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Introduction 1.

The aim of this elementary talk is to give a very partial and
simplified panorama of what is going on in a broad area of
mathematics and in its applications (to physics and beyond . . . ).

The field of mathematics we are talking about is traditionally
called operator algebras and is a very abstract and technical part
of functional analysis that in the last few years, under the name
of non-commutative geometry, has undergone incredible
developments that, in our opinion, are going to change forever our
basic image of mathematics and its impact on fundamental physics.

Unfortunately these great achievements are taking place very
quickly and at a high technical level, preventig most of the
potentially interested people from entering into the subject.
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Introduction 2.

The first part of this talk is based on a very expanded version of a
manuscript that has been used for a short seminar in Cha Am in
1997, an internal workshop in Thammasat University in 1998 and
notes written as a very partial attempt to present some basic ideas
of operator algebras and non-commutative geometry as
introduction and motivation for a Thammasat University workshop
by Prof. Laszlo Zsido in 1999.
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Introduction 3.

The second part of talk will be inspired by ongoing joint research
projects

I “Modular Spectral Triples” and

I “Categorical Non-commutative Geometry”

in cooperation with Dr. Roberto Conti and
Assist. Prof. Wicharn Lewkeeratityutkul and partially supported by
the Thai Research Fund.

The material is not yet in final form and since I am still myself in
the process of learning this subject, I hope you will excuse me for
the poor exposition of most of the ideas.
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MSC-2000 1.
In order to get some initial idea about this new area of
mathematics and especially to relate it to other well known fields,
it can be useful to give a look at the relevant entries that already
appear in the Mathematics Subject Classification (MSC-2000).

46 Functional Analysis
46L Selfadjoint Operator Algebras (C∗-Algebras, W∗-Algebras etc.)

46L51 Non-commutative Measure and Integration (*)
46L52 Non-commutative Function Spaces
46L53 Non-commutative Probability and Statistics
46L55 Non-commutative Dynamical Systems
46L85 Non-commutative Topology
46L87 Non-commutative Differential Geometry (*)

58 Global Analysis, Analysis on Manifolds
58B Infinite Dimensional Manifolds

58B34 Non-commutative Geometry (a la Connes)
58J Partial Differential Equations on Manifolds

58J42 Non-commutative Global Analysis
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MSC-2000 2.

14 Algebraic Geometry
14A Foundations

14A22 Non-commutative Algebraic Geometry

81 Quantum Theory
81R Groups and Algebras in Quantum Theory

81R60 Non-commutative Geometry (*)

81T Quantum Field Theory

81T75 Non-commutative Geometry Methods (*)

83 Relativity and Gravitational Theory
83C General Relativity

83C65 Methods of Non-commutative Geometry (*)
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MSC-2000 3.

Other already strictly related fields are the following:

18 Category Theory and Homological Algebra
18F Categories and Geometry (*)

19 K-Theory
19K K-Theory and Operator Algebras

46 Functional Analysis
46L Selfadjoint Operator Algebras (C∗-Algebras, W∗-Algebras etc.)

46L60 Applications of Selfadjoint Operator Algebras to Physics
46L65 Quantizations, Deformations
46L80 K-Theory and Operator Algebras (including Cyclic Theory)

46M Methods of Category Theory in Functional Analysis

46M15 Categories and Functors (*)

55 Algebraic Topology
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MSC-2000 4.

58 Global Analysis, Analysis on Manifolds
58H Pseudogroups, Differentiable Groupoids and General Structures

on Manifolds
58J Partial Differential Equations on Manifolds, Differential

Operators

58J22 Exotic Index Theories

81 Quantum Theory
81T Quantum Field Theory

81T05 Axiomatic Quantum Field Theory, Operator Algebras (*)
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Historical Remarks 1.

Let’s start with a very brief historical sketch.

The theory of operator algebras has a very different history
compared with most of the other branches of mathematics.
Operator algebras is a very recent subject and we can easily
identify its birthdate in 1929 in a work of J. Von Neumann.

A few years later, J. Von Neumann and F. Murray already
developed the basic theory of the now called Von Neumann
algebras. The original motivation, was not coming from concrete
problem, but by an incredible intuition that these algebras, would
have been useful in the theory of group representations and in the
general foundations of quantum mechanics.
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Historical Remarks 2.

Actually, the very first examples of non commutative
mathematics had already appeared in the formalism of quantum
mechanics as developed in algebraic form by W. Heisenberg
(1925) [and also by M. Born, P. Jordan, E. Schrödinger, W. Pauli,
P.A.M. Dirac, J. Von Neumann].

In this sense, we can say that non commutative mathematics is the
mathematics of quantum theory or that it is the quantization of
mathematics.
In fact, what we mean here by “quantization”, is simply the
replacement of commuting quantities by non-commuting ones.
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Historical Remarks 3.

I.M. Gel’fand and M.A. Năımark developed the abstract theory of
C∗-Algebras in 1943. Most of the classical work in operator
algebras in the subsequent years, was simply dedicated to
refinements of the works of Von Neumann and Gel’fand.

The use of C∗-Algebras techniques in quantum field theory has
been first advocated by I.E. Segal in 1957.

In 1964, in a fundamental paper, R. Haag, D. Kastler, H. Araki
started to apply C∗-Algebras to the study of the foundations of
quantum field theory, an area of research now called algebraic
quantum field theory.
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Historical Remarks 4.

At the end of the sixties, a deep revolution in the basic techniques
occurred thanks to the creation of the modular theory of
Tomita-Takesaki.

In the same period, R. Haag, N.M. Hugenholtz and P. Winnik
found an important link between Tomita-Takesaki modular theory
and statistical mechanics.

In the seventies, the research in operator algebras expanded at an
exponential rate. The genius of Alain Connes solved some
structural problems and at the end of the eighties laid the
foundations of the so called non-commutative differential
geometry that is an approach to geometry completely based on
operator algebras, where the same notion of space with its points
is eliminated from the formulation.
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Vector Spaces 1.
A vector space V over the complex numbers C is by definition a
set V equipped with two binary operations

+ : V × V → V , · : C× V → V

called respectively addition and multiplication by scalars, such that:

v1 + (v2 + v3) = (v1 + v2) + v3, ∀v1, v2, v3 ∈ V ,

v1 + v2 = v2 + v1 ∀v1, v2 ∈ V ,

∃0V ∈ V , : ∀v ∈ V , v + 0V = v ,

∀v ∈ V , ∃(−v) ∈ V , : v + (−v) = 0V ,

α · (β · v) = (αβ) · v , ∀α, β ∈ C, ∀v ∈ V ,

α · (v1 + v2) = α · v1 + β · v2, ∀α ∈ C, ∀v1, v2 ∈ V ,

(α+ β) · v = (α · v) + (β · v), ∀α, β ∈ C, ∀v ∈ V ,

∀v ∈ V , 1 · v = v .
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Vector Spaces 2.

As an example, consider the space

C2 := C× C

with the following operations:

(a1, b1) + (a2, b2) := (a1 + a2, b1 + b2);

α · (a, b) := (αa, αb).
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Vector Spaces 3.
A complex inner product space (also called a pre-Hilbert space)
is a complex vector space V equipped with an operation

( | ) : V × V → C,

called inner product such that:

(v1|αv2 + βv3) = α(v1|v2) + β(v1|v3), ∀α, β ∈ C, ∀v1, v2, v3 ∈ V ,

(v1|v2) = (v2|v1), ∀v1, v2 ∈ V ,

(v |v) ≥ 0, ∀v ∈ V ,

(v |v) = 0 ⇒ v = 0V .

As an example, consider again C2 with inner product given by:

∀a1, a2, b1, b2 ∈ C,
((a1, b1)|(a2, b2)) := a1a2 + b1b2.
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Associative Unital Algebras 1.
An algebra over the complex numbers is by definition a complex
vector space A equipped with a binary operation (called product)

· : A× A → A, that is bilinear i.e.:

(αa + βb) · c = α(a · c) + β(b · c), ∀α, β ∈ C, ∀a, b, c ∈ A,

a · (βb + γc) = β(a · b) + γ(a · c) ∀β, γ ∈ C, ∀a, b, c ∈ A.

The algebra is called:

associative if a · (b · c) = (a · b) · c , ∀a, b, c ∈ A,

commutative if a · b = b · a, ∀a, b ∈ A.

The algebra is unital if:

∃1A ∈ A, : ∀a ∈ A, a · 1A = 1A · a = a.
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Associative Unital Algebras 2.
A homomorphism between two algebras A,B is by definition a
function φ : A → B such that:

φ(a1 + a2) = φ(a1) + φ(a2), ∀a1, a2 ∈ A;

φ(λa) = λφ(a), ∀λ ∈ C, ∀a ∈ A;

φ(a1a2) = φ(a1)φ(a2) ∀a1, a2 ∈ A.

An isomorphism is a bijective homomorphism and an
automorphism is an isomorphism φ : A → A from an algebra A
to itself.
A unital homomorphism between unital algebras is a
homomorphism such that:

φ(1A) = 1B.
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Involutive Algebras 1.

The algebra is called involutive if it is equipped with a function

∗ : A → A, such that:

(a∗)∗ = a, ∀a ∈ A,

(a · b)∗ = b∗ · a∗, ∀a, b ∈ A,

(αa + βb)∗ = α(a∗) + β(b∗), ∀α, β ∈ C, ∀a, b ∈ A.

A ∗-morphism φ : A → B between (unital) involutive algebras is a
(unital) homomorphism such that:

φ(a∗) = (φ(a))∗, ∀a ∈ A.
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Involutive Algebras 2.

As an example consider M2,2(C), the set of two by two matrices
with complex entries where the operations are defined as follows:

I ∀A,B ∈ M2,2(C), A + B is the sum of matrices;

I ∀α ∈ C, ∀A ∈ M2,2(C), αA is the product of the matrix A be
the complex number α;

I ∀A,B ∈ M2,2(C), A ·B is the “line by column” product of the
matrices;

I ∀A ∈ M2,2(C), A∗ is the transpose conjugate matrix of A.
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Topology 1.

In order to give a meaning to the convergence of sequences or to
expressions involving the sum of infinite terms (series) it is
necessary to equip vector spaces with a topology1

A topological space is a set X equipped with a family of subsets
T (called the open sets) such that:

- ∅,X ∈ T ,

- If A1,A2 ∈ T then A1 ∩ A2 ∈ T ,

- If A ⊂ T then
⋃

A∈A A ∈ T .

A set is closed if its complement is open.
A set U is called a neighborhood of a point x if it contains an
open set containing x .

1For infinite dimensional vector spaces there are actually several inequivalent
ways to do so making continuous the operations of addition and multiplication.
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Topology 2.

A function F : X → Y between to topological spaces is said to be
continuous in the point x0 ∈ X if for all the neghborhoods U of
the point F (x0) ∈ Y , it is possible to find a neighborhood VU of x0

such that F (VU) ⊂ U.
A sequence n 7→ xn is said to be a convergent sequence if there
exist a point l ∈ X such that for all the neigborhoods U of l , there
exists a number NU such that xn ∈ U, when n > NU .
It is a well known theorem that a function F : X → Y is continuous
if and only if for all the open sets A of Y , F−1(A) is open in X .
A homeomorphism between two topological spaces is a bijective
continuous function whose inverse is also continuous.
Homeomorphic topological spaces are regarded as essentially the
same.
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Topology 3.
A topological space X is said to be Hausdorff if given two
arbitrary different points x , y ∈ X it is possible to separate them
using two neighborhoods i.e. there exist U neighborhood of x and
V neighborhood of y such that U ∩ V = ∅.
A set in a topological space is said to be compact if from every
covering with open sets it is possible to extract a subcovering that
contains only a finite number of open sets. A topological space is
locally compact if every point has a compact neighborhood.
A metric space is by definition a set M equipped with a function
d : M ×M → R (called metric or distance) such that:

d(x , y) = 0 ⇔ x = y ,

d(x , y) = d(y , x), ∀x , y ∈ M,

d(x , z) ≤ d(x , y) + d(y , z), ∀x , y , z ∈ M.
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Topology 4.
A ball with center x0 ∈ M and radius ε > 0 is the set:

B(x0, ε) := {x | d(x , x0) < ε}.
It is a well known fact that a metric space is always a topological
space where the open sets are given by arbitrary unions of families
of balls. [But not all the topological (vector) spaces are
metrizable!]
A sequence n 7→ xn ∈ M in a metric space is said to be a Cauchy
sequence if given an arbitrary positive number ε, it is possible to
find an index Nε such that for all n,m > Nε, d(xn, xm) < ε.
It is a known fact that a convergent sequence is always a Cauchy
sequence, but unfortunately, not all the Cauchy sequences are
convergent.
A metric space where the Cauchy sequences are all convergent
sequences is called complete.
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Banach and Hilbert Spaces 1.

Functional Analysis is essentially the marriage of algebra and
general topology. A typical example of this is given by the
definition of Banach and Hilbert space that are actually the infinite
dimensional generalizations of the finite dimensional normed and
inner product spaces.
A normed space is a vector space (V ,+, ·) equipped with a
function

‖ ‖ : V → R, such that :

‖a + b‖ ≤ ‖a‖+ ‖b‖, ∀a, b ∈ V ,

‖αa‖ = |α| · ‖a‖, ∀α ∈ C,∀a ∈ V ,

‖a‖ = 0 ⇒ a = 0V .
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Banach and Hilbert Spaces 2.
It is a well known theorem that all inner product spaces become
normed spaces defining:

‖a‖ :=
√

(a | a).

It is also a well know result that all normed spaces become metric
spaces defining:

d(a, b) := ‖a− b‖.
[It is not so well known that every metric space is a subset of a
normed space!]
A Banach space is a normed space that, with the above defined
metric, is a complete metric space.
A Hilbert space is an inner product space that is a complete
metric space with the metric arising from the norm associated to
the inner product [Not every Banach space is a Hilbert space].
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Banach and Hilbert Spaces 3.

A linear function between two Hilbert spaces U : H1 → H2 is said
to preserve the scalar product if:

(Uξ|Uη) = (ξ|η), ∀ξ, η ∈ H1.

If such a U is also surjective, then it is called a unitary operator
and in this case the two Hilbert spaces are essentially considered
the same. (In this case it is possible to show that U is an
isomorphism of vector spaces that preserve the scalar product).
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C∗-algebras 1.

Operator algebras are simply generalizations of the algebras of
matrices on a complex vector space. It is possible to think about
them as algebras of matrices, but allowing the matrices to be
infinite dimensional. It is the study of “linear algebra” of Banach
and Hilbert spaces.
A normed algebra is by definition an algebra that is at the same
time a normed space with a norm that satisfies the following
“submultiplicativity” property:

‖a · b‖ ≤ ‖a‖ · ‖b‖, ∀a, b ∈ A.

A Banach algebra is a complete normed algebra i.e. it is an
algebra that is a Banach space with the submultiplicativity
property of the norm.
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C∗-algebras 2.

A C∗-algebra is an involutive Banach algebra with the property:

‖a∗ · a‖ = ‖a‖2, ∀a ∈ A.

In other terms, a C∗-algebra is an involutive algebra that is at the
same time a Banach space with the properties:

‖a · b‖ ≤ ‖a‖ · ‖b‖, ∀a, b ∈ A,

‖a∗ · a‖ = ‖a‖2, ∀a ∈ A.
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C∗-algebras 3.
As an example, let H be a Hilbert space. Let B(H) be the set of
all the continuous linear functions L : H → H. Then B(H) is
C∗-algebra. To see this, recall that:

I A linear map L : V → V in a vector space is a function such
that: L(αa + βb) = αL(a) + βL(b), ∀α, β ∈ C, ∀a, b ∈ V .

I A linear map L : V → V in a normed space is continuous if
and only if: ∃k ∈ R, such that ∀a ∈ V , ‖L(a)‖ ≤ k‖a‖.

I The sum of two linear maps L1, L2 defined by:
(L1 + L2)(a) := L1(a) + L2(a)
is linear and is continuous when L1, L2 are continuous.

I The product of a linear map L with a complex number α
defined by: (αL)(a) := α(L(a))
is linear and is continuous if L is.
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C∗-algebras 4.

