Homework Due Thursday, Novemver 13, 2014. Late homework will NOT be accepted.

1. Evaluate $\int x^{2} e^{-3 x} d x$.
2. Use the cylindrical shell method to find the volume of the solid generated by revolving the region in the first quadrant enclosed by $y=\log _{2} x, x \in[1,2]$, about the line $x=\frac{1}{2}$.
3. Evaluate $\int_{0}^{\pi / 2} \sin ^{7}\left(\frac{x}{2}\right) \cos ^{5}\left(\frac{x}{2}\right) d x$.
(1) Use integration by parts twice

$$
\begin{aligned}
\int x^{2} e^{-3 x} d x & =-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3} \int x e^{-3 x} d x \\
\begin{aligned}
u=x^{2} \quad d v=e^{-3 x} d x \\
d u=2 x d x \quad v=-\frac{1}{3} e^{3 x}
\end{aligned} & \begin{array}{l}
u=x \quad d v=e^{-3 x} d x \\
d u=d x \quad v=-\frac{1}{3} e^{-3 x}
\end{array} \\
& =-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3}\left[-\frac{1}{3} x e^{-3 x}+\frac{1}{3} \int e^{-3 x} d x\right] \\
& =-\frac{1}{3} x^{2} e^{-3 x}-\frac{2}{9} x e^{-3 x}+\frac{2}{9} \int e^{-3 x} d x \\
& =-\frac{1}{3} x^{2} e^{-3 x}-\frac{2}{9} x e^{-3 x}+\frac{2}{9}\left(-\frac{1}{3}\right) e^{-3 x}+C \\
& =-\frac{1}{3} x^{2} e^{-3 x}-\frac{2}{9} x e^{-3 x}-\frac{2}{27} e^{-3 x}+C
\end{aligned}
$$

use table

$$
\begin{gathered}
x^{2}+e^{-3 x} \quad \int x^{2} e^{-3 x} d x=-\frac{1}{3} x^{2} e^{-3 x}-\frac{2}{9} x e^{-3 x} \\
2 x-\frac{1}{3} e^{-3 x} \\
-\frac{2}{27} e^{-3 x}+C
\end{gathered}
$$

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi r h d x \quad u=\log _{2} x \quad d v=x \\
& =\int_{1}^{2} 2 \pi x \log _{2} x d x \quad d u=\frac{1}{x \ln 2} d x \quad v=\frac{1}{2} x^{2} \\
& =2 \pi \int_{1}^{2} x \log _{2} x d x \\
& =2 \pi\left[\frac{1}{2} x^{2} \log _{2} x\right]_{1}^{2}-2 \pi\left[\int_{1}^{2} \frac{1}{\ln 2} x d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi[2-0]-2 \pi \cdot \frac{1}{2 \ln 2} \int_{1}^{2} x d x \\
& =4 \pi-\frac{\pi}{\ln 2}\left[\frac{1}{2} x^{2}\right]_{1}^{2}=4 \pi-\frac{\pi}{\ln 2}\left[\frac{1}{2} \cdot 2^{2}-\frac{1}{2} \cdot 1^{2}\right] \\
& =4 \pi-\frac{\pi}{\ln 2}\left[2-\frac{1}{2}\right]=4 \pi-\frac{3 \pi}{2 \ln 2}
\end{aligned}
$$

(3) consider $\int \sin ^{7}\left(\frac{x}{2}\right) \cos ^{5}\left(\frac{x}{2}\right) d x$

$$
\begin{aligned}
& =\int \sin ^{7}\left(\frac{x}{2}\right) \cos ^{4}\left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) d x=\int \sin ^{7}\left(\frac{x}{2}\right)\left(\cos ^{2}\left(\frac{x}{2}\right)\right)^{2} \cos \left(\frac{x}{2}\right) d x
\end{aligned}
$$

let $\begin{aligned} u & =\sin \left(\frac{x}{2}\right) \\ d u & =\cos \left(\frac{x}{2}\right) \cdot \frac{1}{2} d x\end{aligned}$

$$
=\int \sin ^{7}\left(\frac{x}{2}\right)\left[1-\sin ^{2}\left(\frac{x}{2}\right)\right]^{2} \cos \left(\frac{x}{2}\right) d x
$$

$2 d u=\cos \left(\frac{x}{2}\right) d x$

$$
=\int u^{7}\left[1-u^{2}\right]^{2} \cdot 2 d u
$$

$$
=2 \int u^{7}\left(u^{-}-2 u^{2}+u^{4}\right) d u
$$

$$
=2 \int\left(u^{7}-2 u^{9}+u^{11}\right) d u
$$

$$
=2\left[\frac{1}{8} u^{8}-\frac{2}{10} u^{10}+\frac{1}{12} u^{12}\right]
$$

$$
=2\left[\frac{1}{8} \sin ^{8}\left(\frac{x}{2}\right)-\frac{1}{5} \sin ^{10}\left(\frac{x}{2}\right)+\frac{1}{12} \sin ^{12}\left(\frac{x}{2}\right)\right]
$$

So, $\int_{0}^{\pi / 2} \sin ^{7}\left(\frac{x}{2}\right) \cos ^{5}\left(\frac{x}{2}\right) d x=\left[\frac{1}{4} \sin ^{8}\left(\frac{x}{2}\right)-\frac{2}{5} \sin ^{10}\left(\frac{x}{2}\right)+\frac{1}{6} \sin ^{12}\left(\frac{x}{2}\right)\right]_{0}^{\pi / 2}$

$$
\begin{aligned}
& =\frac{1}{4} \cdot \frac{1}{16} \\
& =\frac{11}{1920}
\end{aligned}
$$

