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BICxs=_ Linear Programming (LP)

The Structure and Geometry of LP:

Standard Form of LP: minz =c’X

st. AX=Db
}XgR"
x>0

XeR"
AeR™;beR";ceR"

Assume: 1) m < n (for a meaningful/interesting LP problem)

i1) rank(A) =m (i.e. no redundant constraints)
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LP: The Key Observations

* LP is convex : So any optimal solution found must be
global. (LP is convex because X is convex--see below--
and fis linear)

* An LP either has a finite optimal solution or is unbounded
(i.e. z can be reduced indefinitely).

» The feasible set X, being an intersections of hyperplanes
and half-spaces is a polyhedron or polytope (bounded
polyhedron). It is therefore completely characterized by a
nonzero finite number of vertices (extreme points) and a
finite number of extreme rays (if X is unbounded). A
bounded X is a convex hull of its extreme points. In any
case. X 1s always a convex set.
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BICa= [ p: Key Observations (cont.)

 Ifan LP has a finite optimal value z*, at least
one of its solutions x* must occur at one of its
vertices (extreme points)

* Thus to search for a finite solution of an LP, 1t
one exists, we only need to search among its
finite number of vertices. This 1s the basis of
the mighty SIMPLEX method.
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Basic Steps of the Simplex Method:
The Geometrical View

Search Strategy: Basic Steps of The Simplex
Method:

» Start with an initial vertex, if one exists
»Identify a better adjacent vertex and move to it

»Repeat until (1) no better adjacent vertex to the
current vertex exists. The CURRENT vertex is then
a global optimum of the LP by virtue of convexity
of the LP, or (2) it can be seen that z can be reduced
indefinitely within X, i.e. z is unbounded . (Note that
for z to be unbounded, then so must X. However the
converse is not true. That is X can be unbounded but
the optimal z* is still finite)

e

Ak (Cacn
mun| Y
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Ecase  Convergence of the Simplex Method
Finite Convergence of the Simplex:

If in every move made from one vertex to the next, at
least some FINITE amount of improvement can be made
on z, then the Simplex method will always terminate at
an optimal vertex in a finite number of steps.

This is because for every move made, the new vertex will
be different from the current one. And because of the
strictly monotone improvement on z, no vertex will be
visited more than once. And since there are only a finite
number of vertices of X, an optimal vertex must be found
in a finite number of moves.

8/6/2009 Vira Chankong 8
EECS. CWR8U




LP: Basic Steps and Convergence
of the Simplex Method

To implement the simplex method algebraically, we must
be able to answer the following questions efficiently:

» How do we define a vertex algebraically?

Basic feasible solution (BFS)/Canonical Form/Tableau
» How do we find an initial vertex, if one exists?

2-phase/Big M method
» How do we identify a better adjacent vertex?

Most-negative coefficient rule and minimum ration rule
» How do we move from one vertex to an adjacent one?

Pivot operation (Pivot form or product form of inverse)

» How do we know when to stop? And what conclusion can we
make?

Terminating conditions
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An Algebraic View of
B Casz, the Simplex Method

Consider an LP in standard form: The corresponding dual is:
P: min c7X ) W
b « D max z= b’y
Sl AX= s.t. ATly+s=c¢
x>0 $>0

where Ae R, be R,”,ce R"

Since both P and D are linear (convex), X* is global optimal for P
and (y*,s*) is global optimal for D if they are the KKT point of
their respective problem.
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Characterizing an Optimal point
B Case of LP and its Dual

That is, (X*, y*,5*) is the primal-dual (global) solution if and only if
it satisfies the following joint KKT:

KKT: Aly +s=c (1)
Ax=Db (2)
xIs=0 (x;5,=0, foralli=1,..,n) 3)
x>0,s>0 4)
Or (X*, y*,5%) is the primal-dual optimal if and only if it satisfies
a) Primal feasibility ---Eq. (2) and x > 0 in (4)
b) Dual feasibility ---Eq. (1) and s > 0 in (4)

¢) Complementary Slackness---Eq. (3)
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Solving Linear Programs

[ CasE
BV | &

AT
Cs Cy RHS To solve an LP is therefore
T 'n-1 'p-1 .
z |0 cy=CB N ¢B'b to find a way to achieve all
x, | I B™'N b (=B"b) | three conditions (a), (b)