I The product of two linear maps L1, L2 defined by:
(L1 · L2)(a) := L1(L2(a))
is linear and continuous if L1 and L2 are continuous.

I In a Hilbert space, to a linear continuous map L : H → H, we
can associate a unique operator, called the adjoint of L, such
that:
(b | L(a)) = (L∗(b) | a), ∀a, b ∈ H.

I In a normed space, the norm of a linear continuous function
L : V → V , defined by:
‖L‖B(V ) := sup{‖L(a)‖ | ‖a‖ ≤ 1},
gives a norm on the space B(V ).

I If V is a Banach space, then B(V ) with the previous norm
‖ ‖B(V ) is a Banach space.
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C∗-algebras 5.
As a second example: let X be a compact Hausdorff topological
space. The set C (X ; C) of the complex valued continuous
functions on X , is a commutative C∗-algebra.
To see this recall that:

I If f , g ∈ C (X ; C), f + g is defined by:
(f + g)(x) := f (x) + g(x).

I If α ∈ C and f ∈ C (X ; C), αf is defined by:
(αf )(x) := α(f (x)).

I If f , g ∈ C (X ; C) then f · g is defined by:
(f · g)(x) := f (x)g(x).

I If f ∈ C (X ; C), then f ∗ is defined by: f ∗(x) := f (x).

I If f ∈ C (X ; C), then ‖f ‖ is defined by:
‖f ‖ := sup{|f (x)| | x ∈ X}.
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C∗-algebras 6.
B(H), as all the matrix algebras, is a non-commutative algebra (iff
dimH > 1). If we have a C∗-algebra, any subset that is closed
under the algebraic operations and closed (complete) from the
topological point of view, is again a C∗-algebra.
Let us introduce some useful terminology about the elements of a
C∗-algebra. A C∗-algebra is said to be unital if it contains an
element 1A such that:

a1A = 1Aa = a, ∀a ∈ A.

(1A is necessarily unique).
An element a in a unital algebra A is said to be invertible if there
exists (a necessarily unique) element b such that:

ab = ba = 1A.

The set of invertible elements is denoted by Inv(A).
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C∗-algebras 7.

If A is unital, the spectrum of an element a ∈ A is by definition
the set SpA(a) of complex numbers λ such that a− λ1A is not
invertible:

SpA(a) := {λ ∈ C | a− λ1A /∈ Inv(A)}.

The complement of the spectrum of a is called the resolvent set
of a and denoted by ResA(a) := C− SpA(a).

Theorem
In a unital Banach algebra, SpA(a) is always a nonempty compact
set and the spectral radius of a, is well defined by
r(a) := sup{|λ| | λ ∈ SpA} and satisfies r(A) ≤ ‖a‖.

The proof needs several lemmas.
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C∗-algebras 8.

Proposition (C. Neumann)
Let a be an alement of the unital Banach algebra A.
If ‖a‖ < 1 then (1A − a) ∈ Inv(A) and (1A − a)−1 =

∑∞
n=0 an.

Proof.
Since

∑∞
n=0 ‖a‖n is a convergent geometric serie, the sequence

N 7→
∑N

n=0 an is Cauchy, hence convergent in the Banach space

A. Now (1A − a) · (
∑N

n=0)a
n = 1A − aN+1 = (

∑N
n=0)a

n · (1A − a)
and passing to the limit, by continuity of product in A we get the
result.

If |λ| > ‖a‖, ‖λ−1a‖ < 1 hence a− λ1A = λ(λ−1a− 1A) ∈ Inv(A)
so λ ∈ ResA(a) i.e. SpA(a) is bounded and |λ| ≤ ‖a‖ for all
λ ∈ SpA(a). It follows that r(a) ≤ ‖a‖.
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C∗-algebras 9.

Proposition
In a unital Banach algebra A, the group Inv(A) is open.
For all a ∈ A, ResA(a) is open and SpA(a) is closed.

Proof.
For every x ∈ Inv(A), the continous map Lx : Inv(A) → Inv(A)
defined by Lx(a) := x · a is an endo-homeomorphism of Inv(A)
with inverse Lx−1 . Since 1A is an interior point of Inv(A) and
a = La(1A), every point of Inv(A) is interior.
The function f : λ 7→ (λ1A − a) is continuous and
ResA(a) = f −1(Inv(A)) is open.

By Heine-Borel theorem, it follows that SpA(a) is always compact
(closed and bounded in C).
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C∗-algebras 10.

Proposition
In a unital Banach algebra A, SpA(a) is always nonempty.

Proof.
For every continuous linear functional φ ∈ A∗, the C-valued
function hφ : λ 7→ φ((λ1A − a)−1) is differentiable on the resolvent
set ResA(a), hence analytic.
Suppose by contradiction that SpA(a) = ∅, then hφ is an entire
function and since limλ→∞ hφ(λ) = 0, hφ is bounded and by
Liouville theorem, hφ is constant, hence hφ(λ) = 0 for all λ ∈ C.
Since φ((λ1A − a)−1) = 0 for all φ ∈ A∗, Hahn-Banach theorem
gives (λ1A − a)−1 = 0A that implies ‖1A‖ = 0 (impossible by
definition in a unital Banach algebra).
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C∗-algebras 11.

Theorem (Gel’fand-Mazur)
A unital Banach algebra A that is a division algebra
(i.e. Inv(A) = A− {0A}) is canonically isomorphic to C.

Proof.
The map λ 7→ λ · 1A is a unital homomorphism from C to A that
is injective because isometric: ‖λ1A‖ = |λ|.
The surjectivity follows from the fact that for any a ∈ A,
SpA(a) 6= ∅ so there exists λo such that a− λo1A is not
invertible, hence a = λo1A.
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C∗-algebras 12.

Proposition (polynomial functional calculus)
If A is a unital Banach algebra and a ∈ A, there exists a unique
unital homomorphism from the algebra C[z ] of polynomials onto
the unital Banach subalgebra generated by a such that ι 7→ a,
where ι(z) := z is the identity function on C.

Proof.
Any homomorphism with the given properties must coincide with
the homomorphism p(z) 7→ p(a) where p(z) :=

∑N
n=0 αnz

n and

p(a) :=
∑N

n=0 αna
n. This homomorphism is onto the unital

algebra generated by a.
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C∗-algebras 13.

Proposition (polynomial spectral mapping)
In a unital Banach algebra A, for all a ∈ A and for all polymonials
p ∈ C[z ], we have p(SpA(a)) = Sp(p(a)) i.e. the image of the
spectrum of a under the polymonial p coincides with the spectrum
of the element p(a) obtained by polynomial functional calculus.

Proof.
Fix λ ∈ C and consider the polynomial p(z)− λ. By the foundamental

theorem of algebra we have p(z)− λ = β
∏N

j=1(z − αj) where αj ∈ C are
the roots (with multiplicity) and β ∈ C0. From polynomial functional

calculus we get p(a)− λ1A = β
∏N

j=1(a− αj1A).
Now λ /∈ SpA(p(a)) if and only if p(a)− λ1A is invertible, if and only if
a− αj1A are invertible for all j = 1, if and only if αj /∈ SpA(a) for all j .

On the other side, λ /∈ p(SpA(a)) if and only if p(z)− λ 6= 0 for all

z ∈ SpA(a) if and only if αj /∈ SpA(a) for all j .
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C∗-algebras 14.

Proposition (spectral radius formula)
In a unital Banach algebra A we have, for all a ∈ A,
r(a) = limn→∞ ‖an‖1/n.

From polymonial spectral mapping, r(a)n = r(an) and so r(a) ≤ ‖an‖1/n,
hence r(a) ≤ lim infn ‖an‖1/n.
On the other side, given φ ∈ A∗, by Neumann serie, we have
fφ(λ) = −1/λ ·

∑∞
n=0 φ(an)/λn if |λ| > ‖x‖ and since we know that the

function fφ : λ 7→ φ((a− λ1A)−1) is analytic in every point with
|λ| > r(a), the series converges for |λ| > r(a).

It follows that, for |λ| > r(a), limn→∞ φ(an)/λn = 0, hence the sequence

φ(an/λn) is bounded for all φ and by Banach-Steinhouse it is norm

bounded i.e. ‖an‖/λn < k and so ‖an‖1/n ≤ k1/n|λ| so

lim supn ‖an‖1/n ≤ |λ| for |λ| > r(a). Hence lim supn ‖an‖1/n ≤ r(a).
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C∗-algebras 15.

The following theorem of Gel’fand is a milestone for all the
following and it provides the main philosophical motivation for the
development of non-commutative geometry:

Theorem (Gel’fand)
If A is a commutative unital C∗-algebra, then A is isomorphic to
an algebra of continuous complex valued functions on a compact
Hausdorff topological space.

The proof is based on the “spectral theory” of commutative
Banach algebras that we are going to expose.
A character of a unital Banach algebra A is a unital
homomorphism ω : A → C
The spectrum (also called the “structure space”) Sp(A) of the
unital Banach algebra A is the set of all characters on A.
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C∗-algebras 16.

Proposition
Every character ω on a unital Banach algebra A is surjective
continuous with ‖ω‖ = 1 and for all a ∈ A, for all ω ∈ Sp(A),
ω(a) ∈ SpA(a)

Proof.
Since ω(1A) = 1 the image of ω is all of C.
For every a ∈ A, set {ω(a) | ω ∈ Sp(A)} is contained in SpA(a)
because ω(a− ω(a)1A) = 0 so that a− ω(a)1A is not invertible.
It follows that |ω(a)| ≤ ‖a‖ so that ω is continuous with norm
‖ω‖ ≤ 1. Since ω(1A) = 1 we have ‖ω‖ = 1.
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C∗-algebras 17.
A (bilateral) ideal I in an algebra A is a vector subspace of A that
is “stable” under multiplication by arbitrary elements of A i.e.:

a · x , x · a ∈ I, ∀i ∈ I, ∀a ∈ A.

An ideal I ⊂ A is maximal if I 6= A and every ideal J in A
containing I coincides either with I or with A.
In a unital Banach algebra, maximal ideals are closed.
The quotient of a unital algebra by an ideal has a natural structure
of unital algebra.
The quotient of a commutative unital algebra by an ideal is a field
if and only if the ideal is maximal.
The quotient of a unital Banach algebra A, by a closed ideal I is a
Banach algebra with the “quotient norm” defined by
‖a + I‖ := inf{‖a + i‖ | i ∈ I}.
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C∗-algebras 18.

Proposition
In a unital Banach algebra A there is a bijective correspondence
between characters and maximal ideals.

Proof.
To every character ω ∈ Sp(A) we associate Ker(ω) that is a maximal
ideal. The map ω 7→ Ker(ω) is injective.

If I is a maximal ideal in A, the quotient A/I is a field and a unital

Banach algebra with the quotient norm, hence by Gel’fand-Mazur

theorem, there is an isomorphism φ : A/I → C and so the composition

φ ◦ π : A → C of φ with the quotient homomorphism π : A → A/I is a

character with Ker(π ◦ φ) = I.
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C∗-algebras 19.
Recall that on the dual A∗ of a Banach space A the weak∗-topology is

the weakest topology making continuous all the evaluation maps

φ 7→ φ(a), for all a ∈ A.

Proposition
If A is a unital Banach algebra, Sp(A) is a compact Hausdorff
space of A∗ with the weak∗-topology.

Proof.
The set Sp(A) is closed in A for the weak∗-topology because Sp(A) is
the intersection of the set {ω ∈ A∗ | ω(1A) = 1} with all the sets
Xab := {ω ∈ A∗ | ω(ab) = ω(a)ω(b)}, for a, b ∈ A, that are
weak∗-closed because evaluations are continuous.
Since ‖ω‖ = 1 for all characters ω ∈ Sp(A), we have that Sp(A) is a
norm-bounded subset of the dual A∗. By Banach-Alaouglu theorem, a
norm-bounded closed set in A∗ is compact. Since A∗ is Hausdorff in the
weak∗-topology so is Sp(A).
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C∗-algebras 20.

If A is a unital Banach algebra, to every a ∈ A there an associated
“evaluation” function â : Sp(A) → C on the set of characters,
called the Gel’fand transform of a, defined by:

â : Sp(A) → C, â(ω) := ω(a).

From the definition of weak∗-topology, we see that for all a ∈ A,
its Gel’fand transform â is a continuous map on Sp(A).
The Gel’fand transform of the unital Banach algebra A is the
map that to every element a ∈ A associate its Gel’fand transform
â ∈ C (Sp(A); C):

GA : A → C (Sp(A); C), a 7→ GA(a) := â.
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C∗-algebras 21.

Proposition
The spectrum of the Gel’fand transform of a in the unital Banach
algebra C (Sp(A); C) always coincide with the spectrum of a in A:

SpC(Sp(A);C)(a) = SpA(a), ∀a ∈ A.

Proof.
The spectrum of â in C (Sp(A); C) is the image of the function â. Since
we already know that â(ω) = ω(a) ∈ SpA(a) for all ω ∈ Sp(A), we have
SpC(Sp(A);C)(â) ⊂ SpA(a).
If λ ∈ SpA(a), (a− λ1A) is not invertible, hence it generates an ideal
(a− λ1A) · A that is proper (i.e. different form A).
By Zorn’s lemma, every proper ideal in a unital algebra is contained in a
maximal ideal. It follows that there exists a character ω such that
(a− λ1A) · A ⊂ Ker(ω) and so ω(a− λ1A) = 0, hence
λ = ω(a) ∈ SpC(Sp(A),C).
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C∗-algebras 22.

Proposition
The Gel’fand transform GA of a unital Banach algebra A is a
unital homomorphism of unital Banach algebras. For all a ∈ A,
‖GA(a)‖∞ ≤ ‖a‖.

Proof.
The algebraic properties are immediate from calculation on a
character ω ∈ Sp(A).
Since â(ω) = ω(a) ∈ SpA(a) we know that |â(ω)| ≤ ‖a‖ hence
‖â‖∞ := supω∈SpA

|â(ω)| ≤ ‖a‖.

It follows that the image of the Gel’fand transform
GA(A) ⊂ C (Sp(A); C) is a unital subalgebra of C (Sp(A); C).
If ω1 6= ω2 there exists at least one a ∈ A such that ω1(a) 6= ω2(a),
hence the subalgebra GA(A) separates the points of Sp(A).
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C∗-algebras 23.

An element a in a C∗-algebra A is said to be:

- selfadjoint if: a = a∗,

- normal if: aa∗ = a∗a,

- unitary if: aa∗ = a∗a = 1A (in this case A must be unital),

- isometry if: a∗a = 1A (again A must be unital),

- coisometry if: aa∗ = 1A (for A unital as well),

- (selfadjoint) projection if: aa = a (and a = a∗),

- partial isometry if: a∗a is a projection,
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C∗-algebras 24.

Proposition
In a ∗-algebra A, every element a has a unique decomposition as
a = x + iy with x , y Hermitian.

Proof.
If a = x + iy , taking the adjoints, we have a∗ = x − iy hence
a = (a + a∗)/2 + i(a− a∗)/(2i).

The unique elements described above are called the real part and
the imaginary part of a and are denoted by Re(a) and Im(a).
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C∗-algebras 25.

Proposition
Let h be a Hermitian in a (commutative) unital C∗-algebra. Then
SpA(h) ⊂ R.

Proof.
If we have an Hermitian element h1 such that α+ iβ ∈ SpA(h1)
with α, β ∈ R and β 6= 0, i.e. we have a character ω such that
ω(h1) = α+ iβ, then we have an Hermitian element
h := h1 − α1A with iβ ∈ SpA(h) and ω(h) = iβ. Now
|ω(h + it1A)|2 ≤ ‖h + it1A‖2 = ‖h2 + t21A‖ ≤ ‖h‖2 + t2. Since
|ω(h + it1A)|2 = β2 + 2βt + t2, we get for all t ∈ R,
β2 + βt ≤ ‖h‖2 that is impossible if β > 0 (for β < 0 take
−h).
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C∗-algebras 26.

Proposition
The Gel’fand transform of a unital commutative C∗-algebra is a
∗-homomorphism.

