CASE

Numerical Optimization

A Workshop
At
Department of Mathematics
Chiang Mai University
August 4-15, 2009
Instructor: Vira Chankong
Electrical Engineering and Computer Science
Case Western Reserve University
Phone: 216368 4054, Fax: 2163683123
E-mail: vira@case.edu

Session:

Introduction and Modeling

Successful practice of optimization depends on good modeling skills, understanding of efficient and reliable algorithms, selection and use of appropriate software, and careful interpretation of results.

Emphasis

Modeling: Framing a good optimization model from a descriptive problem.
Algorithms: Intuitive understanding, common sense and geometrical concepts of how algorithms work.
Computation: Emphasis on computer solutions, Software to be used: EXCEL SOLVER and LINGO, MATLAB, Software for Dynamic Optimization
Interpretation Based on conceptual/geometric understanding of methods; post-optimality and sensitivity analysis
Applications: Engineering designs, Statistical Decision Making, Systems Biology, Medical Imaging and Treatment Planning, Smart Energy Systems and Smart Power Grid

Goal

Sufficient understanding and computational skills in Numerical Optimization for

- Unconstrained and constrained continuousvariable problems LP, NLP
- Discrete Optimization--IP
- Dynamic Optimization
- Large-scale and Multiobjective Optimization

Course Outline

Session Topic

1.1 Modeling and Computer Solution

- Framing engineering problems as optimization problems, and developing appropriate optimization models
- Common-sense optimization
- Intro to EXCEL, LINGO, MATLAB modelers and optimizers,

Course Outline

Session

Topic

1.2 Numerical Optimization for Continuous Problems: Unconstrained methods

- Unconstrained methods for smooth problems
- Direction-finding (Steepest-Descent, Newton’s and variations, Quasi-Newton, Conjugate-Direction)
- Line search methods
- Applications: linear and nonlinear least-square problems. Neural Networks
- Unconstrained methods for nonsmooth problems
- Nelder-Mead’s Simplex method
- Genetic Algorithm
- Simulated Annealing
- Use of MATLAB to implement the algorithms
- Application on Engineering Design Cases

Course Outline

Session
 Topic

2.1 Numerical Optimization for Continuous Problems: Constrained Convex Optimization

- Overview of methods for LP and Convex Problems
- Simplex Method and Interior Point methods
- Other NLP optimization methods
- Successive Quadratic Programming (SQP)
- Quadratic programming
- Ideas and Algorithms
- Use of SQP in MATLAB, LINGO or PSPv. 5 to solve smooth constrained nonlinear programs
- Generalized reduced gradients (GRG2)
- Ideas and algorithms: Use of GRG2 in EXCEL's SOLVER
- Implementation and Application Issues

Course Outline

Week

Topic

2.2 Optimization of dynamic systems and nonsmooth cases

- Indirect Methods: Euler-Lagrange Eqn, Pontryagin’s Minimum Principle
- Dynamic Programming,
- Direct methods through optimality conditions leading to nonsmooth optimization Nonlinear programming methods: Sparse SQP and SNOPT and Dynamic Programming (DP)

CASE

school of encineening

Course Outline

Session Topic
3 Discrete/Combinatorial Optimization

- Applications and formulating LIP , Combinatorial Optimization models
- Overview of Methods for Combinatorial/Integer programs
- Exact methods
- Constraint Programming
- Heuristics
- Approximation methods such as Simulated Annealing and Genetic Algorithms

Course Outline

Week
Topic
4.1 Large-Scale, Global Optimization

- Partitioning-Decomposition techniques
- Lagrangian Relaxation, Surrogate Relaxation
- Decomposition-Coordination methods
- Approximation strategies

Course Outline

Session Topic

4.2 Multiobjective Optimization

- Overview of key concepts (Pareto-optimality, utility functions, etc.)
- Overview of methods for generating Paretooptimal solutions (weighting approach , constraint approach)
- Practical methods (Goal programming, Analytic Hierarchy Process -AHP)
- Application on Engineering Design Cases
- Wrap-up/Review

Do the right thing
 Do the thing right

Model Building

Purpose:

- To show how to formulate algebraic optimization models
- To show how to translate into a spreadsheet (EXCEL) model and to use SOLVER to find an optimal solution and to do sensitivity analysis
- To show how to use MATLAB-based modeler and solvers

Model Building

Optimization Problem:
\rightarrow Choose a best alternative from among those that are available.

