Algebra Problems July 1998

- 1. If H_1 and H_2 are subgroups of the abelian group G such that $H_1 \subseteq H_2$, prove that $H_1 + H_2 = H_2$
- 2. Suppose that H_1 and H_2 are subgroups of the abelian group G such that $G = H_1 \oplus H_2$ If K is a subgroup of G such that $K \supseteq H_1$, prove that $K = H_1 \oplus (K \cap H_2)$.
- 3. Assume that H_1 , H_2 , ..., H_n are subgroups of the abelian group G such that the sum $H_1 + H_2 + ... + H_n$ is direct. If K_i is a subgroup of H_i for n = 1, 2, ..., n, prove that $K_1 + K_2 + ... + K_n$ is a direct sum.
- 4. Prove that if each H_i is a subgroup of the abelian group G, then $H_1 + H_2 + ... + H_n$ is the smallest subgroup of G that contains all the subgroups H_i .
- 5. If H_1 , H_2 , ..., H_n are subgroups of the abelian group G, prove that $G = H_1 + H_2 + ... + H_n$ if and only if G is generated by $\bigcup_{i=1}^n H_i$.
- 6. Let G be an abelian group of order mn where m and n are relatively prime. If $H_1 = \{x \in G \mid mx = 0\}$ and $H_2 = \{x \in G \mid nx = 0\}$, prove that $G = H_1 \oplus H_2$.
- 7. Let H_1 and H_2 be cyclic subgroups of the abelian group G where $H_1 \cap H_2 = \{0\}$. Prove that $H_1 \oplus H_2$ is cyclic if and only if $o(H_1)$ and $o(H_2)$ are relatively prime.
- 8. Assume that a is an element of order $r_1r_2...r_n$ in an abelian group where r_i and r_j are relatively prime if $i \neq j$. Prove that a can be written in the form $a = b_1 + b_2 + ... + b_n$ where each b_i has order r_i .

- Prove that if r and s and relatively prime positive integers, then any cyclic group of order rs is the direct sum of a cyclic group of order r and a cyclic group of order s.
- 10. Assume that G can be written as the direct sum $G = C_2 \oplus C_2 \oplus C_3 \oplus C_3 \oplus C_3$ where C_n is a cyclic group of order n.
 - a. Prove that G has element of order 6, but no element of order greater than 6.
 - b. Fine the number of distinct elements of G that have order 6.
- 11. For each of the following values of n, describe all the abelian groups of order n, up to isomorphism.

a. n = 6, b. n = 12, c. n = 36.

- 12. Prove that a regular permutation can be expressed as the power of a cycle and that, conversely, if $\gamma = (1, 2, ..., m)$, then γ^s is a regular permutation consisting of d cycles of degree r, where d = g.c.d. (m, s) and r = m/d.
- 13. The **left regular representation** of a group G is defind as follows : corresponding to a fixed element u of G there is a permutation λ_u , acting on the elements of G in accordance with the rule $x\lambda_u = u^{-1}x(x \in G)$. Verify that
 - (i) $\lambda_u \lambda_v = \lambda_{uv}$;
 - (ii) $\lambda_u = 2$ if and only if u = 1;
 - (iii) $\lambda_u \rho_a = \rho_a \lambda_u$, where, for each $a \in G$, the function $\rho_a : G \longrightarrow S_G$ from G into the symmetric group S_G of G sending x to $xa(x \in G)$;
 - (iv) If θ is a permutation of the elements of G which commutes with all the λ_u , then $\theta = \rho_a$ for some a; and if η commutes with all the ρ_a then $\eta = \lambda_u$ for some u.

