Inverse Trigonometric Functions

Trig.	domain	range	
$\sin x$	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$-1 \le y \le 1$	
$\cos x$	$0 \le x \le \pi$	$-1 \le y \le 1$	
$\tan x$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$	$-\infty < y < \infty$	
$\cot x$	$0 < x < \pi$	$-\infty < y < \infty$	
$\sec x$	$0 \le x \le \pi, \ x \ne \frac{\pi}{2}$	$y \le -1 \text{ or } y \ge 1$	
$\csc x$	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}, \ x \ne 0$	$y \le -1 \text{ or } y \ge 1$	

Inverse Trig.	domain	range	derivative
$\sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$	$-\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	$\frac{\sqrt{1-x^2}}{1+x^2}$
$\cot^{-1} x$	$-\infty < x < \infty$	$0 < y < \pi$	$-\frac{1}{1+x^2}$
$\sec^{-1} x$	$x \le -1 \text{ or } x \ge 1$	$0 \le y \le \pi, \ y \ne \frac{\pi}{2}$	$\frac{1}{ x \sqrt{x^2-1}}$
$\csc^{-1} x$	$x \le -1 \text{ or } x \ge 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}, \ y \ne 0$	$-\frac{1}{ x \sqrt{x^2-1}}$

Domain: $-1 \le x \le 1$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Domain: $-\infty < x < \infty$ Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Domain: $-\infty < x < \infty$ Range: $0 < y < \pi$

Domain: $x \le -1$ or $x \ge 1$ Range: $0 \le y \le \pi, y \ne \frac{\pi}{2}$

Domain: $x \le -1$ or $x \ge 1$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$

$$\begin{split} \frac{d}{dx}\sin^{-1}[u(x)] &= \frac{1}{\sqrt{1 - [u(x)]^2}}u'(x), \quad |u(x)| < 1 \\ \frac{d}{dx}\cos^{-1}[u(x)] &= -\frac{1}{\sqrt{1 - [u(x)]^2}}u'(x), \quad |u(x)| < 1 \\ \frac{d}{dx}\tan^{-1}[u(x)] &= \frac{1}{1 + [u(x)]^2}u'(x) \\ \frac{d}{dx}\cot^{-1}[u(x)] &= -\frac{1}{1 + [u(x)]^2}u'(x) \\ \frac{d}{dx}\sec^{-1}[u(x)] &= \frac{1}{|u(x)|\sqrt{[u(x)]^2 - 1}}u'(x), \quad |u(x)| > 1 \\ \frac{d}{dx}\csc^{-1}[u(x)] &= -\frac{1}{|u(x)|\sqrt{[u(x)]^2 - 1}}u'(x), \quad |u(x)| > 1 \end{split}$$

Related rates

- 1. A spherical balloon is being inflated so that its spherical shape is maintained at all time.
 - (a) Find the relation between the volume of the air inside the balloon (V) and its radius (r).
 - (b) If the air is being pumped into the balloon at a constant rate (say 1 cm³ per second), will the radius of the balloon increase at a constant rate?
 - (c) On the other hand, if we inflate the balloon so that its radius is expanding at a constant rate (say 2 cm per second), does that mean we have to pump in the air at a constant rate?
- 2. (Balloon problem revisited) A spherical balloon is being inflated at the rate of 1 cm³ per second so that its spherical shape is maintained at all time. Find the rate at which its radius (r) is increasing when r = 3 cm.

Related Rates Problem Strategy

- (1) Draw a picture and name the variables and constants. Use t for time. Express rate as derivative.
- (2) Write down the known information (in terms of the symbols you have chosen).
- (3) Write down the rate you are asked to find. At what instance?
- (4) Write an equation that relates the variables whose rates are involved. Eliminate other variables.
- (5) Differentiate with respect to t.
- (6) Plug-in known values to find the unknown rate.