Homework (Due Monday, October 20, 2014.) Read the handout and do the following problems.

1. Use a formula from geometry to evaluate $\int_{-2}^{2} \sqrt{4-x^{2}} d x$.
2. Let $f(x)=x^{2}$. Use an upper sum with four rectangle with equal base to approximate the area between the graph of f and the x-axis from $x=0$ to $x=2$.
3. Write the following sums without sigma notation. Then evaluate them.
Example: $\sum_{k=1}^{4}(-1)^{k+1} k=1-2+3-4=-2$.
(a) $\sum_{k=3}^{6} \frac{k}{k+1}$
(b) $\sum_{k=1}^{4} \sin \frac{\pi}{k}$
4. Express the following sums in terms of sigma notation.

Example: $1+3+5+7+9=\sum_{k=1}^{5} 2 k-1$.
(a) $-1+2-4+8-16+32$
(b) $1+10+100+1000$
5. Use formulas (1)-(3) to evaluate the following sums.

Example:

$$
\begin{aligned}
\sum_{k=1}^{100} 2 k+1 & =2 \sum_{k=1}^{100} k+\sum_{k=1}^{100} 1 \\
& =2 \cdot \frac{(100)(101)}{2}+100 \cdot 1=10200
\end{aligned}
$$

(a) $\sum_{k=1}^{20} 3-k^{3}$
(b) $\sum_{k=11}^{30}-2 k(k+1)$
6. Write the Limits of Riemann sums into definite integrals.
(a) $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(3 c_{k}^{2}-2 c_{k}+5\right) \Delta x_{k}$ where P is a partition of $[-1,3]$.
(b) $\lim _{\max \Delta x_{k} \rightarrow 0} \sum_{k=1}^{n} \sin \left(c_{k}^{2}\right) \Delta x_{k}$ on $[0,2 \pi]$.
7. Follow the same steps as in example 4 to find the area $\int_{0}^{2} x^{2} d x$.
8. Use the Fundamental theorem of Calculus (Pt. 2) to confirm your answer from problem 7.
(1)

$$
\begin{aligned}
\int_{-2}^{2} \sqrt{4-x^{2}} d x & =\text { Area } \\
& =\frac{1}{2} \pi r^{2} \\
& =\frac{1}{2} \pi\left(2^{2}\right) \\
& =2 \pi
\end{aligned}
$$

(2)

$$
\begin{array}{ll}
\Delta x_{i}=\frac{1}{2}, & i=1, \ldots, 4 \\
c_{1}=\frac{1}{2} & f\left(c_{1}\right)=\frac{1}{4} \\
c_{2}=1 & f\left(c_{2}\right)=1 \\
c_{3}=\frac{3}{2} & f\left(c_{3}\right)=\frac{9}{4}
\end{array}
$$

Upper sum

$$
c_{4}=2 \quad f\left(c_{4}\right)=4
$$

$$
\begin{aligned}
&= \sum_{i=1}^{4} f\left(C_{i}\right) \Delta X_{i} \\
&=\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{2}\right)+\left(\frac{9}{4}\right)\left(\frac{1}{2}\right) \\
&+(4)\left(\frac{1}{2}\right) \\
&= \frac{1}{8}+\frac{1}{2}+\frac{9}{8}+2 \\
&
\end{aligned}
$$

(3) (a)

$$
\sum_{k=3}^{6} \frac{k}{k+1}=\frac{3}{3+1}+\frac{4}{4+1}+\frac{5}{5+1}+\frac{6}{6+1}=\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\frac{6}{7}=\frac{1361}{420}
$$

(b)

$$
\begin{aligned}
\sum_{k=1}^{4} \sin \frac{\pi}{4} & =\sin \pi+\sin \frac{\pi}{2}+\sin \frac{\pi}{3}+\sin \frac{\pi}{4} \\
& =0+1+\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}=\frac{2+\sqrt{3}+\sqrt{2}}{2}
\end{aligned}
$$

(4) (a) $\sum_{i=1}^{6}(-1)^{i} 2^{i-1}$
(b) $\sum_{i=1}^{4} 10^{i-1}$
(5) (a)

$$
\begin{gathered}
\sum_{k=1}^{20} 3-k^{3}=\sum_{k=1}^{20} 3-\sum_{k=1}^{20} k^{3}=3(20)-\left[\frac{20(20+1)}{2}\right]^{2} \\
=60-210^{2}=60-44100=-44040
\end{gathered}
$$

(b)

$$
\begin{aligned}
& \sum_{k=11}^{30}-2 k(k+1)=\sum_{k=11}^{30}\left(-2 k^{2}-2 k\right)=10 \\
& = \\
& =\sum_{k=1}^{30}\left(-2 k^{2}-2 k\right)-\sum_{k=1}^{10}\left(-2 k^{2}-2 k\right) \\
& =2\left[\frac{(30)(30+1)(60+1)}{6}\right]-2\left[\frac{30(30+1)}{2}\right] \\
& = \\
& =-2(9455)-2(465)+2(385)+2(55) \\
& =
\end{aligned} \quad-18910-930+770+110 .
$$

(b) (a) $\int_{-1}^{3}\left(3 x^{2}-2 x+5\right) d x$
(b) $\int_{0}^{2 \pi} \sin \left(x^{2}\right) d x$
(7)

$$
\begin{aligned}
\Delta x & =\frac{2-0}{n}=\frac{2}{n} \\
C_{k} & =0+(k-1) \Delta x \\
& =\frac{2(k-1)}{n}
\end{aligned}
$$

$$
f\left(c_{k}\right)=\left[\frac{2(k-1)}{n}\right]^{2} \Rightarrow A_{k}=\frac{2}{n} \times\left[\frac{2(k-1)}{n}\right]^{2}=\frac{8}{n^{3}}(k-1)^{2}
$$

$$
\text { So, } \begin{aligned}
S_{n} & =\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{8}{n^{3}}(k-1)^{2}=\frac{8}{n^{3}} \sum_{k=1}^{n}(k-1)^{2} \\
& =\frac{8}{n^{3}} \sum_{k=1}^{n}\left(k^{2}-2 k+1\right)=\frac{8}{n^{3}}\left[\sum_{k=1}^{n} k^{2}-2 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1\right] \\
& =\frac{8}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}-2 \frac{n(n+1)}{2}+n\right] \\
\Rightarrow \int_{0}^{2} x^{2} d x & =\lim _{n \rightarrow \infty} S_{n}=8\left[\frac{2}{6}-0+0\right]=\frac{8}{3}
\end{aligned}
$$

(8) $\int_{0}^{2} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{2}=\frac{1}{3} 2^{3}-\frac{1}{3} 0^{3}=\frac{8}{3}$