- 14. Prove that if G is a simple group of order 168 and H is a proper subgroup of G, then $[G:H] \ge 7$.
- 15. Prove that when the non-trivial elements of a transitive group G of degree n are written as products of mutually exclusive cycles of degrees greater than one, then they involve between them (n-1) |G| letters.
- 16. Let D_m be the dihedral group of order 2m where m > 2. Show that the centre of D_m has one or two elements according as n is odd or even.
- 17. Let x, y be two elements of order 2, which generate a group G, and suppose that xy has order $m \ge 3$. Show that G is isomorphic with D_m .
- 18. Show that ${\rm A}_4$ has one Sylow subgroup of order 4 and four Sylow subgroups of order 3
- 19. Prove that there is no simple group of order 56.
- 20. Let G be a group of order p^2q where p and q are primes such that q is less than p and is not a factor of p^2 -1. Prove that G is Abelian.
- 21. Let P be a Sylow subgroup of G which is normal in G. Prove that P is a characteristic subgroup of G.
- 22. Show that a normal p-subgroup is contained in every Sylow p-subgroup.

- 23. Let P be a Sylow p-subgroup of a finite group G and suppose that H is a normal subgroup of G. Prove that
 - (i) HP/H is a Sylow p-subgroup of G/H and
 - (ii) $H \cap P$ is Sylow p-subgroup of H.
- 24. Show that if the order of a finite Abelian group is not divisible by a square (>1), then the group is cyclic.
- 25. Prove that in a finite Abelian group
 - (i) the maximal order of an element is equal to the greatest invariant and
 - (ii) the order of any element divides the maximal order.
- 26. Show that the (multiplicative) group of residue classes coprime with 24 is elementary Abelian of order 8.
- 27. Find the elementary divisors and invariants of the following Abelian groups defined by generators and relations : (i) 15a = 4b = 0, (ii) 20a = 6b = 5c = 0.
- 28. The Abelian group A is generated by a, b, c with the defining relations 3a + 9b + 9c = 0, 6a - 12b = 0. Express A as a direct sum of cyclic groups.
- 29. Find the rank and invariants of the following Abelian groups :(i) with generators a, b and relation 2(a+b) = 0; (ii) with generators a, b, c, d and relations 3a + 5b - 3c = 0, 4a + 2b - 2d = 0

30. The free Abelian group F is generated by u_1, u_2, u_3 and R is the subgroup generated by

$$\begin{split} \mathbf{r}_1 &= \mathbf{k}\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3, \ \mathbf{r}_2 &= \mathbf{u}_1 + \mathbf{k}\mathbf{u}_2 + \mathbf{u}_3, \ \mathbf{r}_3 &= \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{k}\mathbf{u}_3 \\ \text{where } \mathbf{k} \text{ is an integer greater than one. Find generator } \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \text{ of } \mathbf{F} \text{ and } \mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3 \\ \text{or } \mathbf{R} \text{ such that } \mathbf{s}_i &= \mathbf{e}_i \mathbf{v}_i (i = 1, 2, 3) \text{ and } \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \text{ are integers satisfying } \mathbf{e}_1 \left| \mathbf{e}_2 \right| \mathbf{e}_3. \end{split}$$

- 31. Show that the derived group of a free group consists of those words in which the sum of the exponents for each generator is equal to zero (for example $x_1x_2^{-1}x_1^{-2}x_2x_1$).
- 32. Let F be the free group generated by $x_1, x_2, ..., x_r$. Show that each element of F/F' is of the form $\left(x_1^{m_1}x_2^{m_2}...x_r^{m_r}\right)F'$ Prove that F/F' is a free Abelian group of rank r.
- 33. Determine the structure of G/G', when G is given by (i) $a^6 = b^2 = (ab)^2 = 1$; (ii) $a^6 = 1, b^2 = (ab)^2 = a^3$.
- 34. Let D_n be the dihedral group defined by $a^n = b^2 = (ab)^2 = 1$. Find the structure of D_n / D_n' (i) when n is odd; (ii) when n is even.
- 35. Consider the free group F(X) and F(X') in the case where $X = \{x,y\}$ and $X' = \{x,z\}$ $(z = x^{-1}yx)$. Find the lengths of the elements y and $x^{-1}yx$ with respect to X and X', respectively. Here F(X) is the free group on a generating set X.
- 36. Find a composition series (i) for the dihedral group of order 8 and (ii) for the quaternion group. Determine the composition factors in each case.
- 37. Prove that every subgroup and quotient group of soluble group is soluble.

