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Module Objective

To develop functional knowledge and skills in

» modeling dynamic systems and/or optimal control
problems

» determining a state trajectory and/or a control of
dynamic systems that optimizes a performance
functional subject to constraints on control and/or
states.
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Module Highlights

Two pronged approach:

1. Focus on the two traditional approaches for dealing with dynamic
optimization/optimal control problems

< the variational approach based on calculus of variations leading to
the maximum principle

< the dynamic programming approach and its corresponding
Hamilton-Jacobi-Bellman (HJB) equation. When applied to linear
optimal control problem derivation of similar results based on the
concept of Lyapunov stability will also be demonstrated.

2. Focus on numerical methods for solving large real-world dynamic
optimization and optimal control problems with complex constraints.
The two numerical approaches are the indirect approach and the direct
approach. MATLAB will be used to implement methods discussed.

Applications to engineering and economic problems will be illustrated
throughout
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Dynamic Optimization

min J = .[:'g(x,x,..,x(”),t)dt

x: [to.t; JoR
subject to t,, X(t,) = X, X(t,) = X;,.., XV (t,) = x{"
and possibly t,, x(t;) = X, X(t;)=X;,..,x”(t;) = x{”
Note:

1) The final time t, may or may not be specified.
Ift, is specified = fixed-end-time problem
(or fixed-terminal-time)
If t, is not specified = variable-end-time problem
(or open-terminal-time, open horizon)
2) If t, is specified, and if
X(t, ) is also fixed = fixed-end-point problem
X(t, ) is constrained (i.e. x(t,) € S) = constrained-terminal-point problem
X(t, ) is not fixed or has no restriction = free-end-point problem
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Optimal Control Problems

min _ J =h(x(t,).t,)+ jt“ g(x(t), u(t)t)dt

u: [ty,t; ]>R™

subject to
System Dynamics:
x(t) = a(x(t),u(t),t); where state x: [t,,t;]—> R"
Initial conditions: x(t,) = x,
Terminal or final conditions: x(t,) = x,

Find a control u(t) to take the system from the initial state
x(t,) at the initial time t, to the final state x(t, ) at the final time t,.
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Optimal Control Problems

Possible additional constraints:

Contraints on control:
u(t) eV, foralltelt,,t,]
eg. u,, <u(t)<u,, foralltelt,t,]

Contraints on state:
x(t)e X, forallte[t,,t,]
eg. x., <x(t)<x, foralltelt,t,]
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Optimal Control Problems

Note:
1) As before, t, may be specified (fixed-end-time)
or may not specified (variable-end-time
or open terminal time)

2) If t, is specified,
X(t, ) may be fixed (fixed-end-point or hard terminal constraint)
or constrained x(t, ) € S (soft terminal constraint)
or not fixed or no restriction (free-end-point)
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Optimal Control Problems

Various types of J :
e g=0,ie J=h(x(t)t,) --------mmmmmmmm- Mayer Problem
Special Mayer Problems:
(@) J =cx(t,) (Linear Mayer)

(b) J = (x(t,)-r(t, ))T H(x(t,)-r(t,)) (Terminal control problem)
eh=0,ie J= jt" g(x(0),u(t),t)dt--—- Lagrange Problem
Special Lagranoge Problems:
(@)g=1ieJ =j; 1dt=t, -t (Minimum time)
(b) g = [u®)], ie.J = f Juct)|dt (Minimum fuel)

©g= @), ied= .L: u(®) u(t)dt  (Minimum energy)
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Optimal Control Problems

e J =h(x(t,).t, )+.[:ﬂ' g(x(t),u(t),t)dt-------- Bolza Problems

Special Bolza Problems:
(a) Tracking problem:

h= (x(t,)r(t,)) H(x(t,)r(,))
g = (x(O-r(1)) Q(x()-r(t))+u(®) Ru(t)

= 3 =(x(t,)r(t,)) H(x(t,)r(t,))+ f (x(V)r(1)) Q(x()-r(t))+u(t) Ru(t)dt
Note: H, Q and R are weighting matrices

(b) Regulator problem:

h = x(t, ) Hx(t,)
g = x(t)"Qx(t) + u(t)' Ru(t)

= J =x(t,) Hx(t,) + j: x(t)"Qx(t) + u(t)" Ru(t)dt
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Example 1: (Brachistochrome) A bead of mass 1 unit descends along a
wire joining two fixed points (x,,Y,) and (X;y;). We wish to find the shape
of the wire so that the bead completes its slide in minimum time.