*Primal simplex: Maintains (a) and (c):
and (c) (by k.eepil}g canonical «Dual simplex: Maintains (b): ¢}, >0
forms at all time b=0 ) and and (c) by keeping an-almost canonical

wor.ks _toward achie.ving (b)—by form, and works toward achieving (b):
achieving nonnegative rcc’s: 5>0

¢, >0

* Primal-dual simplex: maintains (c) (by
keeping tableau forms or basic
solutions) and works toward achieving
(@b >0 and (b): €, =0 . This avoids
Phase I.
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Solving Linear Programs

@Pn (o =
|=-_..|\._;1'LOD
BV | ¢} e RHS
z 0 ch,—cB'N c¢IB'b
X, |1 B'N b (=B™b)

But by enforcing (c) in terms of canonical forms (or variants)
above, the solution path has to visit vertices of the feasible set.
Even though the cost of moving from one vertex to the next is
very cheap, but if the number of vertices to visit is very large as
in very large LPs, then the total cost may indeed be high. In fact,
theoretically, the worst-case complexity of the simplex method
is exponential (although in practice it is really rare for the
simplex method to experience the worst-case complexity).

An alternative strategy is not to maintain (c) and follow a solution
path “interior” to the feasible set— interior-point methods

8/6/2009 Vira Chankong 13
EECS. CWR13U

Caske

Interior-Point Methods
for

Large Linear Programs

Vira Chankong
Case Western Reserve University
Electrical Engineering and Computer Science
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Alternative way to Solving LPs

@1 P ACE
E Bt
Let’s relax (c) by relaxing the complementary slackness as shown:
Aly +s=c¢ (1)
Ax=Db (2)
x5, =7 foralli=1,.,n, >0 3)
x>0,s>0 4)

For any > 0, let (X,, ¥,, S,) be a solution of (1)-(4). Then the locus
of (X,, Y, S,) as 7 — O traces an interior path—named the central
path, to the optimal primal-dual solution (X*, y*,s%*).

The idea is then to solve (1)-(4) for a series of values of 7, (making
sure that 7, — 0), then we have a new class of methods for solving
LPs---interior-point methods. This class of methods can be shown
to have polynomial complexity.
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Central Path in the Primal Feasible Set
B Case _

Central Path C
={(X, Y, Sl 7

Aly +s=c¢ (1)
Ax=Db (2)

xs.=7,i=1,.,n, >0 (3)

x>0,s>0 4)

Questions:

1. Does (1)-(4) always have a solution for a given 7> 0?
2. Ifso, is it always unique?

3. If so, how can we solve (1)-(4) efficiently for a given z? ---The key
questions are how can we maintain (4) and stay in the neighborhood of
the central path C at all time, and can we numerically solve (1)-(3)
efficiently?

4. How can we vary 7 to 0 efficiently?
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- Central Path and Log-Barrier Function

To answer questions (1) and (2), we first X*
recognize that the central path C can be 3
created by solving the log-barrier function
of the primal P to prevent the solution 1
from reaching a boundary corresponding /~ C ..
tox, =0 forsomei: 77

Thus the KKT conditions for P, are :

. Ty 2N ‘ 0 n
P: min c' X rfz:;logx] T> ?i; - =% a0
. 0x,; X, o
L. Ax=b
_S . :c/—sj—Zy,ai/=0ifsj=l
Lagrangian of P_ is: = X
N S Alyss=c (i)
L(x,7)=c"x -7 logx; +y" (b— AX) ox
N o, AX=b (i)
Clearly (i)-(iv) are equivalent to oy
(1)-(4) with x;> 0, 5,> 0, for all and clearly x;5, =7, (iif)

8/6/2009 viraChankong (and x; > 0, s, > 0 for j=1,..,n (iv)  n8
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Central Path and Log-Barrier Function

ACE
Fate ) &

Thus solving (1)-(4) for

a given 7> 0 is @ @
equivalent to solving P_.

Hence if (1)-(4) has a

solution so does P,. So
the central path C can

. = =1
indeed be generated by = !
solving a family of P,
as 7 — 0.
7=20.01 (d) central path
8/6/2009 Vira Chankong 19
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B Cask Uniqueness of Solution of (1)-(4)

Moreover, if (1)-(4) has a solution then it is unique. This is seen
by showing that if P, has a minimizer then it is unique.