38. Show that if G is nilpotent of class 2, then G' lies in the centre of G and deduce the identities.

[xy, z] = [x, z] [y, z], [x, yz] = [x, z] [x, y]

for such a group.

- 39. Prove that every subgroup and factor group of nilpotent group is nilpotent.
- 40. Let G be nilpotent of class 3. Show that, if $v \in G'$ and $x \in G$, then $x^v = cx$, where $c \in Z$, the centre of G. Deduce that G' is Abelian.
- 41. Prove that if M is a maximal subgroup of a nilpotent group G, then $M \triangleleft G$ and |G/M| = p, where p is a prime. (A maximal subgroup is a proper subgroup which is not contained in any other proper subgroup. Infinite groups need not possess maximal subgroups.)
- 42. Let $m = 2^n$ ($n \ge 2$) and consider the dihedral group D_m of order 2m given by $a^m = b^2 = (ab)^2 = 1$.

Prove that if Z is the centre of D_m , then $~~D_m/Z \simeq D_{m/2}$. Deduce that D_m is nilpotent of class n.

- 43. Prove that \mathbb{Z}_n is a field if and only if n is prime.
- 44. Prove that if D is an integral domain, then D is of characteristic o or p, a prime number.
- 45. In \mathbb{Z} , prove that I is a maximal ideal if and only if I generates by a prime number.
- 46. Show that every finite integral domain is a field.
- 47. Prove that every integral domain can be embedded in a field.

- 48. Let R, R' be rings and $\pmb{\phi}$ a homomorphism of R onto R' with kernel U. Prove that
 - (1) $R' \cong R/U$
 - (2) There is a one-to-one correspondence between the set of ideals of R['] and the set of ideals of R which contain U.
- 49. If $e = e^2$ is an idempotent in a ring R , write $eRe = \{ere \mid r \in R\}$. Prove that
 - (1) eRe is a ring with identity e and eRe = $\{a \in R \mid ea = a = ae\}$.
 - (2) If $S \subseteq R$, then S is a ring using the operations of R if and only if S is a subring of eRe for some $e^2 = e \in R$.
- 50. Prove that if R is a division ring, then $M_n(R)$ is simple where $M_n(R)$ is the set of all $n \times n$ matrices with entries from R.
- 51. Prove that an ideal M of a ring R is maximal if and only if R/M is simple.
- 52. Let R be a commutative ring and suppose that A is an ideal of R.

Let $N(A) = \{x \in R \mid x^n \in A \exists n \in \mathbb{N} \}$. Prove

- (1) N(A) is an ideal of R which contains A
- (2) N(N(A)) = N(A)

53. If R is a ring, let $Z(R) = \{x \in R \mid xy = yx \text{ all } y \in R\}$. Prove that

- (1) Z(R) is a subring of R;
- (2) If R is a division ring, then Z(R) is a field.
- 54. If L is a finite extension of K and if K is a finite extension of F, prove that L is a finite extension of F , and [L : F] = {L : K] [K : F].

- 55. If L is an algebraic extension of K and if K is an algebraic extension of F, prove that L is an algebraic extension of F.
- 56. Prove that any two finite fields having the same number of elements are isomorphic.
- 57. Let F be a finite field. Prove that
 - (1) If F has q elements and $F \subset K$ where K is also a finite field, then K has q^n elements when n = [K : F].
 - (2) F has p^m elements where the prime number p is the characteristic of F.
- 58. Prove that for every ring R there exists a ring R^{*} with unit such that R is isomorphic to a subring of R^{*}.
- 59. Prove that for a ring R, R is simple and $Z(R) \neq 0$ if and only if R has unit and 0 is a maximal ideal.
- 60. Let I, J be ideals in the ring R. Prove that if I ⊂ J, then J/I is an ideal in R/I and there is a ring isomorphism (R/I)/ (J/I) ≅ R/J.