(XO lyOI

t=t,
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Example 1: (Brachistochrome) Model:
Dynamic Optimization Model:

t=t, . min tf :J'Xf 1+ y (X) dx
Y =Y00, y: DioX]oR, y € C! w \129(Y, - Y(X)

subject to
y(xo) =Y
y(xf) =Y

Minimum time
Fixed terminal point problem
(Hard terminal constraint)
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Example 2: (River-Crossing 1) A boat travels with constant velocity V
with respect to the water. In the region the velocity of the current is parallel
to x-axis but varies with y. Given the destination (x;y;) on the other side of
the river, find the path to be taken by the boat to minimize the travel time,
(XY, Optimal Control Model:

t=t min t, :L 1dt +t,
0

subject to
Dynamics (Equation of Motion):
— V) X =V cosé +Vv,(y)
y=Vsind
Initial conditions: x(t,) = Xy, y(ty) = ¥,
x Final conditions: x(t;) = x;; y(t;) =y,

(Xo:Yo)
0.0) Mlnlmum t_|me _
Fixed terminal point problem
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Example 3: (River-Crossing 2) A boat travels with constant velocity V
with respect to the water. In the region the velocity of the current is parallel
to x-axis but varies with y. Given the final time t;, find the path to be taken
by the boat to maximize the landing distance on the other side of the river,

y Optimal Control Model:
max J = x(t;)

subject to
Dynamics (Equation of Motion):
X =V cosé+v.(y)
y=Vsiné
Initial conditions: x(t,) = x,; Y(t,) = ¥,
Final conditions: y(t;) = vy,

(Xo:Yo) _ )
= Linear Mayer problem with
©.0) semi-hard terminal constraint

6-Aug-09 Vira Chankong 15
EECS, CWRU

Example 4: (Braking and Acceleration): Want to move a car

of mass m from 0 to X, in minimum time. Minimum time
Q t 1—»“ ©+40 tg Optimal Control: |Hard terminal constraint
{ | : .

x(0)=0 th) Xt =% mind =t, = J';f 1dt with bound constraints
EOM: X(t) = a(t) + B(t) subject to

States: x, (t) = x(t) Dynamics (Equation of Motion):

X, (t) = %, (t) = X(t) = %()
Compact Dynamics: X, = at)+ B(t)
X = Ax(t) + Bu(t) Initial conditions: x,(0) = 0;x,(0) =0
A (g ;J B ((1) SJ Terminal conditions: X, (t,) = X, ; X,(t;) =0

Contraints: For each t €[0,t, ]:

_ (%) _(w@®) _(a®) : :
x(t) = [Xz (t)]' u(t) = (uz(t)J = [ﬂ(t)j On control: 0<u, (t) <M;;0< U, (t) <M,
On state: 0 < x (1) < X;; 0<%, (1)
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 Example 5: (Taking-off) An aircraft of mass m (assumed
point mass) is to be lifted by a constant trust T to reach the
cruising altitude H at time t,, at maximum speed (along x-

direction). Optimal Control Model:
max J =X, (t;)
Dynamics (Equation of Motion):
= X
X, = 1cosﬂ
m
X, = X,
X, = lsin f-9
m
EOM: mx(t) =T cos A(t) Initial conditions: x,(0) = x,(0) = X;(0) = x,(0) =0

my(t) =T sin B(t)—mg Final conditions: x,(t;) = H; x,(t;) =0

States: x,(t) = X(t); %, (t) = % (t) = X(t) Constraints: On control 0<u(t) <#/2,t<[0,t,]