Assume that (1)-(4), hence (1)-(iv), has a solution (X_,y_,s,) for a
given 7 > 0, then the Hessian of L(X,Yy) with respect to X at X_is:
T/ x . 0
VIL(X,,Y,) = :
0 . T/ x>
which is clearly positive definite.
Hence, (X,,Y,,S,) is a unique global minimizer of P,
and is a unique solution of (1)-(4).
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BiCase  Existence of Solution of (1)-(4)

It can also be shown that, solution of (1)-(4)
always exists for any given 7> 0 if and only
if the primal problem P and the dual D both
have nonempty interiors.

See a sketch of the proof next slide or in Vanderbei, Linear Programming:
Foundations and Extensions, second edition, Kluwer, 2001.
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EICase  Existence of Solution of (1)-(4)

The “only if” part is trivial and not important. So we prove the “if” part.

First, for any given 7> 0, solution of (1)-(4) exists if and only if solution of the
corresponding log-barrier problem exists.
P:rrxleicnz(x):crx—‘rz;log(xj), where C = {x e R" | Ax=b,x>0}
=
Now since there exist (¥, y,§) such that x > 0, Ax = b, and

A" P +5=c,§ >0, we can rewrite z(x) for any x € C as :

22) = (A9 +8) x -7 log(x,) = (§,x, ~ 7 log(x, ))-‘-bT 5 (1)
— — ,
Thus solving P is equivaljent to solving/: min z(x) = Z (§ x; —rlog(x j))+ b’y
j=1
st.xe C‘zCr\{xe R"|z(x) < z(x)
L - |with

X X

Since 57 yis constant and each termin the summand z,(x;) is unimodal

a unique minimizer at 7/§; > 0. Hence C is closed and bounded. Since z(x) is continuous, it must have

a minimizer in C as required to be shown.
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Solving (1)-(4)—Following
the Central Path

It 1s clear then that we can follow the central
path to a solution of P and D by solving a
family of (1)-(4) for 7 —0.

Now we turn to Questions (3) and (4). The
following predictor-corrector Primal-Dual
method by Mehrotra is most popular:

8/6/2009 Vira Chankong 23
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Predictor-Corrector
BCase Primal-Dual Version
1. Given (X, y©, s©) with (x©, s®) >0, set k= 0.
2. Check for optimality: STOP if all of the following are true:
e primal feasibility: Hrlf")H = HAX”‘) - bH <g (1 + HbH)
o dual feasibility: ~ [r'] = [A"y® +s® —¢| <&, (1+]c])

e duality gap: (X“‘) )T sW<e,
3. Solve

0 A" 1)(Ax?) [ —r®
A 0 0 Ay” |=|-rP
S 0 X/l As?” —XSe

AXY
to get predicted Newton's direction | Ay
Asu/f
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Predictor-Corrector
Primal-Dual Version

aF DG " oo
. . ; . —X; . -
4. Compute predicted stepsizes: a(,’;’/””"’ =min| 1, min ; ajf;;“’ =min| I, min ——
A <0 Axﬂff iast <0 Asaf

Compute er *X‘“ + L/[);llrmlAXuH)

aff _ \,(k) dual aff
Yo =y ta, Ay

(k) duul aff

s = s+l As

T . T .
_ _ N AR (x‘“ RO
Compute estimated duality gap measure 4, =-—————; and g, =
! n

. . )
and estimated centering parameter o, = [ij

5. Solve Hi
0 A" 1)(ax —r®
A 0 0faAy|= -
S 0 X)las —XSe—-AX,,AS e+0, e
AX(I\"
to get corrected centering direction | Ay
AS(/\ )
8/6/2009 Vira Chankong 25
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Predictor-Corrector
@] Case Primal-Dual Version

L OF ENGINELN (/5) (k)
e primal _ - . dual _ - —
6. Compute full stepsizes: a2 = mln[l ’gl}?rln T )] Q' = mln[l ,f\n}fno ( k)]

Compute the shortened stepsizes to ensure strict interior (i.e. X*) > 0 and s’ > 0):

a/\pmm// _ mln(l ]70(,)/1”“//)’ a;m/ _ mil](l,l](z”f'mml); where 0.9 < n< 1

max max
Compute xE+D (0 +a/u'mm[AX(k)
(k+1) (k) dual (k)
y =y +a Ay
sk — gtk +aﬁua1As(k)

Repeat Step 2.