Proof.
If a = Re(a) + i Im(a), we have a∗ = Re(a)− i Im(a) and for all
characters ω ∈ Sp(A), since ω(Re(a)), ω(Im(a)) ∈ R, we get
â∗(ω) = ω(Re(a))− iω(Im(a)) = â(ω).
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C∗-algebras 27.

Proposition
The Gel’fand transform of a unital commutative C∗-algebra A is
isometric, hence injective.

Proof.
If h ∈ A is Hermitian, ‖h2‖ = ‖h‖2 and by induction
‖h2n‖ ≤ ‖h‖2n

for n ∈ N0. Since, by spectral radius formula,
r(h) = limn→∞ ‖hn‖1/n, we have r(h) = ‖h‖ = limn→∞ ‖h2n‖1/2n

.
Since we know that r(h) = ‖ĥ‖C(Sp(A);C) we see that the Gel’fand
transform is isomtric on Hermitian elements.
For general elements
‖a‖2 = ‖a∗a‖ = ‖â∗a‖C(Sp(A;C)) = ‖ââ‖ = ‖â‖2

C(Sp(A);C).
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C∗-algebras 28.

Proposition
The Gel’fand transform of a unital commutative C∗-algebra is an
isomorphism.

Proof.
The image of the Gel’fand transform GA(A), is an ivolutive unital
subalgebra of the C∗-algebra C (Sp(A); C) that separates the
points of Sp(A). Since the Gel’and transform is isometric, GA(A)
is also a closed subalgebra.
The surjectivity follows from Stone-Weierstrass theorem.
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C∗-algebras 29.

We thus competed the proof of Gel’fand theorem for commutative
unital C∗-algebras.
The most important lesson that we learn from the proof of this
theorem is that, when we are given an abstract unital commutative
C∗-algebra A, we can construct out of it a compact Hausdorff
space denoted Sp(A) (called the spectrum of the C∗-algebra A) in
such a way that the the original algebra is isomorphic (hence
indistinguishable from) C (Sp(A); C).
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C∗-algebras 30.

To understand how this “magic” thing is possible, we have to
rethink (in a completely algebraic way) what is the meaning of a
point x ∈ X in terms of the algebra C (X ,C): if we are given a
point x ∈ X , we can associate to it a function µx : C (X ,C) → C,
defined by: µx : f 7→ f (x), ∀f ∈ C (X ,C).
For every x ∈ X , µx is simply the evaluation of the function f over
the point x . Well, it is an easy game to see that the function µx is
a character over the C∗-algebra C (X ,C) It is possible to see that
every character over C (X ,C) is obtained as an evaluation in a
point of x i.e. the map x 7→ µx that associates to a point its
character is a bijective one in such a way that, if we want, we can
say that a point of the space X “is” a character on the algebra
C (X ; C). Once this identification has been done, we associate to
every element f ∈ C (X ; C) its Gel’fand transform f̂ (µ) := µ(f ).
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C∗-algebras 31.

Theorem (Gel’fand theorem - second part)
Let X be a compact Hausdorff space. X is naturally
homeomorphic to the compact Hausdorff space Sp(C (X ; C)).

Proof (1).
Consider the map EX : X → Sp(C (X ; C)) that to every point
x ∈ X associates the character µx ∈ Sp(C (X ; C)) given by the
evaluation in x .
EX is injective, because if x 6= y , by Urysohn lemma, there exists
f ∈ C (X ; C) with µx(f ) = f (x) 6= f (y) = µy (f ).
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C∗-algebras 32.

Proof (2).
EX is surjective because if the maximal ideal Ker(µ) of the
character µ ∈ Sp(C (X ; C)) is not of the form Ker(µx) for a certain
x ∈ X , there exists fx ∈ Ker(µ) with fx(x) 6= 0 and by compactness
of X we get a finite number of points x1, . . . , xn and functions
fx1 , . . . , fxn such that the invertible function

∑n
j=1 f 2

xj
∈ Ker(µ).

EX is continuous if and only if all its compositions f̂ ◦ EX with the
f̂ are continous, for all f ∈ C (X ; C) and this is true, since
f̂ ◦ EX = f ∈ C (X ; C).
Since X is Hausdorff and Sp(C (X ; C)) is compact, it follows that
EgX is a homeomorphism.

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

C∗-algebras 33.

Gel’fand theorems tells us that to study compact Hausdorff topological
spaces is the same thing as to study unital commutative C∗-algebras.

To every compact Hausdorff topological space there is an associated
unital commutative C∗-algebra of continuous complex functions and,
thanks to the theorem, we know that every unital commutative
C∗-algebra arises in this way.

Similarly every commutative unital C∗-algebra gives a compact Hausdorff
space of characters and every compact Hausdorff space arises in this way.

If commutative unital C∗-algebras are nothing else but compact

Hausdorff topological spaces, we can start to think that maybe, when we

study a non-commutative (unital) C∗-algebra, we are actually studying

non-commutative topology: the study of noncommutative C∗-algebras

“is” the study of “non-commutative spaces”.
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C∗-algebras 34.

This is the starting point of non-commutative geometry:

I We look at the standard “commutative” spaces and we
construct algebras of complex functions over them.

I We try to express the geometric properties of the base space
making use only of its algebra of functions.

I Finally we try to see if the geometrical information codified in
the commutative algebra of functions still make sense if we
take a non-commutative algebra (that of course cannot arise
as an algebra of functions on a space).

I We call the non-commutative algebras “non-commutative
spaces”.
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C∗-algebras 35.
The basic idea of non-commutative geometry is to study spaces through
their algebras of functions and to define more “abstract” spaces using
only their non-commutative algebras.

This approach is not only useful to identify the “geometrical” behaviour
hidden in non-commutative algebras, but can be used to study in a more
efficient way classical (hence commutative) spaces that are too
complicate for ordinary geometry.

Non-commutative geometry has already been used to study the topology
of “bad” spaces like Penrose tilings, quotient spaces, foliations on a
manifold, and it is also expected that non-commutative geometry will
cast some new light on an intrinsic definition of fractal spaces.

Of course Gel’fand theorem is not only the “starting of an ideology”, it is

also the starting point for the development of “technical tools” in the

study of C∗-algebras.

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

C∗-algebras 36.

Proposition
If B is a unital Banach subalgebra of the unital Banach algebra A
and b ∈ B, then SpA(b) ⊂ SpB(b) and the border points of the
spectra satisfy ∂(SpB(b)) ⊂ ∂(SpA(b)).

Proof.
Of course ResB(b) ⊂ ResA(b).
If λ is a border point of SpB(b) then λ ∈ SpB(b) and there exists a
sequence λn → λ with λn ∈ ResB(b) ⊂ ResA(b) Hence it is
enough to show that λ ∈ SpA(b).
If by contradiction λ /∈ SpA(b), then definitely λn ∈ ResA(b) hence
(b − λn1) ∈ Inv(A) and (b − λn1)−1 converges to
(b− λ1)−1 ∈ Inv(A) and since B is closed we have (b− λ1)−1 ∈ B
so λ /∈ SpB(b) that is a contradiction.
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Proposition
If B is a unital C∗-subalgebra of the C∗-algebra A, and b ∈ B then
SpB(b) = SpA(b).

Proof.
If b is Hermitian in B, consider the unital C∗-algebra C ∗(b)
generated by b. We have SpA(b) ⊂ SpB(b) ⊂ SpC∗(b)(b). Since
SpC∗(b)(b) ⊂ R ⊂ C, we have
SpC∗(b)(b) = ∂(SpC∗(b)(b)) ⊂ ∂(SpB(b)) ⊂ ∂(SpA(b)). Hence
SpB(b) = SpA(b).
If b − λ ∈ B ∩ Inv(A), (b − λ)∗(b − λ) is Hermitian in B and
invertible in A hence (from above) (b − λ)∗(b − λ) ∈ Inv(B) so
((b − λ)∗(b − λ))−1(b − λ)∗ ∈ B and it is the inverse of (b − λ) in
A hence (b − λ)−1 ∈ B.
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C∗-algebras 38.

Theorem (continuous functional calculus)
If a is a normal element in a unital C∗-algebra A, there is a unique
isometric isomorphism of C∗-algebras Φ : C (SpA(a); C) → C ∗(a),
onto the unital C∗-algebra generated by a, mapping the identity
function ι : z 7→ z to a.

Proof.
The unital C∗-algebra C∗(a) generated by a is commutative.
Furthermore C∗(a) is the closure in A of the involutive subalgebra of
polynomials in a, a∗. The unicity follows from Stone-Weierstrass
The Gel’fand transform â : Sp(C∗(a)) → SpA(a) of a is a surjective
continous map from a compact to a Hausdorff space. â is injective
because if â(ω1) = â(ω2) then ω1 and ω2 coincide on a and hence on all
of C∗(a). Hence â is a homeomorphism. Since the “pull-back” by â is an
isometric isomorphism from C (SpA(a)),C to C∗(a), the required
isometric isomorphism is Φ : f 7→ f (a) := G−1

C∗(a)(f ◦ â).
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C∗-algebras 39.

Theorem (continuous spectral mapping theorem)
If a ∈ A is a normal element if a unital C∗-algebra, and
f ∈ C (Sp(a); C) is a continuous function on Sp(a), we have
Sp(f (a)) = f (Sp(a)).

Proof.
f (a)− λ1A is invertible if and only if f − λ is invertible in
C (Sp(a); C). This is true if and only if λ /∈ f (Sp(a)).
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C∗-algebras 40.

Theorem
In a unital C∗-algebra A, an element a is Hermitian if and only if it
is normal and SpA(a) ⊂ R.

Proof.
If a is normal, from functional calculus we have an isometric
isomorphism of C∗-algebras C (Sp(a); C) and C ∗(a) mapping
ι : z 7→ z to a.
a is Hermitian if and only if ι is Hermitian if and only if
Sp(a) = Sp(ι) ⊂ R.
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C∗-algebras 41.

Theorem
In a unital C∗-algebra A, an element a is unitary if and only if it is
normal and SpA(a) ⊂ T.
An element is a projection if and only if it is normal and
Sp(a) = Sp(ι) ⊂ {0, 1}.

Proof.
If a is normal, from functional calculus we have an isometric
isomorphism of C∗-algebras C (Sp(a); C) and C ∗(a) mapping the
identity function ι : z 7→ z to a.
a is unitary (projection) if and only if ι is unitary (projection) if
and only if if and only if Sp(a) = Sp(ι) ⊂ T
(Sp(a) = Sp(ι) ⊂ {0, 1}).
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Theorem
In a unital C∗-algebra A, an element a is equal to h2, with h
Hermitian, if and only if it is normal and SpA(a) ⊂ [0,+∞[.

Proof.
If a is normal with Sp(a) ⊂ R+, take f (z) :=

√
z ∈ C (Sp(a); C)

and by continuous functional calculus get f (a). Since f is
Hermitian in C (Sp(a); C) also f (a) is and since f 2 = ι, f (a)2 = a.
If h is Hermitian with h2 = a, by continuous functional calculus for
h, ι2(h) = h2 = a and SpA(a) = SpC∗(h)(a) = Sp(ι2) ⊂ R+.
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C∗-algebras 43.
In a C∗-algebra A, we define the set A+ of positive elements as:

A+ := {a ∈ A | [a, a∗] = 0A, Sp(a) ⊂ R+}

or equivalently as the set of “squares” of Hermitian elements.

Theorem
The set Ah of Hermitian elements in a unital C∗-algebra is a real
vector space and the set A+ ⊂ Ah is a positive convex sharp cone:

a ∈ A+, t ∈ R+ ⇒ ta ∈ A+,

a, b ∈ A+ ⇒ a + b ∈ A+,

a ∈ A+,−a ∈ A+ ⇒ a = 0A.

Hence there exists a natural linear partial order relation in Ah

given by a ≤ b ⇔ b − a ∈ A+.
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C∗-algebras 44.

Proof.
If a ∈ (A+) ∩ (−A+), Sp(a) ⊂ R+ ∩ (−R+) = {0} hence r(a) = 0
so that ‖a‖ = 0 and a = 0A. This proves that A+ is sharp.
Note that h ∈ A+ if and only if there exists a positive real number
t ∈ R+ such that ‖t1A − h‖ ≤ t because by Gel’fand ‖t − ι‖∞ ≤ t
is equivalent to say that for all λ ∈ Sp(h), λ ∈ [0, 2t] ⊂ R+.
Now if a, b ∈ A+ we have ‖t − a‖ ≤ t and ‖s − b‖ ≤ s for
t, s ∈ R+, hence ‖t + s − (a + b)‖ ≤ ‖t − a‖+ ‖s − b‖ ≤ t + s
and so a + b ∈ A+.
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C∗-algebras 45.

Theorem
In a unital C∗-algebra A, we have A+ = {a∗a | a ∈ A}.

The proof uses several lemmata.

Proposition
In a unital Banach algebra A, SpA(ab) ∪ {0} = SpA(ba) ∪ {0} for
all a, b ∈ A.

Proof.
Need to see that for λ 6= 0, (λ− ab) ∈ Inv(A) if and only if
(λ− ba) ∈ Inv(A) and it is enough to see (1A − ab) ∈ Inv(A) if
and only if (1A − ba) ∈ Inv (A)(A). If x := (1A − ab)−1 we take
y := 1A + bxa and we see by direct computation that
y = (1A − ba)−1.
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Proposition
In a unital C∗-algebra A, if −a∗a ∈ A+ then a = 0A.

Proof.
If −a∗a ∈ A+ also −aa∗ ∈ A+. Hence −a∗a− aa∗ ∈ A+. Now
−(a∗a + aa∗) = −2(Re(a)2 + Im(a)2) hence (a∗a + aa∗) ∈ A+ so
that (a∗a + aa∗) = 0A. Hence Re(a)2 = − Im(a)2 hence
Re(a)2 = 0A so Re(a) = 0 and Im(a) = 0 and finally a = 0A.
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C∗-algebras 47.

Proposition
In a unital C∗-algebra A, every Hermitian element a ∈ A can be
written as a = a+ − a− with a+, a− ∈ A+ and such that
a+a− = 0A. Such decomposition is unique.

Proof.
Consider f+(z) := max(0, z) and f−(z) := max(0,−z). We have
f+ − f− = ι and f+f− = 0. By continuous functional calculus for a,
we get a+ := f+(a), a− := f−(a) and this satisfy the requirements.
If x+, x− is another decomposition, the unital C∗-algebra generated
by x+, x− is commutative and contains a hence also a+, a−. The
unicity follows by Gel’fand theorem, since we can see unicity for
the pairs of functions on the spectrum of C ∗(x+, x−).

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

C∗-algebras 48.

Proposition
In a unital C∗-algebra A, if a = x∗x, a ∈ A+.

Proof.
a = a+ − a− and a−aa− = −(a−)3 that by functional calculus is
negative.
Now a−aa− = a−x∗xa− = (xa−)∗(xa−) is negative hence zero and
so a3

− = 0 and a− = 0. Hence a = a+ ∈ A+.

If a ∈ A+, taking x :=
√

a ∈ A+, we see that a = x∗x and this
completes the proof of the theorem.

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

C∗-algebras 49.

A state on a unital C∗-algebra A is a function ω : A → C such
that:

ω(a + b) = ω(a) + ω(b), ∀a, b ∈ A,
ω(λ · a) = λ · ω(a), ∀λ ∈ C, ∀a ∈ A,

ω(a∗a) ≥ 0 ∀a ∈ A,
ω(1A) = 1C.

It is possible to see that ω is always continuous and ‖ω‖ = 1
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Proposition
If ω : A → C is a linear functional on a unital C∗-algebra A, ω is a
state if and only if ω is continuous with ‖ω‖ = 1 = ω(1A).

Proof.
If ω is a state, the sesquilinear form (x , y) 7→ ω(x∗y) is positive
and by Schwarz inequality |ω(x∗y)|2 ≤ ω(x∗x)ω(y∗y).
Since ‖y‖2 · 1A − y∗y is positive, ω(y∗y) ≤ ‖y‖2ω(1A) hence
|ω(y)|2 ≤ ω(1A)‖y‖2 hence ‖ω‖ ≤ 1 and since ω(1A) = 1 we have
‖ω‖ = 1.
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C∗-algebras 51.