. . On state: x. (t)>0,i=1,..4;x,(t)<H
X, (1) = Y1) %, (1) = %, (1) = y(¥) ' (0
Control u(t) = A(t) \Linear Mayer problem with semi-hard terminal constraint\
6-Aug-09 Vira Chankong 17
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Example 6: (Rover Control) Want to control the speed of a
Mariner Mars rover at about 5 mph using as little energy as
possible. The controller is the output voltage of a battery-
operated voltage regulating system.

i

e ! 1, (constant)
Battery i
Voltage i Ry R,
T Regulating Le(t) Viscous friction
System i L L coefficient B
i f a g(t) v

di. (t
';t( ) e(t) 2.(t)

A(t) = K,i, (t) ———torque

At) = 16(t) + BO(t) + A, (t)
States: X, (t) =1, (t); X, (t) = O(t)
Controls: u, (t) =e(t); u, (t) = 4, (t)
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Dynamics: R i, (t) + L,




WA Case Example 6: (Rover Co

if
Battery X
Voltage | R,
T  Regulating | | e(t)

System

-
S
I

+ 1, (constant)

Viscous friction
coefficient B

A0

ntrol)

Min J = " (K¢ (1) -5)° + wx, (Ou, (1))t
Dynamics:
Y
X L X L
. B 1
k=20 -2 0100
Initial conditions: x, (0) = x,(0) =0
Final conditions: None
Constraints:
On control: |u, (t)] <€, t €[0,t,]
|u2(t)| < A t€[01 ]
Onstate: [x, (1) <1, te[0t,]

Minimum energy problem with free termi
conditions but with bound constraints

0] SO telOt,]

6-Aug-09 Vira
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(control) to the two-tal

Example 7: (Mixture) Want to find inflow rate of fresh water

nk system so that the salt concentration in

tanks A and B are equal using minimum amount of fresh water.

50gal 50gal
tank A tank B
u(t) —, ulm _—, u® —,
— 80Ib Fresh ——
salt at water
t=0 at t=0

Assume: 1) Well-mixed at all time
2) Incompressible fluid
States: x(t) = Ibs of salt in A at time t
X, (t) = Ibs of salt in B at time t
Controls: u(t) = gal/m of fresh water
passing thru at time t

Optimal Control Model:
. t
min J _jo u(t)dt

Dynamics:
. u(t)
= ——Zx(t
% == %
SO BV (U]
% = h M) -7 %)
Initial conditions: x, (0) = 80; x,(0) =0

Terminal conditions: x, (t; )-x, (t;) =0
Contraints: For each :

Minimum control effort with

Soft terminal constraint and bound constraints

Oncontrol: 0<u(t) <u,,,,t[0,t,]

6-Aug-09 Vira Chankong

On state: 0 < x,(t) <80; 0 < x, (t)
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Acid/Base

Level Sensor
Agitator

Dissolved O; SENSOr
pH Sensor  m
Temperature Sensor

in a Bioreactor

Case Optimizing Yeast or Ethanol Production

environment for

4mmm Antifoam occur. Typical uses

Bioreactors are large
vessels that serve as an

biochemical reactions to
include the growth of

microorganisms and the
breakdown of products.

Air Sparser

EECS, CWRU, 2007

Source: D. Moore, MS Thesis,

The environment within the vessel is controlled to optimize performance. Typical control
variables include nutrient feed rate, oxygen air flow rate, and temperature. There is large
economic incentive to develop control strategies to maximize the production of baker’s
yeast and ethanol, two important commercial products produced in bioreactors. Yeast is
typically grown off a solution containing glucose and other nutrients essential for cellular
growth. When glucose concentration in the medium is high or when there is a limited
supply of oxygen, the yeast microorganism excretes ethanol.

