Homework Due Monday, Novemver 10, 2014. Late homework will NOT be accepted.

1. Use the shell method to find the volume of the solid of revolution below.

$$
y=\sqrt{2}
$$

2. Find the length of the curve $y=\frac{2 \sqrt{2}}{3} x^{3 / 2}-1, \quad 0 \leq x \leq 1$.
(1)

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} 2 \pi y\left(y-\left(y^{2}-2\right)\right) d y \\
& =2 \pi \int_{0}^{2} y^{2}-y^{3}+2 y d y
\end{aligned}
$$

$$
=2 \pi\left[\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+\left.y^{2}\right|_{0} ^{2}\right]=2 \pi\left[\frac{8}{3}-4+4\right]=\frac{16 \pi}{3}
$$

(2)

$$
\begin{aligned}
& y=\frac{2 \sqrt{2}}{3} x^{3 / 2}-1 \\
& \frac{d y}{d x}=\sqrt{2} x^{\frac{1}{2}} \\
& 1+\left(\frac{d y}{d x}\right)^{2}=1+2 x \\
& L=\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+2 x} d x \\
& \text { let } u=1+2 x \quad=\int_{1}^{3} \sqrt{u} \frac{1}{2} d u \\
& \frac{d u}{d x}=2 \\
& =\frac{1}{2} \int_{1}^{3} u^{\frac{1}{2}} d u \\
& \frac{1}{2} d u=d x \\
& \text { When } x=0, u=1 \\
& x=1,4=1+2=3 \\
& =\frac{1}{3}\left[3^{3 / 2}-1^{3 / 2}\right] \\
& =\frac{1}{3}[3 \sqrt{3}-1] \\
& =\sqrt{3}-\frac{1}{3}
\end{aligned}
$$

