

Continuous Optimization Problems
Typical LP/NLP:
P: $\min f(x)$
s.t. $h_j(x) = 0, j = 1,, m_1$
$g_{j}(x) \leq 0, j = 1,, m_{2}$
$l_i \leq x_i \leq u_i, i = 1, \dots, n, (\mathbf{x} \in \mathbb{R}^n)$
Where some or all of f , h_i , and/or g_i are nonlinear.
LP: If all f, h_p and g_j are all linear/affine, then P is LP
NLP: If at least one of f , h_j , or g_j is nonlinear, P is NLP
Classification:
Unconstrained NLP: $m_1 = 0$; $m_2 = 0$, $l_i = -\infty$, and $u_i = +\infty$
Equality constrained LP/NLP: $m_1 > 1$; $m_2 = 0$
Inequality constrained LP/NLP: $m_1 = 0; m_2 > 1$
Mixed inequality constrained LP/NLP: $m_1 > 1$; $m_2 > 1$
Bounded LP/NLP: $m_1 = 0$; $m_2 = 0$, $l_i > -\infty$, and $u_i < +\infty$

CASE Characterizing Optimal Points: Unconstrained Problems

If at $\mathbf{x}^* \in \mathbb{R}^n$, i) $\nabla f(\mathbf{x}^*) = 0$ ii) $\mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} > 0$ for $\mathbf{h} \neq 0$ in \mathbb{R}^n (i.e. $\nabla^2 f(\mathbf{x}^*)$ is pd) Then \mathbf{x}^* is a strict local minimizer of $f(\mathbf{x})$. More \mathbf{x}^* is a unique global minimizer of $f(\mathbf{x})$ if $f(\mathbf{x})$ is convex. Note: Results are based on analysis of Taylor's series expansion: $f(\mathbf{x}^* + \mathbf{h}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*) \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)_{\text{Inter-order terms}}$ (6.49.9)

CASE **Tests for Sign Definiteness of Matrix** The "sign definiteness" properties of a symmetric matrix are given by the following definitions: The symmetric matrix A is • positive definite (pd) if and only if $\mathbf{h}^T \mathbf{A} \mathbf{h} > 0$ for <u>all</u> $\mathbf{h} \in \mathbb{R}^n$, $\mathbf{h} \neq \mathbf{0}$ • positive semidefinite (psd) if and only if $\mathbf{h}^T \mathbf{A} \mathbf{h} \geq 0$ for all $\mathbf{h} \in \mathbb{R}^n$ • negative definite (*nd*) if and only if $\mathbf{h}^T \mathbf{A} \mathbf{h} \leq 0$ for <u>all</u> $\mathbf{h} \in \mathbb{R}^n$ $\mathbf{h} \neq \mathbf{0}$ • negative semidefinite (nsd) if and only if $\mathbf{h}^T \mathbf{A} \mathbf{h} \leq 0$ for <u>all</u> $\mathbf{h} \in \mathbb{R}^n$ • indefinite (id) if and only if $\mathbf{h}^T \mathbf{A} \mathbf{h} > 0$ for some $\mathbf{h} \in \mathbb{R}^n$ and $\mathbf{h}^T \mathbf{A} \mathbf{h} < 0$ for some $\mathbf{h} \in \mathbb{R}^n$ 6-Aug-09 14

<text><text><text><equation-block><text><text><text><equation-block><text>

	nvexity of a Function
Given a function $f(\mathbf{x})$,	$\mathbf{x} \in \mathbb{R}^{n}$,
Gradient of $f(\mathbf{x}) = \nabla f(\mathbf{x})$	$\mathbf{f}(\mathbf{x}) = \mathbf{g}^{T} = \left(\frac{\partial \mathbf{x}f(\mathbf{x})}{\partial x_{1}},, \frac{\partial \mathbf{x}f(\mathbf{x})}{\partial x_{n}}\right)$
	$ (\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial^2 x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdot & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\mathbf{x})}{\partial^2 x_2} & \cdot & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} \end{bmatrix} $
$Hessian \text{ of } f(\mathbf{x}) = \nabla^2 f$	$ (\mathbf{x}) = \begin{bmatrix} \partial x_1 \partial x_2 & \partial x_2 & \partial x_2 & \partial x_2 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} & \vdots & \frac{\partial^2 f(\mathbf{x})}{\partial^2 x_n} \end{bmatrix} $
$f(\mathbf{x})$ is convex	\Leftrightarrow its Hessian is <i>psd</i> for all $\mathbf{x} \in \mathbb{R}^n$
$f(\mathbf{x})$ is strictly conv	$x \leftarrow \text{its Hessian is } pd \text{for all } \mathbf{x} \in \mathbb{R}^n$
$f(\mathbf{x})$ is concave	\Leftrightarrow its Hessian is <i>nsd</i> for all $\mathbf{x} \in \mathbb{R}^n$
$f(\mathbf{x})$ is strictly cond	eave \Leftarrow its Hessian is <i>nd</i> for all $\mathbf{x} \in \mathbb{R}^n$
$f(\mathbf{x})$ is not convex	nor concave \Leftrightarrow its Hessian is <i>id</i> for all $\mathbf{x} \in \mathbb{R}^n$