6-Aug-09
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g:(ﬂ—_ + o+ )X —DX X(0)=01

A
t

dt

ds

d

(;—E =(kyp, — k)X —-DE  E(0)=015
t

do

dr

— = —(kspy + kyp;) X — DO+ ka(0, —0)  O(0) = 0.0066

— =—(kypy + kb, 0, ) X + D(S, = 5)—mX  5(0)=002

in a Bioreactor

We wish to maximize
production of yeast, or

the substrate feed rate,

ethanol or both by controlling

airflow (O,) and temperature

(;—C = (ko gty + kg gty + kg ) X — DC—kpkaC C(0) = 0.008
t

Model of Growth Dynamics

AciliBase
Air

R

)]
) Attcam

Extams Gas

Nutrient Feed - (] — 1
Lol Sersor ' .

Aghator ’ T -
00 o
AF Sparser
Dissoived Oy Sensor -

pH Sersor )
Temperature Sensar oo =

&

7-Aug-09

Caseg  Optimizing Yeast or Ethanol Production

X = yeast concentration (g/l)

S = substrate (glucose) concentration (g/l)

E = ethanol concentration (g/l)

O = dissolved oxygen (O,) concentration (g/l)

V = liquid volume ()

F,= Substrate feed rate (I/h)

S;, = Influent Substrate Concentration (g/l)

D = F;/V = Dilution rate (1/h)

OTR =k a(Og — 0) = O, transfer rate (g/L h™)
CER =k k aC = CO, evolution rate (g/L h™)
m = Maintenance term (g of S /g of X h'l)

C = dissolved carbon dioxide (CO,) concentration (g/l)

Vira Chankong
EECS, CWRU
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Two Ways to Solve Dynamic

Optimization/Optimal Control Problems
1. Indirect Method:

» Solve the necessary conditions for
optimality derived through variational
principles rooted in Calculus of Variations

» Thatis: Solve two-point boundary value
problems (TPBVP)

6-Aug-09 Vira Chankong 23
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Two Ways to Solve Dynamic

Optimization/Optimal Control Problems

2. Direct Method:

*  Optimize the functional directly as
constrained optimization

* Require conversion to nonlinear programs
through transcription of the ODEs
(dynamics of system)

o Often possesses high sparsity and special
structure

6-Aug-09 Vira Chankong 24
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P CAsE

Direct Method
for Dynamic Optimization

» Convert to nonlinear programs through
direct transcription of the ODEs (dynamics
of system) or the corresponding DAES

» Use nonlinear optimizer such SQP to solve
the resulting nonlinear programs (Software
such as SNOPT by Boeing, etc.

» Fine-tune the result through mesh-
refinement techniques

6-Aug-09 Vira Chankong 25
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Direct Method: Transcription methods

Euler: X,.; =X, +ha(x,,u,,t)
Classical Runge-Katta: x,,, = x, +h,s,

where s, = %(k1 +2k, + 2k, +k,)
k, =ha(x,,u,.t,)

1 _ h
k, =ha(x, +§k1,uk+1,tk +?k)
1 _ h
k; =ha(x, +§k2'uk+l’tk +?k)
k, =ha(x, +k; u.t.,)
Trapezoidal: x,; = x, +h, (a(x,,u,,t)+alx, +ha(x,u,t)u,,t.,))
Hermit-Simpson:

h _ _
X =X zk(a(xk'“k ) +alx +halx, uot), e t,) +a,,)
_ 1 h,
wherex,,, = E(Xk +x, +halx,u,t )) +E(a(xk b)) —alx, +halx,,u, ’tk)’uk+1’tk+1))
_ _ h,
and a; = a(X;, Uy b ‘*‘?)