A representation of a unital C∗-Algebra on a Hilbert space H is
simply a unital ∗-homomorphism π : A → B(H) from the unital
involutive algebra A with values in the unital involutive algebra
B(H).
Two representations π1 : A → B(H1) and π2 : A → B(H2) of an
involutive algebra A are said to be equivalent if there exists a
unitary operator U : H1 → H2 such that:

Uπ1(a)U
∗ = π2(a), ∀a ∈ A.

A representation π : A → B(H) is called cyclic if there exists a
cyclic vector for π i.e. a vector ξ ∈ H such that {π(a)ξ | a ∈ A}
is dense in H.
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C∗-algebras 52.

A representation of a C∗-algebra is always continuous because it is
possible to prove that a unital ∗-homomorphism between unital
C∗-algebras is always continuous.

Proposition
If φ : A → B is a unital ∗-homomorphism of unital C∗-algebras,
‖φ(a)‖ ≤ ‖a‖ for all a ∈ A.
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C∗-algebras 53.

Proof.
π : A → B(H) maps InvA into InvB(H) hence
SpB(H)(π(a)) ⊂ SpA(a) hence ρ(π(a)) ≤ ρ(a).
Since π maps Hermitian elements h into Hermitian elements π(h),
and the norm of Hermitian elements coincides with the spectral
radius, we get ‖π(h)‖ = ρ(π(h)) ≤ ρ(h) = ‖h‖.
Finally ‖π(a)‖2 = ‖π(a)∗π(a)‖ = ‖π(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2.
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C∗-algebras 54.

There is a very important theorem of Gel’fand and Năımark that
says that all the C∗-algebras are (isomorphic to) some (norm)
closed subalgebra of B(H), where H is a Hilbert space. In this
way, the study of C∗-algebras is essentially the study of the closed
∗-subalgebras of the algebras B(H).
The proof of this result is based on the following fundamental
construction, called Gel’fand-Năımark-Segal representation, that
allows to associate to every state ω of a C∗-algebra a representation
of the algebra as an algebra of operators on a Hilbert space.
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Theorem
Given a state ω on a C∗-algebra A, it is possible to construct a
representation πω of the algebra A on a Hilbert space Hω, such
that ω(A) = (Ωω|πω(A)Ωω), for all A ∈ A, where Ωω is a norm one
cyclic vector in Hω. Any two such representations are equivalent
via a unique unitary U : H1 → H2 such that U(ξ1) = ξ2.

Proof.
Define a sesquilinear form on A by Bω(a, b) := ω(a∗b). Note (by
Schwarz inequality for Bω) that the set Nω := {a ∈ A | ω(a∗a) = 0} is a
left ideal in A. Consider A/Nω, with the “quotient inner product”, and
define a representation of A on it by La([b]) := [ab], for x ∈ A that are
continuous linear maps.
Completing A/Nω gives our Hilbert space and continous linear extension
provides the representation. The cyclic vector is [1A].
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C∗-algebras 56.

Proposition
If h ∈ A is a Hermitian element in the unital C∗-algebra A, there
exists a cyclic representation πh : A → B(H) such that
‖πh(h)‖ = ‖h‖.

Proof.
Consider C∗(h) the unital C∗-algebra generated by h. Since C∗(h) is
commutative, via Gel’fand transform, it is isomorphic to C (SpA(h)). The
modulus of the Gel’fand transform of h attains the value ‖h‖ = ‖ĥ‖∞ in
at least a point ωo ∈ SpC∗(h) that is a state on C∗(h) hence a linear
continuous map with ωo(1A) = 1 = ‖ωo‖. By Hanh-Banach there exists
a linear continuous extension ω : A → C with ‖ω‖ = ‖ωo‖. Hence ω is a
state with |ω(h)| = |ωo(h)| = ‖h‖. The GNS-representation πω satisfies.

‖h‖ = |ω(h)| = |(Ωω | πω(h)Ωω)| ≤ ‖πω(h)‖

and form the contractivity of πω it follows ‖πω(h)‖ = ‖h‖.
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C∗-algebras 57.

Theorem (Gel’fand- Năımark)
If A is a unital C∗-algebra, there exists a representation
π : A → B(H) that is isometric.
Hence A is isomorphic π(A) ⊂ B(H).

Proof.
For any element a ∈ A, pick a cyclic representation
πa : A → B(Ha) such that ‖πa(a

∗a)‖ = ‖a∗a‖ and note that
‖πa(a)‖ = ‖a‖ and construct the direct sum
⊕a∈Aπa : A → B(⊕a∈AHa). Note that for all a ∈ A
‖ ⊕a∈A πa(a)‖ = ‖a‖ hence ⊕a∈Aπa is isometric.
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C∗-algebras 58.

On the algebra B(H) it is possible to introduce several different
useful topologies for example:

I Norm Topology In this topology a sequence of elements
An ∈ B(H) converges to an element A ∈ B(H) if and only if
An

n→∞−−−→ A i.e. if and only if ‖An − A‖ n→∞−−−→ 0.

I Strong Operator Topology In this topology a sequence of
operators An ∈ B(H) converges to A ∈ B(H) if and only if for
all the vectors ξ ∈ H, Anξ

n→∞−−−→ Aξ.

I Weak Operator Topology In this topology a sequence of
operators An ∈ B(H) converges to A ∈ B(H) if and only if for
all the pairs of vectors ξ, η ∈ H, (η|Anξ)

n→∞−−−→ (η|Aξ).
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C∗-algebras 59.
If S ⊂ B(H), we can define the commutant S ′ of S as:

S ′ := {L ∈ B(H) | L · T = T · L, ∀T ∈ S}.

S ′ is the set of linear continuous functions on H that commute
with all the functions in S. We can also consider S ′′, the
bicommutant of S and so on S ′′′, . . . , but since S ⊂ S ′′ and
S ′ = S ′′′, we have actually that S ′ and S ′′ are the only two
“commutant sets”.
It is easy to see that S ′ is always a unital subalgebra. Furthermore
S ′ is weakly closed. If S = S∗ then S ′ is a ∗-algebra (hence a
C∗-subalgebra of B(H)) because (S∗)′ = (S ′)∗.
A Von Neumann algebra R is by definition a ∗-subalgebra of
B(H) such that R = R′′. A Von Neumann algebra is always a
unital C∗-algebra.
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C∗-algebras 60.

Proposition
Let K be a closed subspace of H and PK the ortogonal projection
onto K. K is S-invariant i.e. T (K) ⊂ K, ∀T ∈ S if and only if
TPK = PKTpK for all T ∈ S and,in the case S = S∗, if only if
PK ∈ S ′.
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C∗-algebras 61.

Theorem (Von Neumann Density Theorem)
If R is a unital ∗-subalgebra of B(H), then R′′ is the the closure of
R in the strong operator topology.

Proof.
Since R′′ is weakly hence strongly closed, we need to see that R is
strongly dense in R′′ i.e. ∀y ∈ R′′, ∀ε > 0, ∀n ∈ N0, ∀ξ1, . . . , ξn ∈ H
there exists x ∈ R such that ‖yξj − xξj‖ ≤ ε for all j = 1, . . . , n.
The case n = 1. Consider the closure of the subspace Rξ, clearly
invariant under R. The ortogonal projection p onto Rξ is in R′ hence if
y ∈ R′′, yp = py so yξ = y(1Rξ) = ypξ = p(yξ) ∈ (Rξ)− and so for all
ε > 0, there exists x ∈ R such that ‖yξ − xξ‖ ≤ ε.
The general case is reduced to n = 1 considering the “n-amplification”
H(n) := H⊕ · · · ⊕ H of H and the “n-amplification”
R(n) := R⊕ · · · ⊕ R of R and noting that (R(n))′′ = (R′′)(n), because
(R(n))′ = {[aij ] | aij ∈ R′, ∀i , j}.
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C∗-algebras 62.

A very famous theorem of Von Neumann states that a unital
involutive subalgebra of B(H) is a Von Neumann algebra if and
only if it is closed in the weak (or in the strong) topology.

Theorem (Von Neumann Double Commutant Theorem)
If R is a unital ∗-subalgebra of B(H), the following are equivalent:

I R is closed in the weak operator topology,

I R is closed in the strong operator topology,

I R = R′′, i.e. R is a Von Neumann algebra.

Since a weakly closed set is always strongly closed and a strongly
closed set is always a norm closed one, we see that a
Von Neumann algebra is a special case of C∗-algebra that is not
only norm closed, but also weakly (or equivalently strongly) closed.
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Von Neumann Algebras 1.

If C∗-algebras are the study of topology (locally compact and
Hausdorff) what is the algebraic analog of measure theory and
probability?
Von Neumann algebras are the setting for the study of
“non-commutative measure theory” and “non-commutative
probability” as can be seen from the following theorem of
Von Neumann:

Theorem
A commutative Von Neumann algebra is always isomorphic to the
algebra L∞(Ω, µ) of complex valued essentially bounded
measurable functions on a compact Hausdorff space Ω with a
positive measure µ on it.
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Von Neumann Algebras 2.

Of course in the non-commutative setting some “unexpected”
completely new phenomena can appear: as an example, in the
contest of non-commutative measure theory, we have the following
astonishing theorem of Tomita-Takesaky:

Theorem
To every normal faithful state on a Von Neumann algebra R is
associated a one parameter group of automorphism t 7→ σω

t of the
algebra R, called the modular automorphism group of ω.
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Quantum Vector Bundles = Hilbert-C∗-modules.
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Bundles 1.

A bundle is by definition a surjective map π : E → X from a set E
called the total space and a set X called the base space. For
x ∈ X , the set Ex := π−1(x) is called the fiber at the point x .
A section of a bundle is a map σ : X → E such that π ◦ σ = IdX .
In other words, a section associates to every point of the base set a
point of E taken from the fiber over x . The set of section of the
bundle is denoted by Γ(X ;E ). It also possible to say that sections
are a generalization of functions on X taking the value, at the
point x , in the fiber over x .
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Bundles 2.

A bundle morphism between to bundles E1 and E2 is a pair of
functions (f ,F), where f : X1 → X2 is a function between the
bases sets and F : E1 → E2 is a function between the total sets,
such that the following diagram is commutative

E1
F //

π1

��

E2

π2

��
X1 f

// X2,

i.e. π2 ◦ F = f ◦ π1. In other words, a bundle morphism sends the
fiber over x into the fiber over f (x).
Bundles morphisms constitute a category.
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Bundles 3.

In a topological bundle (E , π,X ), it is supposed that both E and
X are topological spaces and that π is a continuous function.
A (topological) vector bundle is a bundle (E , π,X ) such that all
the fibers are (topological) vector spaces (topo-)isomorphic to a
given (topological) (complex) vector space F called the typical
fiber of the vector bundle.

A morphism (E1, π1,X1)
(f ,F)−−−→ (E2, π2,X2) between (topological)

vector bundles must be given, by definition, by a (continuous) map
f : X1 → X2 and a (continuous) map F : E1 → E2 that is linear
(continuous) when “restricted to the fibers”. In particular, for
every x ∈ X , the function Fx : Ex → Ef (x), defined by
Fx(e) := F(e), e ∈ Ex , is (continuous) linear.
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Bundles 4.

A topological vector bundle is said to be trivial if it is isomorphic
to the topological vector bundle (X × F , π,X ), where
π : X × F → X is the projection onto the fist component of the
Cartesian product of topological spaces.
A topological vector bundle is said locally trivial if for every point
x ∈ X of the base space, it is possible to find a neighborhood U of
x such that π−1(U) is isomorphic to the vector bundle U × F .
This requirement is equivalent to the existence for every point
x ∈ X of a continuous section σ ∈ Γ(X ;E ) such that σ(x) 6= 0Ex .
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Hilbert-C∗-modules 1.

By definition a right A-module E over a ring A is an Abelian
group (E ,+) equipped with an operation:

· : E × A → E , · : (x , a) 7→ xa, such that:

x · (a + b) = (x · a) + (x · b), ∀x ∈ E , ∀a, b ∈ A,
(x + y) · a = (x · a) + (y · a), ∀x , y ∈ E , ∀a ∈ A,

x · (ab) = (x · a) · b, ∀x ∈ E , ∀a, b ∈ A.

If A is a unital ring and

x · 1A = x , ∀x ∈ E ,

we will say that E is a unital right A-module.
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Hilbert-C∗-modules 2.

The definition of left A-module is given in the same way using an
operation · : A× E → E .
An A-B-bimodule is at the same time a right B-module and left
A-module over the rings A and B with the supplementary property:

(a · x) · b = a · (x · b), ∀a ∈ A, ∀b ∈ B, ∀x ∈ E .

In practice, a module is a generalization of a vector space: it is no
more required that A is a field, but only that A is a ring, in
particular an algebra.2

2If E is a unital module over a unital K-algebra A, it is naturally a vector
space over K defining x ·λ := x · (λ1A) for all λ ∈ K. If E is not a unital module
over the K-algebra A, we assume that it is also a vector space over K such that
(x · λ) · a = (x · a) · λ, for λ ∈ K, a ∈ A and x ∈ E .
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Hilbert-C∗-modules 3.

As an example of (left) module consider the set E := Γ0(X ,E ) of
continuous sections of a given vector bundle and the ring (algebra)
A := C 0(X ,C) of complex valued continuous functions over X .
The set of sections E becomes an Abelian group defining the sum
of two section σ1, σ2 to be: (σ1 + σ2)(x) := σ1(x) + σ2(x) (the
sum on the right is the sum in fiber at the point x). Furthermore
we can define the multiplication of a section σ ∈ E by a complex
function α ∈ A to be: (α · σ)(x) := α(x) · (σ(x)).
With this definitions the set of sections E of a vector bundle
becomes a left module over the algebra A of continuous functions
over the base space X .
Actually in this example E is a bimodule on A by defining
σ · α := α · σ.
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Hilbert-C∗-modules 4.

A morphism (also called a A-linear function) between two
modules over the same ring A is a function φ : E1 → E2 such that:

φ(v1 + v2) = φ(v1) + φ(v2);

φ(av) = aφ(v) ∀a ∈ A.

An isomorphism is a bijective morphism.
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Hilbert-C∗-modules 5.

A module P over a ring is said to be projective if, given a
surjective morphism π : M→N between to A-modules and any
morphism φ : P → N , there exists a morphism ψ : P →M such
that π ◦ ψ = φ. This means that any morphism from P with
values in N can be “lifted” to a morphism from P to M.
It is possible to show that the module Γ0(X ,E ) of continuous
sections of a locally trivial vector bundle E over a compact
Hausdorff topological space X is always a projective module over
the algebra C 0(X ,C).
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Hilbert-C∗-modules 6.

Now, exactly as happened in the study of topological spaces, where
every locally compact Hausdorff topological space was uniquely
associated to a commutative C∗-algebra, here we will associate to
every locally trivial vector bundle over a Hausdorff compact
topological space a projective module over the previous
commutative C∗-algebra of continuous complex functions over X .
Furthermore every projective module E over a commutative unital
C∗-algebra A arises in this way i.e. can be uniquely identified with
a modulus of sections of a locally trivial vector bundle over the
spectrum of the C∗-algebra A.
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Hilbert-C∗-modules 7.
This is done thanks to a theorem of Swan-Serre:

Theorem
A projective module on the algebra C 0(X ,C) of continuous
complex functions on a compact Hausdorff topological space X is
always isomorphic to the module of continuous sections of a locally
trivial vector bundle E over X . �

In this spirit, instead of studying (locally trivial) vector bundles over
X , we can study (projective) modules over the algebra C 0(X ,C).
When we substitute the commutative algebra C 0(X ,C) with a
non-commutative one A, we cannot define any more a vector
bundle, but we can still talk about projective modules E over the
non-commutative algebra A and so we will define a (locally trivial)
vector bundle over a non-commutative algebra to be a projective
module over A.
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Hilbert-C∗-modules 8.

Vector bundles’ theory is the theory of vector spaces parametrized
by the points of a topological space: there is a vector space (the
fiber at x) attached to every point of the base space X .
Vector bundles are especially useful in mathematics to study the
topology of the base space X : topological K-Theory is the
branch of algebraic topology that extract information on the
topology of the base space X studying the algebraic properties of
the vector bundles that can be constructed over X .
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Hilbert-C∗-modules 9.