Model Building

Alternative---Decision Variables

- We must be able to describe an alternative mathematically in an optimization model.
- The first thing we do in building an optimization model is TO DEFINE AN APPROPRIATE SET OF DECISION VARIABLES

Model Building

Examples:

- How to invest \$5,000 on four different types of stocks
- An alternative is a specific combination of the amount invested in each stock
- e.g. an alternative $x_{i}=$ fraction of $\$ 5000$ invested in Stock i: For example, for $x_{1}=0.4 ; x_{2}=0.5 ; x_{3}$ $=0.1 ; x_{4}=0$; imply
\$2,000 on stock $1, \$ 2,500$ on stock 2, and $\$ 500$ on stock 3 , and $\$ 0$ on stock 4

Model Building

Best:---Objective Function

- We must next know how to compare those alternatives, so that the "best" alternative can be chosen.
- Identify performance criteria or "objective functions"
- The problem becomes one of choosing the values of the decision variables that "optimize" the objective function.

Model Building

Examples:

- How to invest \$5,000 on four different types of stocks
- An objective: Maximize the expected return on the investment:
$\max f(x)=5000\left(r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3}+r_{4} x_{4}\right)$
or simply
$\max f(x)=r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3}+r_{4} x_{4}$

Model Building

2nd step in building an

 optimization model :- Identify the objective function to be optimized
- Express it as a function of decision variables

Model Building

Available ---Constraints

- Set of alternatives is usually not unrestricted
- Certain limitations or requirements will restrict our choice to within the constraint set or "the set of feasible solutions".

Model Building

In Stock Selection Example:

- Budget cannot exceed \$5,000

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 1
$$

- Risk level cannot exceed $\$ 0.5 / 1 \$$ invested

$$
\sigma_{1}^{2} x_{1}^{2}+\sigma_{2}^{2} x_{2}^{2}+\sigma_{3}^{2} x_{3}^{2}+\sigma_{4}^{2} x_{4}^{2} \leq 0.5^{2}
$$

- Non-negativity:

$$
x_{i} \geq 0, i=1,2,3,4
$$

Model Building

Final step in building an optimization model:

- Identify each restriction or limitation
- Express each restriction in terms of decision variables

CASE

Model Building

Steps:

1. Define a set of decision variables

Hints:

Ask: What can we manipulate control, or set the values? Or what decisions do we have to make?

- Minimum set of decision variables required
- A good model will not contain more variables than needed

Model Building

Steps:

2. Identify the objective function

Hints:

Ask: which criterion can you use to judge how good each option is? First state this in verbal form.
Ask: Whether you want to minimize or maximize the criterion?

Model Building

Steps:

3. Express the objective function in terms of the decision variables Hints:

- Explore additivity \& proportionality for a linear model
- Explore the following:
* Physical relationships
* Quantity-balance principle
* Logical or implied relationships
* Empirical modeling (such as regression etc.)

Model Building

Steps:
4. Identify each restriction or limitation

Hints:

Ask: What make our choice of options limited?

- Source of constraints:
* Physical limitations
* Quantity-balance or systems dynamics
* Logical restrictions
* External Restrictions
* Management-imposed restrictions

Model Building

Steps:

5. Express each constraint in terms of the decision variables

Hints:

- Explore additivity \& proportionality for a linear model
- Explore the following:
* Physical relationships
* Quantity-balance principle
* Logical or implied relationships
* Empirical modeling (such as regression etc.) $\min f(\mathbf{x})$

$$
\begin{aligned}
& \text { s.t. } h_{i}(\mathbf{x})=0, i=1, \ldots, l \\
& \qquad g_{j}(\mathbf{x}) \leq 0, j=1, . ., m \\
& \quad \mathbf{x} \in S \subseteq R^{n}
\end{aligned}
$$

For example, for the Stock Investment Problem:

$$
\max f(\mathbf{x})=5000 \sum_{k=1}^{4} r_{k} x_{k} \quad \text { maximize expected return }
$$

s.t.
$\sum_{k=1}^{4} \sigma_{k}^{2} x_{k}^{2} \leq 0.5^{2} \quad$ Risk level maintained at desired level:
$\sum_{k=1}^{4} x_{k} \leq 1 \quad$ Total investment is within budget:
$\underset{\text {-Aug-09 }}{x_{k} \geq 0, k=1,2,3,4 \quad \text { No negative investment (withdrawal) }}$

Cellular Phone Company Example:

A company plans to add more transmissionreception cells to its existing network. 8 possible sites as shown below:

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8
sq. miles	5	3	7	2.5	9	4	7	8
cost (\$M)	2	1.6	2.8	1	3.5	1.4	2.2	2.5

Investment Budget: \$7M
If site 5 is chosen, then site 2 must also be chosen.
If site $\mathbf{1}$ or $\mathbf{3}$ are chosen, then site $\mathbf{4}$ can not be chosen
Which sites to choose to maximize the total area?
Assume no overlap of coverage from each project site.