6-Aug-09 Vira Chankong 26
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Direct Method: Transcription methods

Band, Stair-case Structure and Sparsity of
resulting matrix:

Employ special numerical tricks to take advantage of the
special structure and sparsity of the resulting problem

6-Aug-09 Vira Chankong 27
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Indirect Method:
Derivation of Optimality Conditions

* Euler-Lagrange Equations and all Boundary
Conditions

e Hamilton-Jacobi-Bellman Conditions

e Pontryagin’s Minimum Principle

6-Aug-09 Vira Chankong 28
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Indirect Method: Fundamentals

Variations of a Functional:

Path optimization:
Functional J(y(x)): where x e[x, x,] and y :[x,x,] > R"

AJ(y*,8y) = 53 (y*, 8y) +o(|sy[)
——

increment variation errorterm

where o(Hasz) —0as |oy| >0
Optimal control:
Function J (x(t, )) or J(x(t,),t;) :where t e[t,,t,Jand x:[t,,t;] > R"
AJ (x*,6x) =6 (x*,0x) + O(Hé'tz)
—

increment variation errorterm
2 2
AJ(x*,5%,6t,) = 53 (x*, Jot )
increment variation errorterm
6-Aug-09 Vira Chankong 29
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Indirect Method: Fundamentals

T

1) Key variation formular: 6J(x,0x) = Z—J ox
X

:Q5x1+ 2 OX, +. +ﬂ5x
OX, OX, OX,
For example: J (x(t,)) =J‘tf g(x, %,..,x™, t)dt

6J oJ oJ 0
oX oxm

n[ég§x ag5x+ + %9 5x(”>jdt
OX ox™

Then 6J(x,0x) =

2) Term like J ( 5xjdt are dealt with thru integration by part

i.e. J‘10 (gg 5xjdt(2?( 5le; —J‘ (2 (g?(néxdt

6-Aug-09 Vira Chankong 30
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Indirect Method: Fundamentals

3) Fundamental Theorem of Calculus of Variations:
x* is an extremal of J (x) only if 5J (x*,ox) =0 for all admissible 5x.
4) Fundamental Lemmas of Calculus of Variations:
a) Let a(x) e C[a,b].
If jaba(x)h(x)dx =0 forall h(x) e C[a,b] with h(a) =h(b)=0
then a(x) =0 for all x e[a,b]
b) Let a(x) e C'[a,b].
If Lba(x)h'(x)dx =0 forall h(x) e C'[a,b] with h(a) =h(b) =0
then a(x) =c for all x e[a,b]
c) Let a(x) and S(x) € C'[a,b].
If Lb(a(x)h(x) +B(x)N'(x))dx =0 for all h(x) e C'[a, b] with h(a) = h(b) =0
then S'(x) = a(x) for all x e[a,b]

6-Aug-09 Vira Chankong 31
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j1C
2. Indirect Method: Necessary Conditions

Now consider J(x) :f' g(x, %, t)dt, x:[t,,t;]>R

a) Case: t, and x(t, ) are fixed (fixed end point)
x* is an extremal of J (x) only if 63 (x*,5x) =0 for all admissible &x.

= 0=56J(x*,6X) =Z—J5x+%6x for all admissible 5x
X X

= J." (a—g§x+6—gﬁxjdt for all admissible 5x
b\ OX oX

t A,
= [‘l%xj [ a—géx—ﬁ[gjéx dt (integration by part)
oX b | OX ot\ ox

bl ox ot\ox
(since 5x(t,) = 0 and 5x(t, ) =0)

= J.I' [a—g—é[a—gnéxdt for all admissible &x

= 9 _0f%). 0 (by Fundamental Lemmas of Calculus of Variations 4a)
ox ot\ ox

This is Euler-Lagrange Equation

6-Aug-09 Vira Chankong 32
EECS, CWRU

16



6-Aug-09

W CAsE

scHooL OF

“Indirect Method: Necessary Conditions

For J(x):f' g(x, % tdt, x:[t,,t,]— R
with t, and x(t, ) fixed (fixed end point)

Necessary Conditions: Euler-Lagrange Equation

x* is an extremal of J(x) only if
a —aﬁéqj =0 (second-order ODE)
ox ot\ ox

with 2-boundary point
X(t,) =x, and

X(t;) =X

Solved by shooting method (for example)