Now, in the same way as topology has an algebraic analog in the
study of commutative C∗-algebras, topological K-Theory, has an
analog in the algebraic K-theory of C∗-Algebras. This is the study
of some of the “topological” properties of the “non-commutative”
topological space described by the non-commutative algebra A
through the consideration of the “non-commutative” vector
bundles, that in our language are the modules over the algebra A.
In the non-commutative case, some complications obviously arise:
since the algebra A is no more commutative, in general left and
right modules over A are not the same (they are not bimodules)
and we must distinguish between the two cases.
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Quantum Differential Forms = Hochschild Homology.

After the study of topology and vector bundles, the next step in
the structural exam of the properties of a geometrical space is the
study of the “smoothness” or “differentiability” properties of the
space. Let us start again to review the basic notions in the case of
“ordinary” “commutative” spaces.
[Here vector spaces are supposed to be over the real numbers R].
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Differentials 1.
Given a vector space W a function G : W → W is called a
translation if there exists a vector w ∈ W such that:

G (h) = w + h, ∀h ∈ W .

A function G : V → W is said to be an affine map if it is a
composition of a linear map L : V → W with a translation of W
i.e. if there exists a vector w ∈ W such that:

F (h) = w + L(h).

Given two normed spaces V and W , a function ω : S → W from a
subset S ⊂ V to W is said to be an infinitesimal in the point
x = 0V if ω is continuous in 0V and ω(0V ) = 0W (of course we
suppose 0V ∈ S). In practice, an infinitesimal in one point is a
function that goes to zero in that point actually reaching the zero
value in that point.
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Differentials 2.
Given two functions F : S → W and G : S → W ′ (maybe W and
W ′ different normed spaces) we say that F is a small “o” of G if:

F (h) = ‖G (h)‖ · ω(h)

where ω : S → W is an infinitesimal. In practice F is a small “o”
of G whenever measuring the length of the vector F (h) in the unit
of length given by ‖G (h)‖ gives a “measure” that is an
infinitesimal. This means that F is “going to zero” at a faster rate
than G . Two functions F ,G : S → W are said to be tangent in x0

(where S is supposed to be a neighborhood of x0) if, the function

h 7→ F (x0 + h)− G (x0 + h),

is a small “o” of the function h 7→ ‖h‖. This means that the
difference between the two functions is going to zero faster that
the identity function h 7→ h.
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Differentials 3.

A function F : S → W is said to be differentiable in x0 (S is
supposed to be a neighborhood of x0) if the “graph” of the
function F “admits a tangent plane” at the point x0 i.e. if the
function F is tangent to at least a continuous affine map
G : V → W . This means that there exists a linear continuous map
L : V → W and a vector w ∈ W such that:

F (x0 + h) = w + L(h) + ‖h‖ω(h).

It is possible to show that if F is differentiable in x0 then
necessarily w = F (x0) and the linear continuous function
L : V → W is unique. This unique linear continuous function is
called the differential of F in x0 and is denoted DFx0 .
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Differentials 4.
Hence, F is differentiable in x0 if and only if there is a continuous
linear function DFx0 : V → W and an infinitesimal ω such that for
all h ∈ S − x0 :

F (x0 + h) = F (x0) + DFx0(h) + ‖h‖ω(h).

A function F : S → W is said to be C 1 in one point x0 if is
differentiable on a neghborhood U of x0 and the “differential”
DF : U → B(V ,W ) is continuous in x0 (remember that the space
B(V ,W ) of linear continuous maps from V to W is a normed
space too).
If the “differential function” DF : U → B(V ,W ) defined by
x 7→ DFx is differentiable in x0, we can go on to define the second
differential D2Fx0 that is the differential of the differential function
and so on . . .
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Differentials 5.

In this way it is possible to define “smooth” functions, called C∞

functions, in one point as those funtions that admit arbitrary
“high” differentials on a (maybe shrinking) family of
neighborhoods of the point.
The set of functions C∞o (V ,R) of real valued “smooth” functions
(going to zero at infinity) on the finite dimensional normed space
V is a subalgebra of the algebra C 0

o (V ,R) of the C∗-algebra of
continuous functions (going to zero at infinity), but it is not a
C∗-algebra because it is not closed in norm. It is anyway possible
to see that it is a dense subalgebra of C 0

o (V ,R).
Hence we can associate to a finite dimensional normed space a so
called differential algebra i.e. a pair (A,A∞) where A is a real
C∗-algebra and A∞ is a dense subalgebra of A taking the role of
the algebra of C∞o functions.
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Manifolds 1.
Let M be a set. A chart on M is a bijective function φ : Uφ → V
from a subset Uφ ⊂ M with values in an open set φ(Uφ) in a fixed
normed space V . A chart is simply a vay to attach coordinates to
the points of the set Uφ.
Given two charts φ1 : Uφ1 → V and φ2 : Uφ2 → V , we can
consider the “transition” function
φ1,2 : φ1(Uφ1 ∩ Uφ2) → φ2(Uφ1 ∩ Uφ2) defined by:

φ1,2(x) := φ2 ◦ φ−1
1 (x), ∀x ∈ Uφ1 ∩ Uφ2

and in the same way the function:
φ2,1 : φ2(Uφ1 ∩ Uφ2) → φ1(Uφ1 ∩ Uφ2) defined by:

φ2,1(x) := φ1 ◦ φ−1
2 (x), ∀x ∈ Uφ1 ∩ Uφ2

(actually φ2,1 = φ−1
1,2). These functions are essentially “changes of

coordinates” for the same points in Uφ1 ∩ Uφ2 .
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Manifolds 2.

Two carts φ1 : Uφ1 → V and φ2 : Uφ2 → V are said to be
C∞-compatible if the “change of coordinates” φ1,2 and φ2,1 are
C∞ functions.
A differentiable atlas on a set M is a family Φ of bijective maps
φ : Uφ → V called charts of M defined on subsets Uφ of M with
values in the normed space V , and satisfying the following
conditions:

-
⋃

φ∈Φ Uφ = M (i.e. the domains of the charts are a covering
of M);

- Any two charts in the family Φ are compatible;

A differential structure on a set M is a differentiable atlas that is
“maximal” in the sense that if a chart φ is compatible with all the
charts in Φ, then φ ∈ Φ.
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Manifolds 3.

Once we have been given a differential structure on a set, we can
start to develop a differential calculus on this set as if it were a
normed space, the only difference is that we have to work locally.
A differential manifold (M,Φ) is a set equipped with a
differential structure.
A function f : M → R is said to be a C∞ function if for every
chart φ ∈ Φ we have: f ◦ φ−1 : φ(Uφ) → R is a C∞ function from
the open set φ(Uφ) ∈ V to the normed space V . [Notice that to
define the meaning of “smooth” functions on a differential
manifold we have to rely on the already developed notion of
differentiability in normed vector spaces!].
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Manifolds 4.

It is possible to show that a differentiable manifold (modelled on a
finite dimensional normed space) is always a locally compact
topological space. In fact there is one and only one topology on a
manifold that is the smallest topology making all the domains of
the charts open sets in M and with this topology M is a locally
compact space.
Hence, we can define the C∗-algebra C 0

o (M,R) of continuous
functions (vanishing at infinity) on M and if we furthermore
consider its dense subalgebra C∞o (M,R), we get a structure of
differential algebra associated to every (finite dimensional)
manifold.
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Manifolds 5.

All the (finite dimensional) manifolds can be associated to a
differential algebra (C 0

o (M,R),C∞o (M,R)). Is it true that any
commutative differential algebra (A,A∞) is a differential algebra
arising from a differential manifold? Up till now I do not know of
the existence of a definitive answer to the problem of finding the
conditions under which this statement is valid. Anyway the notion
of “smooth” differential algebra has already been used many times
in the literature as a possible convenient generalization of the
notions of differentiable structure also for the noncommutative
case.
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Vector Fields 1.
If we are given a manifold and we fix a point m ∈ M of the
manifold, it is possible to construct in a completely intrinsic way a
vector space Tm(M) of “tangent” vectors at the point m. To do
so, we first give an algebraic characterization of vectors in a finite
dimensional vector space, and then we use this algebraic
formulation to define tangent vectors to a point of a manifold.
Let x0 ∈ V be a fixed point in a finite dimensional normed space
V . Given a vector v ∈ V , we can consider the function
vx0 : C∞(V ,R) → R, defined by:

f 7→ Dfx0(v), ∀f ∈ C∞(V ,R).

This function, takes a smooth function f on V and associates to it
a real number vx0(f ) that is the differential of f in x0 calculated
along the vector v i.e. it is the “directional derivative” of f in the
direction of v .
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Vector Fields 2.

It is possible to show that the function vx0 has the following
properties:

vx0(f + g) = vx0(f ) + vx0(g);

vx0(λf ) = λvx0(f );

vx0(f · g) = vx0(f ) · g(x0) + f (x0) · vx0(g).

Hence vx0 is a linear map from the algebra of smooth functions on
V to the real numbers, that satisfies the Leibnitz rule (it is a
directional derivative!).
Well, it is possible to show that, if V is finite dimensional, any
linear function with the Leibnitz property is the directional
derivative associated to a certain vector v ∈ V .
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Vector Fields 3.

This extremely important algebraic characterization of vectors (in
the commutative and finite dimensional case) open the way to a
very elegant and intrinsic definition of tangent vectors to a point of
a manifold. We know that for a vector space, to talk about vectors
is the same thing as to talk about linear funtionals with the
Leibnitz property. On a manifold we have no idea of what are the
tangent vectors at a point m ∈ M (actually our scope is to define
these!) but we know exactly what are the smooth functions on a
manifold and so we can immediately define the set of linear
functionals with the Leibnitz property in m.
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Vector Fields 4.

Hence, we will define the set of tangent vectors to the manifold M
in the point m to be the set Tm(M) of all the functions
vm : C∞(M,R) → R such that:

vm(f + g) = vm(f ) + vm(g);

vm(λf ) = λvm(f );

vm(f · g) = vm(f ) · g(m) + f (m) · vm(g).

It is possible to see immediately that Tm(M) is a real vector space
with the operations defined by:

(vm + wm)(f ) := vm(f ) + wm(f );

(λvm)(f ) := λ(vm(f )).
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Vector Fields 5.

In this way, to every point m of a manifold we have associated the
vector space Tm(M) of the “tangent vectors” in m to the manifold.
If we consider now the set

T (M) :=
⋃

m∈M

Tm(M),

and the “projection” function π : T (M) → M defined by:

π(vm) := m, ∀vm ∈ T (M),

we see immediately that we have actually defined a vector bundle
on the manifold M called the tangent bundle of M.
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Vector Fields 6.
Vector fields on a manifold are simply functions v that associate
to every point m a vector vm tangent to that point. This means
that a vector field is a section of the tangent bundle i.e. a function

v : M → T (M) such that π ◦ v = IdM .

A vector field v is said to be C∞ or “smooth” (resp. C r ) if, given
an arbitrary C∞ function f ∈ C∞(M) over the manifold M, the
new function defined by: [v(f )](m) := vm(f ) is again a “smooth”
(resp. C r ) function on M.
The set of smooth (or C r ) vector fields over M is denoted by
X∞(M) (respectively by X r (M)) and is a bimodule over the
algebra C∞(M) (resp. C r (M)) of smooth (resp. C r ) functions
over the manifold if we define:

(f · v)(m) := f (m) · vm ∈ Tm(M).
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Vector Fields 7.

Given an algebra A, a derivation of the algebra A is, by definition,
a function v : A → A that is linear and that satisfy:

v(f · g) = v(f ) · g + f · v(g)

(where the product is the multiplication in the algebra A).
It is immediate to see that on a manifold, every smooth vector
field gives rise to a derivation of the algebra of smooth functions
on the manifold M.
It is possible to show that, on a finite dimensional manifold, every
smooth vector field arises in this way as a derivation of the algebra
of smooth functions on the manifold.
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Vector Fields 8.

This means that, if we have at desposition the algebra of
“smooth” functions on M, we can define “smooth” vector fields
immediately, in a global way as derivations of the algebra C∞(M).
This elegant method (in several variants) has been actually used in
many places as a possible definition of the bimodule of smooth
vector fields over a non-commutative algebra: given a smooth
algebra (A,A∞), the non-commutative vector fields should be the
elements of the bimodule (over the center Z (A∞) of the algebra
A∞) Der(A∞) of derivations of A∞. In some cases, this approach
has been working, but actually there is not a complete agreement
on this definition as the “good” one!
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Tensor Fields 1.

There are several ways to define what is a tensor and a tensor
product, we will choose the most intuitive one.
Given a real vector space V , its dual space V ∗ is defined to be the
set of all the linear functionals on V . This means that V ∗ is the
family of all the linear functions ω : V → R.
V ∗ is of course a real vector space with the operations defined by;

(ω1 + ω2)(v) := ω1(v) + ω2(v);

(λ · ω)(v) := λ(ω(v)).

The element of V ∗ are called covectors.
In V is a finite dimensional vector space, a well known relult tells
us that V is isomorphic to its double dual V ∗∗ so that we can
always limit ourselves to consider only V and V ∗.
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Tensor Fields 2.
A tensor (contravariant of order p and covariant of order q) on
the vector space V is simply a multilinear function

t : V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

→ R

that “eats” a certain number (q) of vectors and a certain number
(p) of covectors to produce a real number. The set of p
contravariant and q covariant tensors on V is denoted by T p

q (V ).
As an example, if t ∈ T 1

2 (V ) then given a covector ω ∈ V ∗ and
two vectors v1, v2 ∈ V , t(ω, v1, v2) is a real number that depends
linearly on each of the entries i.e. for w ∈ V , µ ∈ V ∗, λ ∈ R:

t(ω + λµ, v1, v2) = t(ω, v1, v2) + λt(µ, v1, v2),

t(ω, v1 + λw , v2) = t(ω, v1, v2) + λt(ω,w , v2),

t(ω, v1, v2 + λw) = t(ω, v1, v2) + λt(ω, v1,w),
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Tensor Fields 3.

It is easy to see that T p
q (V ) is a vector space with the operation

defined by:

(t + s)(ω1, . . . , ωp; v1, . . . , vq) := t(ω1, . . . , ωp; v1, . . . , vq)+

+s(ω1, . . . , ωp; v1, . . . , vq);

(λ · t)(ω1, . . . , ωp; v1, . . . , vq) := λ(t(ω1, . . . , ωp; v1, . . . , vq)).

Given two tensors t ∈ T p1
q1 and s ∈ T p2

q2 , we can define the tensor
product t ⊗ s to be the new tensor t ⊗ s ∈ T p1+p2

q1+q2
defined by:

t ⊗ s(ω1, . . . , ωp1+p2 ; v1, . . . , vq1+q2) := t(ω1, . . . , ωp1 ; v1, . . . , vq1)·
·s(ωp1+1, . . . , ωp1+p2 ; vq1+1, . . . , vq1+q2).
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Tensor Fields 4.

The set of all tensors of all the possible orders on V is denoted by:

T (V ) :=
⋃

p,q∈N
T p

q (V )

and becomes an algebra called the tensor algebra of V with the
operation of tensor product.
Now, if we have a manifold M, at each point m of M we can
consider the “tangent” vector space Tm(M) and over it start to
construct all the tensor spaces: T p

q (Tm(M)).
The vector space T 0

1 (Tm(M)) is called the cotangent space and is
indicated by T ∗

m(M).
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Tensor Fields 5.

We can also construct the tensor bundles:

T p
q (M) :=

⋃
m∈M

T p
q (Tm(M))

Note that here T 1
0 (M) is the tangent bundle already denoted by

T (M) and that in an analogous way T 0
1 (M) is called the

cotangent bundle and is for short denoted by T ∗(M).
In this bundles, every fiber T p

q (M)m is the tensor space
T p

q (Tm(M)) over the tangent space in m.
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Tensor Fields 6.

Furthermore we can consider the tensor algebra T (M) of the
manifold M to be:

T (M) :=
⋃

p,q∈N
T p

q (M).