Case
Solution (Mobile Phone Co.):
Decision Variables:

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8
Site selectio	0	1	0	0	0	1	1	1

Objective Function:			Area covered:		22			
Constraints:								
Budget:	7.7	<=	8	\$M				
Sites 5 \& 2:	0	<=	1					
	F16	<=	C16					
Sites 1 \& 4:	0	<=	1					
	B16	<=	1-E16					
Sites 3 \& 4:	0	<=	1					
	D16	<=	1-E16					

CASE
Exercise: Steel Production:
Find a monthly production plan for steel 1 and steel 2 to minimize production cost.

	Steel 1		Steel 2	
	cost $\$ /$ ton	mins/ton	cost $\$ /$ /ton	mins/ton
Mill 1	$\$ 10.00$	20	$\$ 11.00$	22
Mill 2	$\$ 12.00$	24	$\$ 9.00$	18
Mill 3	$\$ 14.00$	28	$\$ 10.00$	30

The company has a contract to supply 500 tons of steel 1 and 600 tons of steel 2 to its customer per week. Each of the three mills can operate an 8 -hour per day for 5 days a week.

Case

Steel Example: LINDO Model

$$
\begin{aligned}
& \text { MIN } 10 x_{11}+12 x_{12}+14 x_{13}+11 x_{21}+9 x_{22}+10 x_{23} \\
& S T \\
& 20 x_{11}+22 x_{21}<12000 \\
& 24 x_{12}+18 x_{22}<12000 \\
& 28 x_{13}+30 x_{23}<12000 \\
& x_{11}+x_{12}+x_{13}>500 \\
& x_{21}+x_{22}+x_{23}>600
\end{aligned}
$$

CASE

Steel Example: LINGO Model

MODEL:
SETS:
MILLS/1..3/:MAXMINS;
STEELS/1..2/: DEMAND;
PAIR(MILLS, STEELS): COST, MINS, PROD;
ENDSETS
DATA:
COST=10, 11, 12, 9, 14, 10;
MINS $=20,22,24,18,28,30 ;$ MAXMINS $=12000,12000,12000$;
DEMAND=500,600;
ENDDATA
MIN=@SUM(PAIR:COST*PROD);
@FOR(STEELS(J): @SUM(MILLS(I): PROD(I,J)) >
DEMAND(J));
@FOR(MILLS(I):@SUM(STEELS(J): MINS(I,J)*PROD(I,J)) < MAXMINS(I));

Example 2: Inscribing circles

Inscribe 2 non-overlapping circles in quadrilateral with vertices $(0,0),(50,0),(40,20)$, and $(20,30)$ and maximize the total area of the two circles.

Algebraic Model:

Decision Variables

Center of each circle: $\quad\left(x_{i} y_{i}\right)=$ center of circle $i, i=1,2$
Radius of each circle:
$r_{i}=$ radius of circle $i, i=1,2$

Objective Function: Minimize waste
= area of rubber sheet - sum of areas of the two circles
\equiv maximize sum of areas of the two circles $=\pi\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)$
\equiv maximize $\quad r_{1}{ }^{2}+r_{2}{ }^{2}$
Constraints:
Center of each circle must be in the quadrilateral: For each $i, i=1,2$:

$$
\begin{aligned}
& 3 x_{i}-2 y_{i} \geq 0 \\
& x_{i}+2 y_{i} \leq 80 \\
& 2 x_{i}+y_{i} \leq 100 \\
& y_{i} \geq 0
\end{aligned}
$$

> | It turns out that these |
| :--- |
| constraints are redundant |
| and can be removed. |

The whole of each circle must be inside the quadrilateral: For each $i, i=1,2$: $100-2 x_{i}-y_{i} \geq r_{i} \sqrt{ } 5$

80- $x_{i}-2 y_{i} \geq r_{i} \sqrt{5}$
$0+3 x_{i}-2 y_{i} \geq r_{i} \sqrt{ } 13$
$y_{i} \geq r_{i}$
Nonoverlapping of the two circles:
$\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \geq\left(r_{1}+r_{2}\right)^{2}$
Nonnegativity: $\quad r_{i} \geq 0, i=1,2$

CASE

Circle Example: LINGO Model

MODEL:

max $=r 1 \wedge 2+r 2 \wedge 2$;
$-3 * \mathrm{x} 1+2 * \mathrm{y} 1+13 \wedge 0.5^{*} \mathrm{r} 1<0$;
$\mathrm{x} 1+2 * \mathrm{y} 1+5 \wedge 0.5 * \mathrm{r} 1<80$;
$2 * \mathrm{x} 1+\mathrm{y} 1+5 \wedge 0.5 * \mathrm{r} 1<100$; y1-r1>0;
$-3 * x 2+2 * y 2+13 \wedge 0.5 * r 2<0$;
$\mathrm{x} 2+2 * \mathrm{y} 2+5 \wedge 0.5 * \mathrm{r} 2<80$;
$2 * \mathrm{x} 2+\mathrm{y} 2+5 \wedge 0.5 * \mathrm{r} 2<100$;
y2-r2>0;
$(\mathrm{x} 1-\mathrm{x} 2)^{\wedge} 2+(\mathrm{y} 1-\mathrm{y} 2)^{\wedge} 2-(\mathrm{r} 1+\mathrm{r} 2)^{\wedge} 2>0$;
END