Vira Chankong 33
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WACASE  Indirect Method: Necessary Conditions

9(x.%)
Example: J () = jo%(xz(t)— X*(0))dt, x:[t,,t; 1> R
with x(0) = 0, x(/2) =1 (fixed end point)

Euler-Lagrange Equation
a_g_g(a_gj =—2X—2(2X) =2%+2x=0
ox ot\ ox ot
= X(t) = c, cost +c¢,sint
With x(0) = 0 and x(/2) =1
= X(t) =0cost +1sint = sint

Solved numerically by the shooting method

Vira Chankong 34
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Indirect Method: Necessary Conditions

For J(x) :J-:' g(x, x,t)dt, x:[t,,t;]>R
b) Case: t, is fixed and x(t, ) is free (free end point)
x* is an extremal of J(x) only if 53 (x*,d%,5x,) =0 for all admissible (5x, X, ).

=0=5J(x*, §X)76i§x+gigx for all admissible 6x

5 (ag SX+—= % 6x)dt for all admissible 5x

X
og t [ 09 a9
—OX— ox [dt (integration by part
(8x 1 +L(ax Ft{ j j (integ ypart
=91 sx, )+J‘“ a—g—i( gj Sxdt for all admissible 5x, and Sx(t, )
O [y, ot

(since 5x(t,) =0 and ox(t;) = 0)

j‘lg 3(69) 0 (Euler-Lagrange)

ox ot\ o
0
]
6X X*tp
X(t,) =0
6-Aug-09 Vira Chankong 35
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CASE  Indirect Method: Necessary Conditions

Now consider J(x,t,) = J'l:' g(x,x,t)dt, x:[t,,t,]>R
and t, is free (variable end time, free terminal time or horizon)
a) Case: x(t) is free and is independent of t, (free terminal conditions)
= 0=30J3(x*6x,6x,,6t,) forall admissible (5x,5x,,5t;)
=I; 5g(x,x,t)dt+j"“"‘ g(x* %*,t)dt for all admissible 5, 5x, and 5t,

_0g (o9 O (dg
= = t =_— dt *, X%t )t
% N SX(t )+ J [OX (’)t( j]&x +g(x*,x*,t, )5t
_og' . (g o9 A
== N (8%, % (tf)ﬁtf)+jlu [a‘a( Do"xdug(x X*,t,)0t,

(since Sx(t;) = &%, Xx*(t;)dt,)

o
OX, +J-:.[8g ¢ [CQ jjﬁxdtJr{g(x* X*,t )——X

_og'

X

** (t, )}St,
X%ty

ox ot

X*t;
for all admissible 6x, %, and ot,

og 0 ag]

0 (Euler-Lagrange
adrin 8[(6 ( grange)
6*9 =0, g(X*xX*!f

X*,tg

X*(t;)=0, and x(t,) =0

“! " Vira Chankong
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Case

-~ Indirect Method: Necessary Conditions

Now consider J(x,t;) = .[:' g(x, % t)dt, x:[t,,t;]>R
and t, is free (variable end time, free terminal time or horizon)
b) Case: x(t;) =x, (Hard terminal contraint)

og 0(adg
—~ ——| = | =0 (Euler-Lagrange
ox at(axj ( grange)
_ . 'l _
X(te) =X, g(x*, x5t ) —— X*(t;)=0, and x(t,) =0
X* b

¢) Case: x(t;) = 6(t,) (Soft terminal contraint) --5x, = 6(t, )dt,

— a_ 8(69) =0 (Euler-Lagrange)

ox ot\ ox
T T
B G+ geenint) -2 xx)=0,
28 Xty X%t
and x(t,) =0, x(t,;) = &(t;)
6-Aug-09 \éilrzacg?gr:,l;;ng 37
Case Example Derivation of Case (¢)

Now consider J(xt,) = ‘[‘l' g(x, xtdt, x:[t,,t;,]—>R

and t, is free (variable end time, free terminal time or horizon)
c) Case: x(t;) = 6(t;) (Soft terminal contraint)