In this case, each fiber of the bundle is the tensor algebra
T (Tm(M)) over the tangent space Tm(M).
A tensor field on a manifold M will be a function t : M → T (M)
that to every point m ∈ M associates a tensor tm ∈ T (Tm(M))
over the tangent space in m. Hence a tensor field is a section of
the tensor algebra bundle of the manifold.
Covector fields (i.e. covariant tensor fields of order 1) are denoted
by X ∗(M).
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Tensor Fields 7.

A covector field ω ∈ X ∗(M) is said to be “smooth” if for all
“smooth” vector fields v ∈ X∞(M) the function given by:

[ω(v)](m) := ωm(vm),

is a smooth function on M.
A tensor field t of order p, q is said to be “smooth” if given
arbitrary p smooth vector fields and arbitrary q smooth covector
fields, the function defined by:

t(ω1, . . . , ωp; v1, . . . , vq)(m) := tm(ω1m, . . . , ωpm; v1m, . . . , vqm),

is a smooth function on M.
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Tensor Fields 8.

The set of continuous (resp. smooth) tensor fields or order p, q
over the manifold M is denoted by Γ0(M, T p

q (M))
(resp. Γ∞(M, T p

q (M))) and the set of all the continuous
(resp. smooth) tensor fields by Γ0(M, T (M))
(resp. Γ∞(M, T (M))).
From the previous definitions we have X (M) = Γ(M, T 1

0 (M)) and
X ∗(M) = Γ(M, T 0

1 (M)) as the sets of all vector fields and covector
fields.
Exactly as in the case of the module of vector fields, it is possible
to see that Γ0(M, T p

q (M)) and Γ0(M, T (M)) are symmetric
bimodules over the algebra C 0(M). In the same way
Γ∞(M, T p

q (M)) and Γ∞(M, T (M)) are symmetric bimodules over
the algebra of smooth functions C∞(M).
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Tensor Fields 9.

Let us denote with A the algebra C 0(M) (resp. C∞(M)). It is
possible to see that (in the case of finite dimensional manifolds)
continuous covector fields (resp. smooth covector fields) are simply
given by the module of A-linear functions on the A-module X 0(M)
(resp. X∞(M)) with values in A. In the same way the A-module
of continuous tensor fields Γ0(M, T p

q (M)) (resp. smooth tensor
fields) is given by the A-module of multi A-linear functions from
X ∗(M)× · · · × X ∗(M)×X (M)× · · · × X (M) with values in A.
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Tensor Fields 10.

This suggest that, as long as it is possible to individuate a suitable
A-module that can work as a module of continuous (smooth)
vector fields over the manifold M, the construction of all the other
tensor fields amounts at a simply algebraic game: they are the
A-modules of multi A-linear funtionals with values in A. The
difficult task, at least in the non-commutative case is to find a
good A-module to be used as a substitute for X 0(M).
Anyway, in the struggle to generalize to the non-commutative
world the basic notions related to the differential structure of a
space, people have been using with some success other algebraic
constructs coming from the notion of exterior algebra associated to
a given differential manifold.
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Differential Forms 1.

If t ∈ T 0
q (V ) is a covariant tensor of order q on the real vector

space V and σ is a permutation of the set of natural numbers
{1, . . . , q}, we define a new tensor σt by:

σt(v1, . . . , vq) := t(vσ(1), . . . , vσ(q)).

A q form on a vector space V is a covariant tensor of order q,
t ∈ T 0

q (V ) that is antisymmetric i.e.:

t(. . . , v , . . . ,w , . . . ) = −t(. . . ,w , . . . , v , . . . )

for all the possible exchanges of two vectors.
The space of q forms is denoted by Λq(V ) and the set of all the
forms by Λ(V ).
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Differential Forms 2.

If t ∈ T 0
q (V ), we can “antisymmetrize” it to get a q-form by:

A(t) :=
1

q!

∑
σ

σt,

where the sum is over all the possible permutations of {1, . . . , q}.
Λ(V ) is a vector subspace of T (V ) but it is not an algebra with
the tensor product (the tensor product in general is not an
antisymmetric tensor). Anyway it is possible to define a new useful
product on Λ(V ) that makes it into an associative algebra called
the exterior algebra of the vector space V .
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Differential Forms 3.
The new product called the wedge product is very natural: if
ω ∈ Λp(V ) and η ∈ Λq(V ), we consider the tensor product ω ⊗ η
and since this is not an antisymmetric tensor, we “antisymmetrize”
it defining:

ω ∧ η :=
(p + q)!

p!q!
A(ω ⊗ η).

If we have a manifold M. we can proceed exactly as we did in the
case of tensors: we can define the vector bundle of q-forms on M
denoted by Λq(M) whose fiber in the point m is simply the vector
space Λq(Tm(M)). We denote by Λ(M) the vector bundle of
exterior forms on M.
A differential form on M is a section of the bundle Λ(M) i.e. it is
a tensor field that at each point m of the manifold associates an
antisymmetric tensor field on the tangent space Tm(M).

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

Differential Forms 4.
The set of q-differential forms is denoted by Ωq(M) i.e.:

Ωq(M) = Γ(M,Λq(M)).

The set of differential forms is denoted by Ω(M).
Ω(M) is an algebra (called the exterior algebra of the manifold
M) with the operations defined point by point in the usual way:

(ω + η)m := ωm + ηm,

(λ · ω)m := λ · (ωm),

(ω ∧ η)m := ωm ∧ ηm.

A differential q-form ω is said to be smooth if it is smooth as a
tensor field i.e. if for arbitrary smooth vector fields v1, . . . , vq, the
function ω(v1, . . . , vq) is a smooth function on M. We denote by
Ω∞q (M) the family of smooth differential q-forms on M.
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Differential Forms 5.

The modules Ωq(M) and Ω∞q (M) can be uniquely identified (in
the finite dimensional case) as the symmetric bimodules of
antisymmetric A-valued (resp. A∞-valued) multilinear maps on
X (M) (resp. X∞(M)).
The set Ωq(M) (resp. Ω∞q (M)) is a symmetric bimodule over the
algebra C0(M) (resp. C∞(M)). The same is true for Ω(M)
(resp. Ω∞(M)). We have furthermore the following important
properties:

a- Ω∞(M) is a graded algebra [this means that under the wedge
product we have Ω∞p (M) ∧ Ω∞q (M) ⊂ Ω∞p+q(M)];

b- C∞ ⊂ Ω0(M) [actually in this case C∞ = Ω0(M)].

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

Exterior Differential 1.

It is possible to show that all the previously constructed tensor
bundles T p

q (M), Λq(M) are actually manifolds in a natural way
since they can be equipped with a differential structure.
A function F : M → N between manifolds is said to be smooth if
for any possible choice of a smooth function f : N → R, the new
function F ∗(f ) : M → R defined by:

[F ∗(f )](m) := f (F (m))

is a smooth function on M. [Note that in this definition, we do not
make direct use of the differential structure on M whose only
fundamental use has been to select a family of smooth real valued
functions on M].
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Exterior Differential 2.

If F is a smooth function between the manifolds M and N, we can
define the differential (denoted by DFm) of F in the point
m ∈ M. The differential will be a linear continuous function from
the tangent space Tm(M) in m to the manifold M, to the tangent
space TF (m)(N) in the point F (m) to the manifold N. The actual
definition is the following: taken a vector vm ∈ Tm(M), the vector
DFm(vm) is the vector over N (hence it is a linear functional with
the Leibnitz property over the algebra of smooth functions over N)
defined by:

[DFm(vm)](g) := vm(g ◦ F )

where g is an arbitrary smooth function over the manifold N.

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

Exterior Differential 3.

In the special case of a smooth real valued function f ∈ C∞(M),
the function m 7→ Dfm is actually a covector field: in fact at every
point m ∈ M is associated a linear map Dfm ∈ T ∗

m(M) hence Df is
a smooth differential 1-form on M.
Since Ω∞0 (M) is by definition the set of smooth functions C∞(M)
on M, the differential D is a map that associate to a 0-form a
1-form. The map is linear: i.e. for all f , g ∈ C∞(M) and λ ∈ R,
D(f + g) = D(f ) + D(g), and D(λf ) = λD(f ).
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Exterior Differential 4.

It is a well known result that the map D : Ω∞0 (M) → Ω∞1 (M) can
be extended to a map d : Ω∞(M) → Ω∞(M) called the exterior
differential and having the following properties:

1- For all q ∈ N, d(Ω∞q (M)) ⊂ Ω∞q+1(M),

2- d is R-linear,

3- d(ω ∧ η) = d(ω) ∧ η + (−)pω ∧ d(η), where ω ∈ Ω∞p (M) and
η ∈ Ω∞q (M),

4- d ◦ d = 0,

5- d(f ) = D(f ) for all f ∈ Ω∞0 (M).

Properties 1, 2, 3 above amount to say that the map d is a graded
derivation on Ω∞(M).
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Exterior Differential 5.

In this way, starting with the algebra C∞(M) of smooth functions
on a manifold, we have constructed a bigger algebra Ω(M)
equipped with a differential d : Ω → Ω satisfying the properties
1, 2, 3, 4.
This amounts to say that we have associated what is called a
differential algebra Ω∞(M) to the algebra C∞(M) i.e. a graded
algebra with a graded derivation such that d2 = 0.
To generalize the notion of differential algebra to the
non-commutative setting is really very simple: given and algebra A
(that plays the analogous role of the algebra C∞(M) above) we
look for pairs (Ω(A), d) such that Ω(A) is a graded algebra on A
(i.e. A is identified with a subalgebra of Ω0(A)) and d is a graded
derivation with d2 = 0.
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Homology and Cohomology 1.

If R is a ring, let denote by E the sequence E 0,E 1, . . . ,En, . . . of
R-modules and let denote by d a sequence dn : En → En+1 of
R-linear maps between the previous modules such that
dn ◦ dn−1 = 0.
Such an algebraic structure is called a cohomological complex.
The maps dn are called the (cohomological) differentials of the
complex.
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Homology and Cohomology 2.
The cohomology sequence H(E , d) of the previous complex, is
by definition the sequence of R-modules given by the following
quotients of R-modules:

H i (E , d) :=
Z i (E , d)

B i (E , d)
,

Where Z i (E , d) called the set of cycles of the complex is by
definition:

Z i (E , d) := ker(d i ),

and B i (E , d), called the set of boundaries of the complex, is
given by:

B i (E , d) := im(d i−1), B0(E , d) := {0}.
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Homology and Cohomology 3.

It is possible to define in an analogous way homology complexes Ei

(where the differentials are acting in the reverse direction:
di : Ei → Ei−1) and their homology classes Hi (E , d). Given a
cohomology complex, we can always obtain a homology complex
considering the dual modules and the “trasposed” of the
differentials.
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Homology and Cohomology 4.

In the case of a differential manifold, we already have in our hands
a cohomological complex obtained taking:

R := R the field of real numbers,

E i := Ω∞i (M) the set of smooth i-differential forms,

d i := d |E i the differential of i-forms with values in (i + 1)-forms.

This very famous cohomological complex is called De Rham
complex and the cohomology sequence H(E , d) obtained from it
is called the the De Rham cohomology and we will denote if by
HDR(M). The family of vector spaces H i

DR gives information on
the topology of the manifold M (even if for their construction we
made use of the differential structure of M).
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Cyclic Cohomology 1.
A lot of people have been trying to find a non-commutative version
of the De Rham cohomology, but as far as I know, the only
successful approach has been given by A. Connes.
If we try to generalize immediately the De Rham complex to the
non-commutative case, we would take an algebra A (as an algebra
of smooth functions over a manifold), and we would consider Ω(A)
the universal differential algebra that is our best candidate for the
non-commutative analogue of differential forms and we would
consider the cohomology complex associated:

E i := Ωi (A);

d i := d the differential restricted to E i with values in E i+i .

Unfortunately this honest complex has a trivial cohomology
i.e. H i (E , d) = 0 if i > 0.
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Cyclic Cohomology 2.

Instead of this, A. Connes considers a different cohomological
complex known as the Hochschild complex and shows that the
cohomology classes HH(A) of the Hochschild complex can be
identified (in the commutative case) with the dual of the vector
space of the differential forms on a manifold (the De Rham
currents). Then A. Connes introduces a new cohomological
complex (called cyclic complex) that is simply a subcomplex of
the previous Hochschild complex3 and shows that the information
contained in the cohomology HC (A) of this new complex (called
cyclic cohomology), in the commutative case, allows to
reconstruct the De Rham homology spaces (and so, taking the
duals, the De Rham cohomology spaces).

3In the sense that all the vector spaces of the cyclic complex are subspaces
of the Hochschild complex and the differential is obtained by restriction.
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Cyclic Cohomology 3.

This is not an isomorphism: every Connes’ cyclic homology space
is a direct sum a finite number of De Rahm homology spaces, but
from the complete knowledge of the cyclic cohomology it is
possible to find all the de Rham homology classes.
In the limited space available for this lecture it is not possible to
give more details on this topic: for the easiest introduction to
cyclic cohomology we suggest to consult M. Khalkhali notes, the
two papers by R. Coquereaux and the book by J-L. Loday
mentioned in the bibliography.
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Quantum Spin Manifolds = Connes’ Spectral Triples.
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Riemannian Manifolds 1.
A semi-Riemannian manifold M is a manifold equipped with a
smooth symmetric covariant tensor of order two g , called the
metric tensor. The metric tensor gx at the point x is simply a
symmetric bilinear form on the tangent space Tx(M) to the
manifold M in the point x . In this way we see that a
semi-Riemannian manifold is a manifold having a metric defined on
every tangent space, with the only additional condition that the
metric is changing in a smooth way from point to point.
We say that we have a Riemannian manifold if the metric tensor
g is positive definite over every tangent space, this means that, for
all points x ∈ M, the scalar product gx is positive definite i.e.:

gx(v , v) ≥ 0, ∀v ∈ Tx(M),

gx(v , v) = 0 ⇒ v = 0.
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Riemannian Manifolds 2.

Using the metric tensor, we can define the length gx(v , v) of a
tangent vector v ∈ Tx(M) and the angle between two tangent
vectors.
Furthermore, the set X∞(M) of (smooth) vector fields over M
becomes immediately equipped with a A-bilinear map with values
in the algebra A of continuous (smooth) functions on M that
associates to a pair of vector fields v ,w ∈ X∞(M) a continuous
(smooth) function γ on M defined by γ(x) := gx(v(x),w(x)).
This kind of algebraic structure is an example of a pre-Hilbert
module over the algebra A i.e. a module over the algebra A
equipped with a A-bilinear map with values in A.
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Riemannian Manifolds 3.

One possible way to try to generalize the notion of Riemannian
manifold to the non-commutative setting is to define a
non-commutative Riemann manifold to be a smooth algebra
equipped with a suitable pre-Hilbert module (or bimodule)
structure. The difficult task is usually to find the appropriate
module on the noncommutative algebra.
The approach of Alain Connes to this problem is a bit more subtle.
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Clifford Algebras 1.
The first step to understand how to achieve the definition of
noncommutative Riemann manifold Connes’ way, is the study of
Clifford algebras. Let us suppose that we are given a real vector
space V equipped with a bilinear symmetric form g : V × V → R.
From the intuitive point of view, the Clifford Algebra Cl(V , g) of
(V , g) is a unital associative algebra over the real numbers that
contains the vector space V , is generated by the elements of V
(i.e. every element of Cl(V , g) is a linear combination of products
of vectors from V ) and in which the product of vectors reproduce
the inner product in V i.e.:

v · v = −g(v , v) · 1A.

In this way we see that the Clifford algebra of (V , g) contains all
the information about the vector space V and its metric g .
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Clifford Algebras 2.

A Clifford module is a (left) module S over a Clifford algebra
i.e. it is an Abelian group (under an operation of addition)
endowed with an operation of multiplication that associates to
every element c ∈ Cl(V , g) and every element s ∈ S a new
element of S denoted by c · s.
If we have a semi-Riemannian manifold (M, g), then in any point
x ∈ M of the manifold, we can consider the Clifford algebra
Cl(Tx(M), gx) of the inner product space (Tx(M), gx). In this way
we obtain a bundle whose fiber at the point x ∈ M is the Clifford
algebra of the tangent space Tx(M) equipped with the inner
product gx . This special bundle is called the Clifford bundle of
the semi-Riemannian manifold (M, g) and is denoted by Cl(M).
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Clifford Algebras 3.