Notes:

1. It can be shown that a simpler version of interior-point methods
is a polynomial algorithm.

2. Predictor-corrector algorithms as above perform very well in
practice. In fact they are competitive (sometime even better
than) with the simplex method for very large LPs.
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Implementation

The most expensive steps are Steps 3 and 5, which involve solving a
system of linear equations of the form:

0 A" 1)(Ax) (-r
A 0 O0fAy|=|-r
S 0 X)jlaAs -,

Two most effective ways to solve the above system begin with the
following reduction step (eliminate AS):

ATAy + As=-T, (1)
AAX =, ©)
SAX + XAS = T, 3)
8/6/2009 Vira Chankong 27
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B Case Implementation

0 A" 1)(Ax) (-, AAy + As=-r, (O]
A 0 0flAay|=|-r| = AAX =-T, @
S 0 XJlAs -, SAX + XAs =T, 3)

To solve (1)-(3) we first eliminate AS.

From (3), As = —=X"'SAx - X',

Substituting in (1) and rearranging, —
" - uting in (1) 1 emne - This is called
ATAY = X'SAX = -1, + X7'r; = X7'SAX - ATAy =1, - X7'T, b J
AAX =, AAX —, the augmented system.
D72 _AT AX _ Xfl
= —[ "7 5| here D? =S'X (which is pd)
-A 0 J\Ay r,

2

D _ AT
Clearly [ A 0 j is symmetric and sparse (if A is).

The augmented system can be solved efficiently using
the sparse symmetric indefinite factorization (discussed elsewhere).

It is however less stable than the next method.
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EECS. CWR28U

14



Alternative method:
& Case Normal Equations
F rorn the -e;u gmented system:
[D’2 -A! }[ij ~ [r] - X"r3j
-A 0 May r,
We can use the top portion to eliminate AX :
Ax=D’A’Ay + D’ (r, - X'r,)
Substituting this in the bottom portion we obtain the normal equations :
(AD’A")Ay = -1, - AD*(r, - X'r,)
Assuming A has a full rank, i.e. rank(A) = m, and let B = AD?A,
and b = -r, — AD?(r, — X"! r;), the normal equations to be solved are:

BAy=b (1)

Note: B is pd. It is also sparse--if A is and does not have a dense column.
Thus (1) can be solved by

* Sparse Cholesky Factorization --for large LPs (in all general-purpose solvers)

* Conjugate Gradient method ---for very large dense LPs
8/6/2009 Vira Chankong 29
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& Case Recalling Cholesky Factorization

1. Find the Cholesky Factororization of pd B :
B=LL" (orLDL")
where L is lower traingular with /, > 0.

(If B is dense, this will cost about O(n*).)

2. Solve
Lz = b (forward substitution)

L"Ay = z (backward substitution)
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e
[mwa] \rAS L
2 -1
-1 3 -1
B= -1 2
-1 -1
-1
2 -1
a5 4
2
8
= 5
a7
5
R
2 5
8/6/2009
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Example of Cholesky Factorization

2 -1 -1

=
-1
-1 -1 2 -1 -1
5
S A
2 2 2 2
4 & 7 1 4 871
5 5 5 = 5 5 5
11
- 7o 1 7o 1
5 8 8 5 8 8
LA L IR D L
2 5 8 2 5 8
Bhat
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8/6/2009

2 -1

-1 3

-1

-1
-1
1

oy
2

2

5

2

5

R

2 5

-1
2
-1

Example of Cholesky Factorization

-1
-1
3
-1

-1

-1
3

Note: For each column j, j=1,..,n
L(i,j) = Bhat(i,j)/Bhat(j j), for each i = +1,...,n
D(j) = Bhat(j,/)

1 1

1 —— _—

5 2 2

2 22!

