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Linear Programming (LP)
The Structure and Geometry of LP:

Standard Form of LP: min
. .   
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LP: The Key Observations
• LP is convex : So any optimal solution found must be 

global. (LP is convex because X is convex--see below--
and f is linear)

• An LP either has a finite optimal solution or is unbounded 
(i.e. z can be reduced indefinitely).

• The feasible set X, being an intersections of hyperplanes
and half-spaces is a polyhedron or polytope (bounded 
polyhedron). It is therefore completely characterized by a 
nonzero finite number of vertices (extreme points) and a 
finite number of extreme rays (if X is unbounded). A 
bounded X is a convex hull of its extreme points. In any 
case. X is always a convex set.
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LP: Key Observations (cont.)

• If an LP has a finite optimal value z*, at least 
one of its solutions x* must occur at one of its 
vertices (extreme points)

• Thus to search for a finite solution of an LP, it 
one exists, we only need to search among its 
finite number of vertices. This is the basis of 
the mighty SIMPLEX method.
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Basic Steps of the Simplex Method:
The Geometrical View

Search Strategy: Basic Steps of The Simplex 
Method:

Start with an initial vertex, if one exists
Identify a better adjacent vertex and move to it
Repeat until (1) no better adjacent vertex to the 
current vertex exists. The CURRENT vertex is then 
a global optimum of the LP by virtue of convexity 
of the LP, or (2) it can be seen that z can be reduced 
indefinitely within X, i.e. z is unbounded . (Note that 
for z to be unbounded, then so must X.  However the 
converse is not true.  That is X can be unbounded but 
the optimal z* is still finite)
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Convergence of the Simplex Method
Finite Convergence of the Simplex: 

If in every move made from one vertex to the next, at 
least some FINITE amount of improvement can be made 
on z, then the Simplex method will always terminate at 
an optimal vertex in a finite number of steps. 
This is because for every move made, the new vertex will 
be different from the current one. And because of the 
strictly monotone improvement on z, no vertex will be 
visited more than once.  And since there are only a finite 
number of vertices of X, an optimal vertex must be found 
in a finite number of moves. 
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LP: Basic Steps and Convergence 
of the Simplex Method

To implement the simplex method algebraically, we must 
be able to answer the following questions efficiently: 

How do we define a vertex algebraically?
Basic feasible solution (BFS)/Canonical Form/Tableau

How do we find an initial vertex, if one exists? 
2-phase/Big M method

How do we identify a better adjacent vertex?
Most-negative coefficient rule and minimum ration rule

How do we move from one vertex to an adjacent one? 
Pivot operation (Pivot form or product form of inverse)

How do we know when to stop? And what conclusion can we 
make?

Terminating conditions

8/6/2009 Vira Chankong
EECS. CWR10U

10

An Algebraic View of  
the Simplex Method

Consider an LP in standard form:

P: min  cTx

s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, b ∈ R+
m , c ∈ Rn

The corresponding dual is:

D: max z= bTy

s.t. ATy + s = c

s ≥ 0

⇔

Since both P and D are linear (convex), x* is global optimal for P 
and (y*,s*) is global optimal for D if they are the KKT point of 
their respective problem.  
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That is, (x*, y*,s*) is the primal-dual (global) solution if and only if
it satisfies the following joint KKT:

KKT: ATy + s = c (1)

Ax = b (2)

xTs = 0   (xisi = 0, for all i = 1,..,n) (3)

x ≥ 0, s ≥ 0 (4) 
Or (x*, y*,s*) is the primal-dual optimal if and only if it satisfies

a) Primal feasibility              ---Eq. (2) and x ≥ 0 in (4)

b) Dual feasibility                 ---Eq. (1) and s ≥ 0 in (4)

c) Complementary Slackness---Eq. (3)

Characterizing an Optimal point 
of LP and its Dual
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• Primal-dual simplex: maintains (c) (by 
keeping tableau forms or basic 
solutions) and works toward achieving 
(a): and (b):             .  This avoids 
Phase I.