	Interval Reduction	Approximation Methods
Derivatives not available	 Golden Section GSS Fibonacci Quadratic Interpolation Brent's method Others: Bisection, Equal Interval, etc 	
Derivatives available	 Bisection 	 Newton's Method of False Position Cubic Interpolation

EVEN IN SPACE OF SET UP
(*f*
$$(\alpha)$$
 is not available.
(*f* (α) is not available.
(*f* $(\alpha$

o men la co	Brack		Procedure It $\alpha_1 = 0$ and $\Delta = 0.2$.
k	$\alpha_{k+1} = \alpha_k + 2^{k-1}\Delta$	$\phi(\alpha_k)$	Comment
1	0	10	$\alpha_1 = 0$
2	0.2	8.3733	$\phi(\alpha_2) < \phi(\alpha_1) \Rightarrow \text{retain} + \Delta$
3	0.6	6.61	
4	1.4	6.1267	
5	3.0	11.5	$\phi(\alpha_2) < \phi(\alpha_1) \Longrightarrow$ step back
try	2.2	7.9650	
Since	$\alpha_{try} = \alpha_4 + 2$ $\phi(\alpha_4) < \phi(\alpha_{try}) \Longrightarrow \text{or}$		acket is [0.6, 1.4, 2.2]
6-Aug-09		Vira Chankong EECS. CWRU	59

SCHI		olden	Sec	tion	searc	:h (G	iSS)
Exai	mple: Given	$\phi(\alpha) = 2$	$e^{-2\alpha} + \alpha$,	and $\varepsilon =$	0.1 , and	1	
the i	nitial bracke	$\mathbf{t}[a_1,b_1]$	= [0,1.2	707] ⇒	$L_1 = b_1$	$-a_1 = 1$	2707
k	$L_{k+1} = \tau^k L_1$	a _k	x_k	y_k	b_k	$f(x_k)$	$f(y_k)$
1	.7853	0	.4854	.7853	1.2707	1.2429	1.2011
2	.4854	.4854	.7853	.9706	1.2707	1.2011	1.2577
3	.2999	.4854	.6707	.7853	0.9706	1.1937	1.2011
4	.1854	.4854	.5999	.6707	0.7853	1.2024	1.1937
5	.1145	.5999	.6707	.7144	0.7853	1.1937	1.1936
6	.0708	.6707	.7144	.7415	0.7853	1.1936	1.1954
		<ε⇒	STOP				
	inal bracket	- / /-		· · · · · ·			0 =0.64
⇒ a	good estima	te of x^* =	= 0.7144	or (0.67	07+0.74	15)/2 =	0.7061
6-Aug-C	09		Vira Cha EECS. C				66

We can solve for c_0 , c_1 , c_2 and find a minimizer y_k of $q(\alpha) = c_0 + c_1 \alpha + c_2 \alpha^2$ (by finding the root of $q'(\alpha) = 0$) to get:

$$y_{k} = \frac{1}{2} \left(\frac{(b_{k}^{2} - c_{k}^{2})\phi(a_{k}) + (c_{k}^{2} - a_{k}^{2})\phi(b_{k}) + (a_{k}^{2} - b_{k}^{2})\phi(c_{k})}{(b_{k} - c_{k})\phi(a_{k}) + (c_{k} - a_{k})\phi(b_{k}) + (a_{k} - b_{k})\phi(c_{k})} \right)$$

We can now check whether we can use y_k to reduce the interval and form a smaller bracket e.g. if $a_k < y_k < x_k$ and is not too close to any either

 $a_k \text{ or } x_k \text{ and if } \phi(y_k), > \phi(x_k) \text{ then the new bracket}$ is $[y_{k'}x_{k'}b_k]$ (i.e. $[a_{k+1'}x_{k+1'}b_{k+1}] \leftarrow [y_{k'}x_{k'}b_k]$)

```
6-Aug-09
```

Vira Chankong EECS. CWRU 71

Score of the second sec	CASE THE REPORT HOLD OF HEIMERS IN Bisection Method (when $\phi'(\alpha)$ is available)
0:	Given an initial bracket $[a_1,b_1]$ and the interval of uncertainty ε
	(Since this is a bracket $\phi(a_k) < 0$ and $\phi(b_k) > 0$.)
1:	For k = 1,2,3,
	DO
	Compute midpoint $x_k = (a_k + b_k)/2$ and $\phi'(x_k)$
	If $\phi'(x_k) < 0$, set $a_{k+1} = a_k$; $b_{k+1} = x_k$
	If $\phi(x_k) > 0$, set $a_{k+1} = x_k$; $b_{k+1} = b_k$
	UNTIL
	$ \phi(\mathbf{x}_{\mathbf{k}}) < \varepsilon_1 \text{ or } a_{\mathbf{k}} - b_{\mathbf{k}} < \varepsilon_2$
2:	RETURN
	the final bracket $[a_k, b_k]$ and $\alpha^* = (a_k + b_k)/2$ or x_k
NO	TE: Rate of reduction = 50% (best of all) compared with 32% of GSS
6-Aug	-09 Vira Chankong 76 EECS. CWRU