= 0=5J(x*0X%,0x,,6t,) forall admissible 5x

= [ sg0e e dt+ [ gOes s et for all admissible 5x

_ag" § (o9 E[E?gj ! §
= ox(t,)+ —= ——| = | |oxdt + g(x*, x*,t,)ot
OX |y, (') I‘o[ax ot ox o 1ot
_ag" , . v(og 0 (dg , y
—gm’ (0%, %x*(t, )t )+L (&—E > Sxdt+ g(x*, x%,t, )t

(since Sx(t;)= Ox;-X*(t;)dt;)

. w(og of(ag , og"
OX; + —=——| = | |oxdt+| g(x*,x*t,) -
P L[ax Ft{pxjj {g( 2 X

for all admissible 6x, X, and Jt;

_ag"

oX

x*(t, )Jatf

X~y

og o(aog
— ——| = | =0 (Euler-Lagrange,
- ox at(ax} ( orange)
T
A =0 goent) - i) =0, andxe) =0
X* b x*t; Vira Chankong 38
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-~ Indirect Method: Necessary Conditions

Further extensions:

1) Piecewise Continuous Solution:
Require additional Weistrass Erdman Corner Conditions
or Tranversatility Conditions

2) Constraints on x(t) require the use of multipliers
Most important cases are in optimal control problems:

6-Aug-09 Vira Chankong 39
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« Indirect Method: Necessary Conditions

Optimal Control Problems:

Optimize J(x,u,t,) =h(x(t,),t,) + [ g(x.u,t)dt

s.t. x =a(x,u,t)
Boundary conditions:  x(t,) = x,
Cases:

I) t, isfixed and x(t, ) is fixed
) t, isfixed and x(t, ) is free
1) t, is fixed, and m(x(t,;)) =0
IV) t, isfree and x(t, ) is free

V) t, isfreeand x(t, ) is fixed
VI) t, isfreeand x(t;) = 0(t,)
VII) t, isfree, and m(x(t,)) =0
V) t, is free, and m(x(t,),t;) =0
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-~ Indirect Method: Necessary Conditions

Optimal Control Problems:
Optimize J(x,u,t,) =h(x(t,),t;) +f’ g(x,u,t)dt

s.t. x = a(x,u,t)
Boundary conditions:  x(t,) =x,

Case IV: h(x(t,),t;) = L" h(x(t), t)dt + h(x(t,),t,) — —ignored (constant)

_p ((ah(x(t),t))T . Oh(x(t),t)Jdt

3 0x ot

0. (x, %,u,p,t) = g(x,u,t) ++p" (a(x,u,t) - X) +(6h({(t)’t)) X 6h();(tt),t)

oX

H (x,u,p,t)-—Hamiltonian
= J,(xxupt) =g, (xxup )t
= 83, (x*, 5x,u*, 5u,p*,6p, 6%, 6t )

A * *
= j"[OH 5u+(ﬂ+pj5x]dt
L\ Ou ox

J{Oh(x*,t,)
ox

st

.
oh(x*(t,),t
_p(t,)J 8, +(g*+pTa(x*,u*,tf)+70 (x N( 2 f]
OX
=0 for all admissible 6x, du, 5x,,dt,

Vira Chankong
EECS, CWRU
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« Indirect Method: Necessary Conditions

Necessary Conditions for Optimal Control Problems:
Case IV: Free-end point problems: t, free and x(t, ) free

Hamiltonian-Jacobi Conditions:
= (x*,u”*)is extremal, then there exists co-states p *such that:

OH *
=0 1
p™ 1)
OH *
. 5
p=—" )
x =a(x,u,t) 3)
oh(x*,t oh(x*(t,),t
AOEY) _ey Jox, + e DTG5 o )
ox ox
and x(t,) =x,
OTHER CASES CAN BE SIMILARILY DERIVED
Ercs, CWRU
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