The set of (smooth) sections Γ∞(M,Cl(M)) of the Clifford bundle
is a unital associative algebra with the pointwise multiplication in
the Clifford algebras of tangent spaces. Actually this algebra can
be considered as the “Clifford Algebra” of the pre-Hilbert module
(X∞(M), γ) and we denote it by Cl(X∞(M), γ).
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Covariant Exterior Derivatives 1.

Let us suppose that we are given a differentiable manifold M. Let
f be a differentiable function (i.e. a tensor of order 0) defined on
M, and let v ∈ X∞(M) be a smooth vector field on M. We
already know that we can define the “directional derivative” ∇v (f )
of f along v in an intrinsic way calculating the differential df on
the vector v i.e. (∇v (f ))m := (df )m(vm). In the same way, we
would like to define the “directional derivative” ∇v (w) of a vector
field w ∈ X∞(M) along a vector field v ∈ X∞(M). As in the
previous case, ∇ should be a one form in v for each fixed w and it
should satisfy the Leibnitz property typical of derivatives.
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Covariant Exterior Derivatives 2.

This means that we require ∀v ,w , z ∈ X∞(M) and
∀α, β ∈ C∞(M) :

∇αv+βw (z) = α · ∇v (z) + β · ∇w (z);

∇v (w + z) = ∇v (w) +∇v (z);

∇v (αw) = dα(v) · w + α · ∇v (w).

Such a function ∇ is called a Koszul connection for the tangent
bundle T (M) of the manifold. The name connection comes from
the fact that, to give a directional derivative of vector fields is
equivalent to give rules to “connect” two different tangent spaces
i.e. to move vectors along a path (in a “parallel way”) between
different tangent spaces of the manifold in order to compare them.
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Covariant Exterior Derivatives 3.

If we are given a Koszul connection on vector field (i.e. a
directional derivative) it is possible to extend it in a unique way to
a directional derivative of arbitrary tensor fields provided that ∇v

“commutes” with contractions of tensor fields and satisfies the
Leibnitz property. In this way we get a Koszul connection for any
tensor bundle over M.
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Covariant Exterior Derivatives 3.

Now, given an arbitrary vector bundle E (any tensor bundle for
example) over the manifold M, it is always possible to consider the
module of “differential forms with values in E”. Such a module is
denoted by Ω∞(M,E ). An exterior covariant derivative dE on E
is, by definition, a real linear function with the following properties:

dE (Ω∞q (M,E ) ⊂ Ω∞q+1(M,E );

dE (t1 ∧ t2) = (dE t1) ∧ t2 + (−)pt1 ∧ (dE t2),

for all t1 ∈ Ω∞p (M,E ) and t2 ∈ Ω∞(M,E ).
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Covariant Exterior Derivatives 4.

A Koszul connection on E is, by definition, a function
∇ : X∞(M)× E → E such that for all v ∈ X∞(M),
t, t1, t2 ∈ Ω∞0 (M,E ) = Γ∞(M,E ) and α, β ∈ C∞(M):

∇αv+βw (t) = α · ∇v (t) + β · ∇w (t);

∇v (t1 + t2) = ∇v (t1) +∇v (t2);

∇v (α · t) = dα(v) · t + α · ∇v (t).

It is a known result that any Koszul connection ∇ on E uniquely
determines an exterior covariant derivative dE such that:

(dE t)(v) = ∇v (t), ∀t ∈ Ω∞0 (M,E ), v ∈ X∞(M).
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Covariant Exterior Derivatives 5.

We take now: E := T ∞(M). An exterior covariant derivative on a
semi-Riemannian manifold is called metric covariant derivative if
it satisfies the following additional property:

dEg = 0.

The torsion τ of the connection is by definition the two form with
values in the tensor fields over M obtained taking the exterior
derivative of the following tensor valued one-form
ζ : X∞(M) → Γ∞(M, T (M)) defined as: ζ(t) := t (ζ acts as the
identity function, associating to a vector field the same vector field
as an element of the tensor field algebra over M). In formulas:
τ := dE ζ.
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Covariant Exterior Derivatives 6.
A fundamental theorem in differential geometry states that, on the
C∞(M)-module Γ∞(M, T (M)) of a semi-Riemannian manifold,
there exists one and only one metric covariant exterior derivative
without torsion. This covariant exterior derivative dLC is called the
Levi Civita covariant exterior derivative.
Furthermore, another theorem states that the Levi Civita covariant
derivative can be uniquely extended to the module Γ∞(M,Cl(M))
of smooth sections of the Clifford bundle of M in such a way that
Leibnitz rule is satisfied i.e. there exists only one
dCl(M) : Ω∞(M,Cl(M)) → Ω∞(M,Cl(M)) such that:

∀c1, c2 ∈ Ω∞(M,Cl(M)),

dCl(M)(c1 · c2) = dCl(M)(c1) · c2 + c1 · dCl(M)(c2), and

dCl(M)(c) = dLC (c), ∀c ∈ Ω∞(M,T (M)) ⊂ Ω∞(M,Cl(M)).
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Covariant Exterior Derivatives 7.
In the same way, another important theorem states that there
exists an extension dS of the exterior covariant derivative, on any
Clifford bundle S(M) over M, with the property:
dS(c · s) = dS(c) · s + c · dS(s), where s ∈ S(M) and c ∈ Cl(M).
On a semi-Riemannian manifold M, if S(M) is any bundle of
Clifford modules, we can define the Dirac operator associated to
this bundle as the operator D : Γ∞(M,S(M)) → Γ∞(M,S(M))
defined (locally in a chart) by:

Ds :=
∑
k

d
S(M)
ek (s) · ek .

This amount to say that the Dirac operator is obtained by
contracting the covariant derivative via the “Clifford
multiplication”.
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Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

Spectral Triples 1.

We are now ready to pass to the non-commutative side! The
fundamental theorem of A. Connes states that if we are given a
spin Riemannian manifold, then we can reconstruct all of the
geometry of the manifold from the following set of algebraic data:

1 The Hilbert space L2(M,S(M)) of square integrable sections
of the spinor bundle;

2 The Dirac operator D : L2(M,S(M)) → L2(M,S(M));

3 The algebra C∞(M) of smooth functions on the manifold M.
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Spectral Triples 2.
The last step in non-commutative differential geometry, following
A. Connes, is the definition of a non-commutative analogue of a
spinc , compact, finite dimensional manifold. This should be given
by the so called Connes’ spectral triple (A,H,D) where A is an
involutive algebra of operators on the Hilbert space H (A plays the
role of the algebra of smooth functions on the manifold, and H the
role of the square integrable sections of the spinor bundle) and a
self adjoint operator D on H (that mimic the Dirac operator)
satisfying the following axioms:

- D has compact resolvent.

- [D, a] ∈ B(H) for all a ∈ A.

- There exists an antilinear involution J : H → H such that:
- [a, JbJ] = 0 for all a, b ∈ A.
- [[D, a], Jb∗J] = 0 for all a, b ∈ A.

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Quantum Topology = C∗-algebras.
Quantum Measure Theory = von Neumann Algebras.
Quantum Hermitian Vector Bundles = Hilbert-C∗-modules.
Quantum Differential Forms = Hochschild Homology.
Quantum Spin Manifolds = Connes’ Spectral Triples.

Spectral Triples 3.

If we are given the full structure contained in a Connes’ spectral
triple, many of the difficult construct of non-commutative
geometry simplify. For example, Connes has proved that we have
an explicit formula to derive the metric space structure of the
manifold M using only the Dirac operator:

d(x , y) := sup{|a(x)− a(y)| | a ∈ A, ‖[D, a]‖ ≤ 1}.

This mean that the distance between two points of the manifold
can be extracted from the knowlege of the spectral triple.
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Spectral Triples 4.

The differential da of a “function” from A can be represented on
the Hilbert space H by the commutator with the Dirac operator:

da = i [D, a]

and it turns out that in the same way all the differential forms
(i.e. the elements of the universal differential algebra Ω(A)) can be
directly expressed (but only as a A-module not as a differential
algebra!) with operators in the Hilbert space H in the following
natural way:

a0δa1 · · · δan 7→ (−)na0[D, a1] · · · [D, an].
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Spectral Triples 5.

Finally it is possible to introduce a non-commutative theory of
integration of differential forms on the manifold M again making
use of the Dirac operator alone. In this case the original
formulation of A. Connes makes use of the very technical theory of
Dixmier traces over algebras of operators, anyway as proved by
A. Jaffe and collaborators there exist a very simple physical
appealing formula for such an integral given by:∫

ω := lim
h→0+

Tr(ωe−hD2
)

Tr(e−hD2)
,

where ω is a differential form and “Tr” is the ordinary trace of
operators on the Hilbert space H.
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Spectral Triples 6.

Many other important things must be said about non-commutative
geometry, but the purpose of this notes is to give only the most
elementary ideas as they are addressed mainly to help those who
already have problems with the “commutative” side of the matter!!
Hence we leave any further excursion in the non-commutative land
to the study of some of the references reported in the guide to the
bibliography.
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Applications to Quantum Physics.

Operator Algebras in Physics.

Since the very beginning of the subject, operator algebras have
always been strongly linked with physics. In particular we can say
that classical physics is essentially described by commutative
algebras and that quantum physics is described by
non-commutative algebras, so that the passage from classical to
quantum physics is the passage from the study of commutative to
more general noncommutative algebras. Let us justify a bit (in a
very intuitive way!) the previous statement.
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Classical Physics = Commutative Algebras 1.

In physics, we make experiments to get information from a system.
We can imagine a physical system as a part of the real world about
which we do not know anything at the beginning (if you want,
think the system enclosed in a black box). Each experimental
apparatus, will give us (when acting on the system) a result that is
a real number that we call the measure of the physical quantity
operationally defined by the instrument.
The physical system in the box can exist, usually, in many different
ways (that we will call pure states of the systems). When I measure
a physical quantity (called an observable) I will get different real
numbers corresponding to different pure states of the system.
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Classical Physics = Commutative Algebras 2.

From a mathematical point of view, an observable is a function
from the space of pure states of the system to the real numbers. If
S is the space of states, then the observables are elements of the
∗-algebra C 0(S; C): they are the elements f ∈ C 0(S; C) such that
f = f having real values (self adjoint elements). In classical
physics a state can also be seen as a function that associate to
each observable f a real number f (x). The possible values of an
observable are the possible values of f . [α is a possible value for f
if and only if α− f is not an invertible function].
The set {α ∈ C | α− f is not invertible} is called the spectrum of
f . So the possible values of an observable f are the elements of
the spectrum of f in the algebra of observables.
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Classical Physics = Commutative Algebras 3.

If I know that the system is in a pure state, I know everything
about the system, because I know all the exact values of the
observables: f (x), g(x), . . .
If the system is not in a pure state (a state in which I have the
maximal obtainable information about the system) it is only
because of our ignorance, we can make further measurements and
get more information on the system until we identify its pure state.
In practice, all the observables have a definite value at each istant
of time. If I measure f and then g , the information that I get from
the first measurement of f is not lost: I can measure again f and I
get again the same value. In fact (if the experiments are perfomed
“with care”) the system is always in the same state that is
“approximately” not affected by the measurements so that
f · g = g · f . Classical physics is commutative!
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Quantum Mechanics = Non-commutative Algebras 1.

In quantum physics, when I measure a physical quantity, I disturb
the system in a direct way, so that the state of the system will not
be the same. If I measure f and then g , the measure of g modify
the state of the system and if I measure f again, maybe I get
another value. Information can be lost by making further
observations!
Furthermore, the system can be in a pure state (a state of
maximum information) without having a definite value of an
observable so that if I measure this observable I will get different
values: in this sense quantum mechanics is intrinsecally
probabilistic.
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Applications to Quantum Physics.

Quantum Mechanics = Non-commutative Algebras 2.

The observables in quantum mechanics are elements of a non
commutative ∗-algebra because in general f · g 6= g · f . As in
classical mechanics, observables are self-adjoint elements of the
algebra: f = f ∗ (because self adjoint elements have real spectrum)
and the possible values of an observable f are again the elements
of the spectrum of f : {α | α− f is not invertible}.
In the same way as before, the states are linear functionals ω on
the ∗-algebra of observables. From the technical point of view,
“bounded observables” are self adjoint elements of a C∗-algebra A
and states of the system are positive, normalized, linear functionals
on A i.e. functions ω : A → C such that:

ω(αf + βg) = αω(f ) + βω(g), ω(f ∗f ) ≥ 0, ω(1A) = 1.
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Applications to Quantum Physics.

Quantum Mechanics = Non-commutative Algebras 3.

A famous theorem of Gel’fand-Năımark-Segal associates to a state
of a C∗-algebra a concrete C∗-algebra of linear operators acting on
a Hilbert space. This is why we can say that quantum mechanics is
essentially the theory of selfadjoint infinite dimensional matrices in
Hilbert space.
Another theorem of Von Neumann says that this representation
does not depend on the state ω that we use for the
Gel’fand-Năımark-Segal construction if we start with the
C∗-algebra of quantum mechanics of a system with a finite number
of degree of freedom.
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Quantum Mechanics = Non-commutative Algebras 4.

Big problems are still open in the foundations of quantum
mechanics of systems with infinite degrees of freedom i.e. in the
fields of quantum statistical mechanics and quantum field theory.
It is here that the formalism of C∗-algebras is really very useful
(because here the von Neumann theorem is no more true and so
we cannot work on a fixed Hilbert space).
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Applications to Quantum Physics.

Special Relativity 1.

In the study of (relativistic) quantum field theory there are also
other complications coming from the fact that the physical theory
is actually trying to unify quantum mechanics with special
relativity. Let us examine some of the features of A. Einstein’s
“special theory of relativity”.
The special theory of relativity is based on the fact that in our
world there exists a maximum speed with which it is possible to
exchange signals (actually the speed of light signals) so that it is
not possible to transmit information in an instantaneous way
between points in space. This principle together with the principle
of relativity (all the inertial observers performing the same
experiment will get the same result) tells us that it is impossible to
give an absolute meaning to the simultaneity of two events.
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Applications to Quantum Physics.

Special Relativity 2.

In this way it is not possible to give to the events an absolute time
coordinate: this coordinate depend on the observer in the same
way as the other space coordinates (it does not have any meaning
to say that two events took place with the same space coordinates
because the coordinates depend on the observer!). Under this
point of view, the time coordinate of a physical event is not a
preferred one, but it can be treated exactly in the same way as all
the other three space coordinates of the event: this is why in
special relativity we speak about space-time.
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Applications to Quantum Physics.

Special Relativity 3.

In special relativity, we assume that (fixed a base point) space-time
can be described by a four dimensional vector space M (the
number of dimensions being equal to the number of coordinates
that are necessary to locate an event: three space coordinates
x , y , z and one time coordinate t).
Furthermore, since the speed of light (the limit speed) should be
the same for all the observers, we get that the quantity
t2 − x2 − y2 − z2 does not depend on the observer and can be
used to define on the vector space M an inner product
g : M×M → R with signature (+1,−1,−1,−1):

g(v1, v2) := t1t2 − x1x2 − y1y2 − z1z2, ∀v1, v2 ∈ M,

where v1 := (t1, x1, y1, z1) and v2 := (t2, x2, y2, z2).
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Special Relativity 4.

The vector space M equipped with this semi-definite inner product
is called Minkowsky space-time. Every inertial observer will assign
to the points v in this space coordinates (t, x , y , z) (choosing an
orthonormal basis for the Minkowsky space). The coordinates of
an event depend on the observer, but the inner product not and
can actually be used to define the absolute future, past and present
of a given event. So, with respect to the origin 0M of the
Minkowsky space:

I the future points (those that can be reached by physical
signals travelling with speed inferior to the speed of light) are
those v such that g(v , v) > 0 (timelike separated) with
positive time coordinate;
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Special Relativity 5.

I the past points are those v such that g(v , v) > 0 (timelike
separated) with negative time coordinate;

I the point in the “present” are those spatially separated in the
sense that g(v , v) < 0;

I finally the points of the “light-cone” are those v such that
g(v , v) = 0 (lightlike separated).