To solve an LP is therefore 
to find a way to achieve all 
three conditions (a), (b) 
and (c):

ˆ ≥b 0

•Primal simplex: Maintains (a) 
and (c) (by keeping canonical 
forms at all time          ) and 
works toward achieving (b)—by 
achieving nonnegative rcc’s: 
ˆT

N ≥c 0

ˆT
N ≥c 0ˆ ≥b 0

ˆ ≥b 0

•Dual simplex: Maintains (b):           
and (c) by keeping an-almost canonical 
form, and works toward achieving (b): 

ˆT
N ≥c 0

Solving Linear Programs
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ˆ ˆBV                                      RHS

ˆ                                    

    

       = 

    T T T
N B

B

B

T T
B N

z −

−

−

−

−0 c c B N c

c c

x I B N b B

B

b

b

But by enforcing (c) in terms of canonical forms (or variants) 
above, the solution path has to visit vertices of the feasible set. 
Even though the cost of moving from one vertex to the next is 
very cheap, but if the number of vertices to visit is very large as 
in very large LPs, then the total cost may indeed be high. In fact, 
theoretically, the worst-case complexity of the simplex method 
is exponential (although in practice it is really rare for the 
simplex method to experience the worst-case complexity).   

Solving Linear Programs

An alternative strategy is not to maintain (c) and follow a solution 
path “interior” to the feasible set— interior-point methods
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Interior-Point Methods
forfor

Large Linear ProgramsLarge Linear Programs

Vira Chankong
Case Western Reserve University

Electrical Engineering and Computer Science
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Let’s relax (c) by relaxing the complementary slackness as shown: 
ATy + s = c (1)

Ax = b (2)

xisi = τ for all i = 1,..,n, τ > 0               (3)

x > 0, s > 0 (4) 
For any τ > 0, let (xτ, yτ, sτ) be a solution of (1)-(4).  Then the locus 
of (xτ, yτ, sτ) as τ → 0 traces an interior path—named the central 
path, to the optimal primal-dual solution (x*, y*,s*).

The idea is then to solve (1)-(4) for a series of values of τk (making 
sure that τk → 0), then we have a new class of methods for solving 
LPs---interior-point methods. This class of methods can be shown 
to have polynomial complexity.

Alternative way to Solving LPs
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Central Path in the Primal Feasible Set

C

x*
Central Path C

= {(xτ, yτ, sτ)| τ > 0}

Questions:

1. Does (1)-(4) always have a solution for a given τ > 0?

2. If so, is it always unique?

3. If so, how can we solve (1)-(4) efficiently for a given τ? ---The key 
questions are how can we maintain (4) and stay in the neighborhood of 
the central path C at all time, and can we numerically solve (1)-(3) 
efficiently? 

4. How can we vary τ to 0 efficiently?

ATy + s = c (1)

Ax = b (2)

xisi = τ , i = 1,..,n,  τ > 0  (3)

x > 0, s > 0 (4)
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Central Path and Log-Barrier Function

C

x*To answer questions (1) and (2), we first 
recognize that the central path C can be 
created by solving the log-barrier function 
of the primal P to prevent the solution 
from reaching a boundary corresponding 
to xi = 0 for some i:

1

P :     min  log

            . .     

n
T

j
j

x

s t

τ τ
=

− ∑c x

Ax = b

( )

 

1

Lagrangian of P is:

( , ) log
n

T T
j

j
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τ

τ τ
=

= − + −∑x c x y b Ax

 

1
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Thus the KKT conditions for P are :

:   0

0  if 

:                  (i)

:                             (ii)

and clearly   ,             
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 (iii)

and 0,  0 for =1,..,  (iv)      j jx s j n> >

Clearly (i)-(iv) are equivalent to 
(1)-(4) with xj > 0, sj > 0, for all j

τ > 0
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Central Path and Log-Barrier Function

Thus solving (1)-(4) for 
a given τ > 0 is 
equivalent to solving Pτ. 
Hence if (1)-(4) has a 
solution so does Pτ.  So 
the central path C can 
indeed be generated by 
solving a family of Pτ
as τ → 0. 

τ = 0.01

τ
τ

τ = ∞ τ = 1

τ= ∞
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Uniqueness of Solution of (1)-(4)
Moreover, if (1)-(4) has a solution then it is unique.  This is seen 
by showing that if Pτ has a minimizer then it is unique.

