1 / 2}+\frac{2}{5} u^{5 / 2}\right]+c \\
= & \text { let } u=\tan (2 x) \\
=u^{1 / 2}+\frac{1}{5} u^{5 / 2}+c=\sec ^{2}(2 x) d x
\end{array}
$$

(2)

$$
\begin{aligned}
& \sin x \sec x \\
= & \sin x \cdot \frac{1}{\cos x} \\
= & \tan x
\end{aligned}
$$

$$
\begin{aligned}
V & =\int_{0}^{\pi / 3} \pi(\sin x+\sec x)^{2} d x=\pi \int_{0}^{\pi / 3} \sin ^{2} x+2 \tan x+\sec ^{2} x d x \\
& =\pi \int_{0}^{\pi / 3}\left[\frac{1}{2}-\frac{\cos (2 x)}{2}\right]+2 \tan x+\sec ^{2} x d x \\
& =\pi\left[\frac{1}{2} x-\frac{1}{4} \sin (2 x)+2 \ln |\sec x|+\tan x\right]_{0}^{\pi / 3} \\
& =\pi\left(\frac{\pi}{6}-\frac{\sqrt{3}}{8}+2 \ln 2+\sqrt{3}\right) \\
& =\frac{\pi^{2}}{6}+\frac{7 \sqrt{3} \pi}{8}+2 \pi \ln 2
\end{aligned}
$$