Under the hypothesis that no signal can be sent with a speed
exceeding the light speed, points that are spatially separated
cannot influence each other (this is called the principle of locality).
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Applications to Quantum Physics.

Algebraic Quantum Field Theory 1.

In “algebraic (relativistic) quantum field theory”, we assume that
we can perform experiments on the physical system and that the
instruments performing the experiment will interact with the
system only in a localized region of space-time. Given a certain
region in space-time O, we can associate to it a C∗-algebra A(O)
of all the possible observables that we can measure performing
experiments “inside” O. In technical terms we are given a net of
C∗-algebras on the Minkowsky space.
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Algebraic Quantum Field Theory 2.

Some properties of this net of algebras are axiomatically imposed
in order to select the nets that are physically relevant:

I Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2). This property
(called isotony) simply says that the observables that we can
measure in a bigger region are more.

I Locality: if O1 and O2 are spatially separated, the
observables of A(O1) commute with the observables in
A(O2). This property (called locality) encodes the fact that if
O1 and O2 are spatially separated, then no signals can be sent
between O1 and O2 so that if we disturb the system in O1

performing an experiment there, nothing will change for those
experiments that are going on in O2 so that A(O1) and
A(O2) are compatible observables.
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Applications to Quantum Physics.

Algebraic Quantum Field Theory 3.

I Covariance: there exists a representation α of the Poincaré
group P as a group of automorphism of the algebra of
observables such that: αg (A(O)) = A(gO).
The inertial observers that look at the system in Minkowsky
space, will label the events with different coordinates. A
change of coordinates (or a change of observer) correspond to
a so called Poincaré trasformation of the Minkowsky space
(translations, rotations and boosts). Each observer will have
his experimental apparata to measure physical quantities so if
g ∈ P is a transformation that relates two different observers,
we can associate with it a transformation of the set of
observables αg that will tell us how the observables of the
second observer are related to the observables of the first.
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Algebraic Quantum Field Theory 4.

I Existence of the vacuum: there exists a state ω : A → C
that is invariant under Poincaré transformations:
ω(αg (a)) = ω(a), for all observables a, and such that the
energy of the system is positive (spectral condition).
From the technical point of view the energy is defined to be
the generator of the one-parameter group of transformations
given by the time translations in the GNS representation
associated to the vacuum state ω.
From the physical point of view we impose the existence of a
state of the system (the “empty” state). In this state we
cannot distinguish any preferred directions, positions or
uniform motions (the state is invariant under the Poincaré
group) and in this state the system has the lowest energy, that
we impose to be anyway non negative.
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Who Does Non-commutative Geometry and Where.
A Guided Tour of the Bibliography.

Who Does NCG and Where 1.

[The following list is necessarily an extremely partial one and its
only aim is to give to the newcomer in the field geographical
coordinates and some well known names in order to perform a
search of relevant papers on internet archives (http://xxx.lanl.gov)
or in libraries].

I The absolute leader in the research on non-commutative
geometry is still its genial creator: Alain Connes in College de
France and IHES - Paris - France (and now also Vanderbildt
in USA).
A strong group of A. Connes’ colleagues (among them
G. Skandalis, J.-L. Sauvageot, M. Karoubi) are in Paris VI and
Paris VII universities.
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Who Does NCG and Where 2.

I Another great center especially for the application of
non-commutative geometry to physics is CPT in Marseille
(France) where, under the enthusiastic leadership of Daniel
Kastler, generations of mathematical physicists have been
initiated to the mysteries of algebraic quantum field theory
and now to non-commutative geometry. The most active
researchers in Marseille are now, R. Coquereaux, T. Schüker
(non-commutative geometry and standard model), C. Rovelli
(non-commutative geometry and quantum gravity),
B. Iochum.
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Who Does NCG and Where 3.

Other people in France include, among the many others:

I J. Renault (in Orleans) that has been studying the application
of non-commutative geometry to groupoids;

I J.L. Loday (in Strasbourg) that is the specialist about cyclic
homology;

I in Orsay the group of mathematical physicists directed by
M. Dubois-Violette and J. Madore has developed a
“derivation based” version of non-commutative geometry in
some way different from the original one of A. Connes.

I T. Fack and M.-T. Benameur (in Lyon) work on
“Von Neumann variants” of Connes’ spectral triples.
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Who Does NCG and Where 4.
In Germany there are two important centers for non-commutative
geometry:

I The Max Planck Institute in Bonn is one of the most
interesting places where to learn non-commutative geometry.
M. Marcolli (now the main collaborator of A. Connes) and
Y. Manin are the main researchers there.

I In Münster, J. Cuntz, one of the pioneers of non-commutative
geometry, leads a strong research group.
.

Always in Germany there are two big groups of people mainly
involved in algebraic quantum field theory: one located in
Hamburg, where the school of R. Haag is now under the direction
of K. Fredhenhagen, and one in Göttingen where the school of
H.J. Borchers is now under the supervision of D. Buchholtz.
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Who Does NCG and Where 5.
In Italy, the main place for operator algebras and non-commutative
geometry and especially algebraic quantum field theory is Rome
where the main professors involved are S. Doplicher, J.E. Roberts,
R. Longo, L. Zsido, C. D’Antoni, D. Guido, T. Isola, F. Fidaleo,
C. Pinzari. Other italian people involved in non-commutative
geometry are: G. Landi (Trieste), F. Lizzi (Napoli).
In Poland S.L. Woronowicz (in Warsaw) is one of the pioneers in
the application of operator algebras to quantum groups; A. Sitartz
(now at Jagiellonian - Krakow) works on the applications of
non-commutative geometry to particle physics; W. Heller (now in
Vatican City) is using non-commutative geometry in general
relativity.
In Japan, under the leadership of H. Araki, there are now many
mathematicians involved in operator algebras and their applications
in most of the universities (especially in RIMS). Some of the most
famous are Y. Kawahigashi and M. Izumi in Tokio.
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Who Does NCG and Where 6.

In United States there are many people scattered in several centers:

I in Vanderbilt: D. Bisch and A. Connes have developed the
main center in non-commutative geometry
[www.math.vanderbilt.edu/ñcgoa] where every year there are
introductory courses for beginners as well as state of the art
workshops. Members of the group include D. Bisch,
A. Connes, G. Kasparov, G. Yu.

I in Philadelphia: R. Kadison, M. Pimsner (operator algebras);

I in Penn State: P. Baum, N. Higson, V. Nistor, A. Ocneanu,
J. Roe (ncg);

I in Atlanta (Georgia Insitute of Technology): J. Bellissard (ncg)

I in Ohio - Columbus: H. Moscovici (ngc, cyclic homology);
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I in Berkeley: W. Arveson, V. Jones, D. Voiculescu (operator
algebras),
M.A. Rieffel, M. Wodzicki (non-commutative geometry);

I in California - Davis: A. Schwarz (ngc in physics);

I in Harvard: A. Jaffe (ncg in quantum field theory);

I in Los Angeles: M. Takesaki, S. Popa, D. Shlyakhtenko
(operator algebras);

I in Reno: B. Blackadar (K -theory), A. Kumjian;

I in Riverside: M. Lapidus (ncg of fractal sets);

I in Evanston: B. Tsygan (ncg)

I in Gainesville (Florida): S.J. Summers (algebraic quantum
field theory).

Paolo Bertozzini C∗-algebras and Non-commutative Geometry.



Introduction.
Quantum Mathematics.

Applications and Open Problems.
Conclusions.

Who Does Non-commutative Geometry and Where.
A Guided Tour of the Bibliography.

Who Does NCG and Where 8.

Operator algebras are now studied in many places at very high
level. Just to mention a few names:

I In Denmark (Copenhagen - Odense) U. Haagerup,
M. Rørdam, R. Nest, G. Elliott, A. Rennie (ncg).

I In Norway (Oslo - Trondheim) O. Bratteli, M. Landstadt,
C. Skau.

I In Ireland (Cork) G. Murphy.

I In Great Britain (Cardiff) D. Evans; (Manchester) R. Plymen.

I In Romania (Bucharest) S. Strătilă.

I In Holland (Amsterdam) N. Landsman, M. Müger.
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Who Does NCG and Where 9.

In Australia the main center for operator algebra is Newcastle
(I. Raeburn, W. Szymanzig) and there are strong research groups
in Adelaide (V. Mathai, F. Sukochev) and most of all in Canberra -
ANU (A. Carey, B. Wang).
In Canada several people in operator algebra and non-commutative
geometry work in Victoria (J. Phillips, M. Laca) in Western
Ontario (M. Khalkhali) in Waterloo (K. Davidson)
People with research interests in non-commutative geometry are
working also in Costa Rica (J.C. Varilly), in Lebanon
(A. Chamseddine in Beirut), Brazil (R. Exel), Iran (M. Khalkhali
now in Western Ontario - Canada), Vietnam (Do Ngoc Diep), . . .
Here in Thailand we have a small group of researchers already:
P. Chaisuriya (Mahidol), S. Utudee (Chiang Mai) and our group in
Bangkok.
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A Guided Tour to the Bibliography 1.

In the following we list only some references that we think can be
important as learning sources of the basic techniques and as
general introductions to the subject treated in this workshop. For
books we refer to last printed edition.
[Some of the references contained in the following are also
available for free on the internet archives in Los Alamos:
http://xxx.lanl.gov
and in this case the relative reference number is given in square
brackets].
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A Guided Tour of the Bibliography 2.

The “Bible” of Noncommutative Geometry is represented by the
famous Alain Connes’ book (now available on-line):

I A. Connes,
Noncommutative Geometry,
Academic Press (1994).

This is not a paedagogical book, it is mainly a masterpiece of
written mathematics that can be used much more as font of
inspiration for future work as most of the proofs are not contained
in the book!
A new book by A. Connes and M. Marcolli is (now November
2006) in preparation.
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A Guided Tour of the Bibliography 3.

There are now several more or less introductory expositions
devoted to non-commutative geometry: the most comprehensive
graduate level textbook available is:

I J.M. Gracia-Bondia, H. Figueroa, J.C. Varilly,
Methods of Noncommutative Geometry,
Birkhäuser (2001).

The most elementary reference is still the book by G. Landi:

I G. Landi,
An Introduction to Noncommutative Spaces and Their
Geometry, [hep-th/97801078]
Springer Verlag (1997).
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An alternative good on-line introduction to some aspects of
non-commutative geometry is

I M. Khalkhali
Very Basic Noncommutative Geometry
[math.KT/0408416] (2004).

A huge list of examples of spectral triples is provided in

I A. Connes, M. Marcolli
A Walk in the Noncomutative Garden [math.QA/0601054]
(2006).

Excellent dowloadable material can be found at the Warsaw
University “Noncommutative Geometry and Quantum Groups”
page: [http://toknotes.mimuw.edu.pl].
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A Guided Tour of the Bibliography 5.
Other very good introductions are given by (or contained in):

I J. Varilly, J. Gracia-Bondia,
Connes’ Noncommutative Differential Geometry and the
Standard Model, J. Geom. Phys. 12 223-301 (1993).

I J. Varilly,
An Introduction to Noncommutative Geometry,
Summer School “Noncommutative Geometry and
Applications” Lisbon [physics/9709045] (1997).

I R. Coquereaux,
Noncommutative Geometry and Theoretical Physics,
J. Geom. Phys. 6 425-490 (1989).

I R. Coquereaux,
Noncommutative Geometry: a Physicist’s Brief Survey,
J. Geom. Phys. 11 307-324 (1993).
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I J. Fröhlich, O. Grandjean, A. Recknagel,
Supersymmetric Quantum Theory and Differential
Geometry, [hep-th/9612205]
Commun. Math. Phys. 193 527-594 (1998).

I J. Fröhlich, O. Grandjean, A. Recknagel,
Supersymmetric Quantum Theory and Noncommutative
Geometry, [math-ph/9807006],
Commun. Math. Phys. 203 119-184 (1999).

Another introduction to non-commutative geometric methods from
a point of view different from that of A. Connes:

I J. Madore,
An Introduction to Noncommutative Differential
Geometry and Its Physical Applications, CUP (1999).
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For Cyclic Cohomology and K -Theory:

I J.L. Loday,
Cyclic Homology,
Springer (1992).

I J. Brodzki,
An Introduction to K -Theory and Cyclic Cohomology,
[funct-an/9606001].

I N.E. Wegge Olsen,
K -Theory and C∗-Algebras a Friendly Approach,
Oxford University Press (1993).
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Easy and fast introductions to functional analysis as it is used for
operator algebras are:

I V.S. Sunder,
An Invitation to Von Neumann Algebras,
Springer (1987),

I G.K. Pedersen,
Analysis Now,
Springer (1995).
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For the subject of operator algebras several books can be
recommended. Good textbooks are:

I R.V. Kadison, J.R. Ringrose,
Fundamentals of the Theory of Operator Algebras,
Vol. I - II, American Mathematical Society (1997).

I G.J. Murphy,
C∗-Algebras and Operator Theory,
Academic Press (1990).

I O. Bratteli, D.W. Robinson,
Operator Algebras and Quantum Statistical Mechanics,
Vol. I-II, Springer (1987-1997).

I S. Strătilă, L. Zsido,
Lectures on von Neumann Algebras,
Abacus Press (1979).
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Complete reference books are:

I M. Takesaki,
The Theory of Operator Algebras,
Vol. I-II-III, Springer (2001-2002).

I B. Blackadar,
Operator Algebras,
Springer (2006).

For Tomita-Takesaki theory, beside Takesaki above, the best
reference available is:

I S. Strătilă,
Modular Theory in Operator Algebras,
Abacus Press (1981).
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For the subject of algebraic relativistic quantum field theory the
basic reference book is:

I R. Haag,
Local Quantum Physics,
Springer (1996).

An easier introduction is:

I H. Araki,
Mathematical Theory of Quantum Fields,
Oxford University Press (2000).

For a more mathematical oriented presentation:

I H. Baumgärtel, M. Wöllemberg,
Causal Nets of Operator Algebras,
Akademie Verlag (1992).
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For the background material on differential geometry and topology:

I M. Nakahara,
Geometry, Topology and Physics,
Institute of Physics Publishing (1990).

For Clifford algebras and Dirac operators:

I H.B. Lawson, M.L. Michelsohn,
Spin Geometry,
Princeton University Press (1989).

I N. Berline, E. Getzler, M. Vergne,
Heat Kernels and Dirac Operators,
Springer Verlag (1992).
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Conclusions 1.

Finally, I would like to say a final word of motivation about the
goals of this researches (addressed mainly to the young students
and to those who may wonder if it can be valuable to undertake
the effort to learn something on this new subject): why are people
doing this kind of mathematics?
For sure not for the possibility of easy technological applications
. . .
Not because it is an easy field for publications: actually operator
algebras require at least some years of study only to grasp the
fundamental techniques and, in this field, people usually publish at
a lower rate compared to other branches of mathematics (but
publications tend to have a stronger impact on the mathematical
community).
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Conclusions 2.

Maybe most of the people (especially physicists or “platonic”
mathematicians) are interested in this questions because of a deep
quest for the “true” about nature (as you know, in the west,
philosophy has always been very much concerned with the absolute
true under the surface of phenomena!), but actually this is only one
part of the story (as for me, I don’t even think about the possible
existence of a final “true” physical theory that we can discover).
So why to study non-commutative geometry and its applications to
fundamental physics?
Well . . . because of “beauty”! These ideas are really very beautiful
and elegant! Thailand is well known to be a place where people
are great estimators of the beauty and elegance everywhere and I
am sure that somehow (with some effort of course!) you will be
able to percive the subtle fascination of these ideas . . .
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Conclusions 3.

Actually the final goal is to enjoy ourselves and our friends with
original, new wild ideas (space-time, mind, logic, physics, geometry
and all that): there is no better way to do so than to travel and
play in a world of amazing things . . .
For those who continue to ask for the “true” or for the easy
practical or empyrical application, I can only recall the wonderful
words of Dirac:

“If an idea is beautiful it will very likely be also true” . . .

Thank You for Your Kind Attention!
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Used Software.

The following file has been realized in AMS-LATEX2ε using the
beamer LATEX-macro.
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