2
1

2

2

Assume that (1)-(4), hence (i)-(iv), has a solution ( , , ) for a
 given  > 0, then the Hessian of ( , ) with respect to  at is

. 0
   ( , ) . . .

0 .

:

     

n

x
L

x

L

τ

τ

τ

τ τ

τ

τ

τ

τ

⎛ ⎞
⎜ ⎟∇ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

x y
x y x

x y

s
x

which is clearly positive definite.  
Hence, ( , , ) is a unique global minimizer of P
and is a unique solution of (1)-(4).

τ τ τ τx y s
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It can also be shown that, solution of (1)-(4) 
always exists for any given τ > 0 if and only 
if  the primal problem P and the dual D both 
have nonempty interiors.

Existence of Solution of (1)-(4)

See a sketch of the proof next slide or in Vanderbei, Linear Programming: 
Foundations and Extensions, second edition, Kluwer, 2001.
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The “only if” part is trivial and not important. So we prove the “if” part.

First, for any given τ > 0, solution of (1)-(4) exists if and only if solution of the 
corresponding log-barrier problem exists.

Existence of Solution of (1)-(4)
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It is clear then that we can follow the central 
path to a solution of P and D by solving a 
family of (1)-(4) for τ→0. 

Now we turn to Questions (3) and (4).  The 
following predictor-corrector Primal-Dual 
method by Mehrotra is most popular:

Solving (1)-(4)—Following 
the Central Path
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1. Given (x(0), y(0), s(0)) with (x(0), s(0)) > 0, set k = 0.

2. Check for optimality: STOP if all of the following are true:

Predictor-Corrector 
Primal-Dual Version

( )
( )

( )

( ) ( )
1

( ) ( ) ( )
2

( ) ( )
3

 primal feasibility: 1

 dual feasibility:     1

 duality gap:     

k k
b

k T k k
c

Tk k

ε

ε

ε

• = − ≤ +

• = + − ≤ +

• ≤

r Ax b b

r A y s c c

x s

( )

( )

3.  Solve

                  

                 to get predicted Newton's direction 

T aff k
c

aff k
b

aff

aff

aff

aff

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞Δ
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s XSe

x
y
s
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Predictor-Corrector 
Primal-Dual Version

( ) ( )

: 0 : 0
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Predictor-Corrector 
Primal-Dual Version

(

( ) ( )

max ( ) ( ): 0

)

: 0
6.  Compute : 
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k dual k
kα= + Δs s

Notes:

1. It can be shown that a simpler version of interior-point methods 
is a polynomial algorithm.

2. Predictor-corrector algorithms as above perform very well in 
practice.  In fact they are competitive (sometime even better 
than) with the simplex method for very large LPs.
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Implementation
The most expensive steps are Steps 3 and 5, which involve solving a 
system of linear equations of the form:

1

2

3

T⎛ ⎞ Δ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ −⎝ ⎠ ⎝ ⎠⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s r

Two most effective ways to solve the above system begin with the
following reduction step (eliminate Δs):

1

2

3

                         (1)
                                  (2)
                        (3)

T Δ + Δ = −
Δ = −
Δ + Δ = −

A y s r
A x r
S x X s r
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Implementation
1

2

3

  

T⎛ ⎞ Δ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = − ⇒⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ −⎝ ⎠ ⎝ ⎠⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s r

To solve (1)-(3) we first eliminate Δs.

1

2

3

                        (1)
                                 (2)
                       (3)

T Δ + Δ = −
Δ = −
Δ + Δ = −

A y s r
A x r
S x X s r

1 1
3

1 1 1 1
1 3 1 3

2 2

2

From (3), 
Substituting in (1) and rearranging, 
   
                                                         

T

T

T

− −

− −

−

− −

Δ = − Δ −

Δ − Δ = − + ⇒ Δ − Δ

⎛ ⎞−

= −
Δ = −

⎜ ⎟
−

Δ = −

Δ⎛
⇒

⎝ ⎠ Δ

s X S x X r

A y X S x r X r X S x A y r X r
A x r

D

A

A

x r

x
0 yA

1
2 11 3

2

where  (which is )pd
−

−⎛ ⎞−⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

r X r
D S X

r

2

Clearly is symmetric and sparse (if  is).  