CASE

Circle Example: LINGO Model 2

MODEL:

sets:
circles/1..2/: x, y, r; lines/1..4/: a1, a2, a0; endsets
data:
$a 1=-3,1,2,0 ; a 2=2,2,1,-1 ; a 0=0,80$, 100, 0;
enddata
max=@sum(circles(i):r(i)^2)*3.1416;
@for(circles(j):@for(lines(i):a1(i)*x(j)+a2(i)*y(j)
$\left.+\left(\mathrm{a} 1(\mathrm{i})^{\wedge} 2+\mathrm{a} 2(\mathrm{i})^{\wedge} 2\right)^{\wedge} 0.5^{*} \mathrm{r}(\mathrm{j})<\mathrm{a} 0(\mathrm{i})\right)$);
$(x(1)-x(2))^{\wedge} 2+(y(1)-y(2))^{\wedge} 2-(r(1)+r(2))^{\wedge} 2>0 ;$
6.Aqu-09 END

CASE

Example 3: Police Scheduling
Number of polices required in each 6-hr period:

12am-6am	12			
6am-12pm	8			
12pm-6pm	6			
6pm-12am	15			

Police can be hired to work either 12 consecutives hours at $\$ 4 / \mathrm{hr}$ or 18 consecutive hours at $\$ 6$ per hour beyond 12 hours of work. Do police scheduling to meet daily requirements at minimum cost.

Case
Example 4: Alloy Production Planning
Requirements for steel production:
tensile strength at least $45,000 \mathrm{psi}$.
Steelco manufactures steel by combining two alloys.
Alloy 1 Alloy 2

Cost per ton	$\$ 190.00$	$\$ 200.00$			
\% silicon	2	2.5			
\% nickel	1	1.5			
\% carbon	3	4			
Tensile strength (ps	42000	50000			

Assume tensile strenth of a mixture of the two alloys can be determined by averaging that are mixed together.
E.G., tensile strength of 1 -ton mixture with $\mathbf{4 0 \%}$ alloy $1 \& 60 \%$ alloy 2 .
$=0.4(42,000)+0.6(50,000)$
Find production mix at minimum cost.

Tons of alloy i used to make 1 ton of steel:	0.625	0.375		
Objective function:				
Cost per ton of steel:		193.75		
Constraints:			\min	max
\% silicon achieved	2.1875		1.8	2.5
\% nickel achieved	1.1875		0.9	1.2
\% carbon achieved	3.375		3.2	3.5
tensile strength achieved	45000	$>=$	45000	
Sum of tons of alloys used:	1	$=$	1	

Case
Example 5: Ambulance Location
The time in minutes it takes an ambulance to travel from one district to another is shown below. The population of each district in thousands is also shown. Find districts to locate 2 ambulances so as to maximize the number of people who lives within 2 minutes of an ambulance.

			To District									
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	7	8		
		1	0	3	4	6	8	9	8	10		
	From	2	3	0	5	4	8	6	12	9		
	District	3	4	5	0	2	2	3	5	7		
		4	6	4	2	0	3	2	5	4		
		5	8	8	2	3	0	2	2	4		
		6	9	6	3	2	2	0	3	2		
		7	8	12	5	5	2	3	0	2		6-Aug-09
:---												

CASE

Solution (Ambulance District

Decision Variables:		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Locate in district i?	$\boldsymbol{X}_{\boldsymbol{j}}$	0	0	0	0	1	1	0	0
District i covered?	$\boldsymbol{Y}_{\boldsymbol{j}}$	0	0	1	1	1	1	1	1

Objective Function:
\# of people within 2 minutes of ambulance: 28
Constraints:

Number of ambulances

$$
2 \text { must equ: } 2
$$

CASE Example Hydropower Plant Scheduling

A hydroelectric power system consists of two dams and their associated reservoirs and power plants on a river as shown below.

Assume flow rates in and out through the power plants are constant within each month. If the capacity of the reservoir is exceeded, the excess water runs down the spillway and bypasses the power plant. A consequence of these assumptions is that the maximum and minimum water-level constraints need to be satisfied only at the end of the month. Other operating characteristics of the reservoirs and power plants are given in the table in the next slide, which all quantities measuring water are in units of cubic acre-feet (KAF) and power is measured in megawatt-hours (MWH).

Power can be sold at $\$ 5.00$ per MKH for up to 50,000 MWH each month, and excess power above that figure can be sold for $\$ 3.50$ per MWH. Formulate a mathematical programming model to find an optimal operation strategy for the reservoirs and power plants during March and April.

Case
school or encinerinc