8 5 5 2

5 , 1L

11 8 8

g 1 -1

1 1

D LT
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Sparse Cholesky Factorization Method

B s o

(== CASE

If pd B = AD*A” is sparse, then we can use sparse Cholesky :

1. Apply heuristics (e.g. minimum-degree heuristics) to do symmetric
reordering of rows/columns to increase sparsity of L based on the
sparsity pattern B, which is the same as the sparsity pattern of AA”

P'BP=LDL" (orLL")
where L is a unit lower traingular with /, =1.

(For sparse B, this could cost about O(n).)

2.Solve Lz=P"b to get z
Solve L'Z=D"'z to get Z
Set Ay =PZ
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Example of Sparse Cholesky Factorization
B Case

First we reorder (symmetrically permute) the row/column with the least number
of nonzero elements (minimum degree) to the first row/column and pivot:

2 -1 -1

Next we repeat the above process on the remaining rows/columns (the bottom
left block of the (red) lines): Here we see row/column 3 and row/column 5
having the lowest degree of 3. We select row/column 3 and permute them to the
top/left of the remaining block (swapping row/column 2 and row/column 3 in
this case). After we perform the pivoting:

8/6/2009 Vira Chankong
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Example of Sparse Cholesky Factorization
E(Cacr

E.__.l LS X § o
Now we r'e-peat the process. In the remaining block (bottom left block
below/left of the (red) lines. Since each row/column has the same degree 3, we
don’t need to do any permutation for now:

2 -1 -1
a4 o2 2L
= = 2
43 onon
2 8 8
—1 ,l E 1
2 8
3 1
-1 -1 2 -2 -
= 2 2
3 11 11
-1 -2 = _=
2 8 8
1 11
-1 - -
2 8
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Example of Sparse Cholesky Factorization
B Case

1 2 -1 ~1)(1 2 -1 -1
1 -1 3 -1 -1 1 -1 2 -1 -1
1 -1 2 -1 1 = -1 3 -1
1 -1 -1 3 -1 1 -1 -1 3 -1
1)\ -1 -1 3 1 -1 -1 3
pPT P
1 | ! !
1 2 2 2
LI : L
73 73 2 2 2
13 1 11 1 31
2 4 8 4 4
IR B ! b
2 4 1
L D LT
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What to do if B is dense?

It is known that if A has a dense column, then B = AD2AT would be
dense as illustrated below:

Wl e
LS X § o

R

%
1
® ¥
*
%

¥ K N ¥ K
%
3
* W K K ¥
* K N ¥ K
* W K ¥ ¥

) i - . "’ T e % o
A D L |A B

In this case, the sparse Cholesky would be worst than the regular
Cholesky factorization. Also in this case, it may be better to work
with the augmented system and use the symmetric indefinite
factorization method, even though it may be less stable numerically
(practical experience has shown that such a scheme works well).
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Conjugate Gradients for Very Large
BCase BAy =b
This is just an application of the CG method to minimize the following
strictly convex quadratic function:

min 0.5Ay’BAy — b’ Ay
* Select an initial Ay(”=0 and d©® = -g©@=b, 1, =bb. Set k= 0.

B = AD?AT

« While k < n-1 (at this point we have d® and g®)
o If || g®||< &(1+|b][), a solution Ay* has been found.
* Otherwise, compute
g = Bd®, r, = (AW)TG®, 1, = (), and &, = ',
+ Update Ay*™D = Ay®W+ ¢, d® and gD = g0+, q®
« Compute S =(g*"V)’q®/r, and update d**D = -g**D+ B d®

» Set k=k+1, and repeat.
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Conjugate Gradients for Very Large
e L BAy =D

* Due to the Quadratic Convergent property, the iterative process
should not take more than # iteration to find the unique solution
Ay*.

» Require much less storage than the Cholesky Methods

* Faster than Cholesky for very large B = AD?AT, if BA® is cheap
(i.e. ATd® and A(D? ATd®) are cheap, which is true if A is
sparse).

» However, may be less accurate and less robust
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B Case Available Codes for Interior-Point Method

* A free MATLAB-based software
LIPSOL: Linear Programming Interior Point Solver
is available from

http://www.caam.rice.edu/~zhang/lipsol/

* Most commercial software (e.g. CPLEX) now have versions of
interior-point solvers

* Codes are easier to write than the Simplex method. So try it.
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