The augmented system can be solved efficiently using
 the  (discussed elsewh  ere). 
It is however les

 

 
s

 
T

sparse symmetric indefinite factorization

−⎛ ⎞−
⎜ ⎟

−⎝ ⎠
A

D A
A 0

 stable than the next method.

This is called 
 the . augmented system
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Alternative method: 
Normal Equations

Assuming A has a full rank, i.e. rank(A) = m, and let B = AD2AT, 
and b = -r2 – AD2(r1 – X-1 r3), the normal equations to be solved are:

BΔy = b (1)

( )

1
1 3

2

1
1 3

2

2 2

From the augmented system:

We can use the top portion to eliminate  :

    

Substituting this in the bottom portion we obtain the 

      
T

T

norm

−

−

−⎛ ⎞−
⎜ ⎟−⎝ ⎠

+

Δ ⎛ ⎞−⎛ ⎞
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

Δ

Δ = Δ −

D A
A 0

D A

x r X r
y r

x

x y r X rD

( ) ( )2 2 1
2 1 3      

:

 

 

 T

al equations
−Δ = − − −AD y r AD r X rA

Note: B is pd. It is also sparse--if A is and does not have a dense column.  
Thus (1) can be solved by 

• Sparse Cholesky Factorization --for large LPs (in all general-purpose solvers)

• Conjugate Gradient method ---for very large dense LPs
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Recalling Cholesky Factorization

3

    

1. Fi

where

nd the Cho

  is low

lesky Factororizat

er traingular with

ion of  :
                        

 (If  is dense, this will cost about ( ).)

       (or 
0.  

  

)

i

T

i

T

O

pd

l

n

=
>

B

B
B LL LDL

L

2. Solve 
             (forward substitution)
             (backward substitution)T

=

Δ =

Lz b
L y z
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Example of Cholesky Factorization

2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟= − −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

B

5 1

2 2

1 5

2 2

2 1 1

1 1 1

1 2 1
1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟⇒ − −
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 13 6

5 5 5
1 1 6 5

2 5 5 2

2 1 1

1 1 1

1

1

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 11 11

5 8 8
1 1 11 19

2 5 8 8

2 1 1

1 1 1

1

1

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 11 11

5 8 8
1 1 11

2 5 8

2 1 1

1 1 1

1

1

1 1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

1

2
7 1

5 5
7 1

5

2
8

5
1

5 8

1

1 1 11

2 5

1

8

8

1 1

1 1 1

1

1

1

2

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜
⎝ ⎠

⇒

⎟

Bhat
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Example of Example of CholeskyCholesky FactorizationFactorization
2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟= − −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

B

1 1
1 2 2
2 2 2 1

2 5 5 2
5 7 1
2 7 8 8

5

2
8

5
11

8
5 8

1 1 1

2 5 8

1
1

1

1
1

1

2

1

1
1 1

11 1

− −
−

− − −
−

− −
− −

− − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=

L D LT

Note: For each column j, j=1,..,n

L(i,j) = Bhat(i,j)/Bhat(j,j), for each i = j +1,..,n

D(j,j) = Bhat(j,j)
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Sparse Sparse CholeskyCholesky Factorization MethodFactorization Method
2If   is sparse, then we can use sparse Cholesky :

1.  Apply heuristics (e.g. minimum-degree heuristics) to do symmetric 
     reordering of rows/columns to increase sparsity of  based on the 
  

Tpd =B AD A

L
   sparsity pattern ,  which is the same as the sparsity pattern of 

                      
    where  is a unit lower traingular
 (For sparse , this could c

 with 1.  
        (or 

  

)

T

T

i

T T

il
=

=

B AA
P BP L

B

DL LL
L

ost about ( ).)O n

1

2. Solve  to get 
    Solve  to get 
    Set 

T

T −

=

=
Δ =

Lz P b z
L z D z z

y Pz
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Example of Sparse Example of Sparse CholeskyCholesky FactorizationFactorization

2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

5 1

2 2

1 5

2 2

2 1 1

1 1 1

1 2 1
1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟⇒ − −
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

First we reorder (symmetrically permute) the row/column with the least number 
of nonzero elements (minimum degree) to the first row/column and pivot:

Next we repeat the above process on the remaining rows/columns (the bottom 
left block of the (red) lines): Here we see row/column 3 and row/column 5 
having the lowest degree of 3.  We select row/column 3 and permute them to the 
top/left of the remaining block (swapping row/column 2 and row/column 3 in 
this case).  After we perform the pivoting:

5 1

2 2

1 5

2 2

2 1 1
2 1 1

1 1 1

1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− − −⎜ ⎟⇒
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

3 1

2 2
3 5

2 2
1 5

2 2

2 1 1
2 1 1

1 1 2

1 1

1 1

− −

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎝ ⎠
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Now we repeat the process.  In the remaining block (bottom left block 
below/left of the (red) lines.  Since each row/column has the same degree 3, we 
don’t need to do any permutation for now:

3 1

2 2
3 5

2 2
1 5

2 2

2 1 1
2 1 1

1 1 2

1 1

1 1

− −

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎝ ⎠

3 1

2 2
3 11 11

2 8 8
1 11 19

2 8 8

2 1 1
2 1 1

1 1 2

1

1

− −

− −

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

3 1

2 2
3 11 11

2 8 8
1 11

1
2 8

2 1 1
2 1 1

1 1 2

1

1

− −

− −

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

11

8

11

8

1
11

3 1

2 2
3

2
1

2 8

2 1 1
1 1

1 1

1

1

2

2

−

− −

−

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

⇒
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1 1
1 1

1 1
1 1

1 1

2 1 1
1 3 1

2 1 1
1 2 1 1

1 3 1
1 1 3 1

1 1

1
1 2 1
1 1 1

1 1 3
3

3

⎛ ⎞ ⎛− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −

⎞
⎜ ⎟

⎜ ⎟− − −⎜ ⎟
⎜ ⎟−

⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎠⎠ −⎝

1 1

2 2
1 11 1
2 22 2

3 11 3
4 42 4

11 1
1

2

2

2

11

8
1

4

1 121

11

11

1
1 1

− −

− −− −

− −− −

−
− − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝

=

⎠ ⎝ ⎠

L D LT

PPT B

Example of Sparse Example of Sparse CholeskyCholesky FactorizationFactorization
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What to do if B is dense?
It is known that if A has a dense column, then B = AD2AT would be 
dense as illustrated below: 

In this case, the sparse Cholesky would be worst than the regular 
Cholesky factorization. Also in this case, it may be better to work 
with the augmented system and use the symmetric indefinite 
factorization method, even though it may be less stable numerically 
(practical experience has shown that such a scheme works well).

A D2 AT
B
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Conjugate Gradients for Very Large Conjugate Gradients for Very Large 
BBΔΔyy = b= b

This is just an application of the CG method to minimize the following 
strictly convex quadratic function:

min 0.5ΔyTBΔy –– bbT Δy

• Select an initial Δy(0)=0 and d(0) = -g(0)= b, μ0 = bTb. Set k = 0.

• While k ≤ n-1 (at this point we have d(k) and g(k))

• If || g(k)||< ε(1+||b||), a solution Δy* has been found.

• Otherwise, compute

q(k) = Bd(k), rk = (d(k))Tq(k), μk = (g(k))Tg(k), and αk = μk/rk

• Update Δy(k+1) = Δy(k)+ αkd(k) and g(k+1) = g(k)+αkq(k)

• Compute  βk = (g(k+1))Tq(k)/rk and update d(k+1) = -g(k+1)+ βkd(k)

• Set k = k+1, and repeat.

B = AD2AT
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• Due to the Quadratic Convergent property, the iterative process 
should not take more than n iteration to find the unique solution 
Δy*.

• Require much less storage than the Cholesky Methods

• Faster than Cholesky for very large B = AD2AT, if Bd(k) is cheap 
(i.e. ATd(k) and A(D2 ATd(k)) are cheap, which is true if A is 
sparse).

• However, may be less accurate and less robust

Conjugate Gradients for Very Large Conjugate Gradients for Very Large 
BBΔΔyy = b= b
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Available Codes for Interior-Point Method

• A free MATLAB-based software

LIPSOL: Linear Programming Interior Point Solver 

is available from

http://www.caam.rice.edu/~zhang/lipsol/

• Most commercial software (e.g. CPLEX) now have versions of 
interior-point solvers

• Codes are easier to write than the Simplex method.  So try it.


