
1

8/6/2009 Vira Chankong
EECS. CWR1U

1

Numerical Optimization

Instructor: Vira Chankong
Electrical Engineering and Computer Science
Case Western Reserve University

Phone: 216 368 4054, Fax: 216 368 3123
E-mail: vira@case.edu

A Workshop
At

Department of Mathematics
Chiang Mai University

August 4-15, 2009

8/6/2009 Vira Chankong
EECS. CWR2U

2Vira Chankong
EECS. CWRU

2

Session:
Methods For Constrained Linear
Optimization Problems (LP)

Vira ChankongVira Chankong
Case Western Reserve UniversityCase Western Reserve University

Electrical Engineering and Computer ScienceElectrical Engineering and Computer Science

2

8/6/2009 Vira Chankong
EECS. CWR3U

3

NEOS Guide Optimization Tree

8/6/2009 Vira Chankong
EECS. CWR4U

4

Linear Programming (LP)
The Structure and Geometry of LP:

Standard Form of LP: min
. .

Tz
s t

=
=
≥

c x
Ax b

x 0

; ;
Assume: i) (for a meaningful/interesting LP problem)
 ii) () (i.e. no redundant constraints)

n

m n m n

R
R R R

m n
rank m

×
+

∈

∈ ∈ ∈
<

=

x
A b c

A

X ⊆ Rn

3

8/6/2009 Vira Chankong
EECS. CWR5U

5

LP: The Key Observations
• LP is convex : So any optimal solution found must be

global. (LP is convex because X is convex--see below--
and f is linear)

• An LP either has a finite optimal solution or is unbounded
(i.e. z can be reduced indefinitely).

• The feasible set X, being an intersections of hyperplanes
and half-spaces is a polyhedron or polytope (bounded
polyhedron). It is therefore completely characterized by a
nonzero finite number of vertices (extreme points) and a
finite number of extreme rays (if X is unbounded). A
bounded X is a convex hull of its extreme points. In any
case. X is always a convex set.

8/6/2009 Vira Chankong
EECS. CWR6U

6

LP: Key Observations (cont.)

• If an LP has a finite optimal value z*, at least
one of its solutions x* must occur at one of its
vertices (extreme points)

• Thus to search for a finite solution of an LP, it
one exists, we only need to search among its
finite number of vertices. This is the basis of
the mighty SIMPLEX method.

4

8/6/2009 Vira Chankong
EECS. CWR7U

7

Basic Steps of the Simplex Method:
The Geometrical View

Search Strategy: Basic Steps of The Simplex
Method:

Start with an initial vertex, if one exists
Identify a better adjacent vertex and move to it
Repeat until (1) no better adjacent vertex to the
current vertex exists. The CURRENT vertex is then
a global optimum of the LP by virtue of convexity
of the LP, or (2) it can be seen that z can be reduced
indefinitely within X, i.e. z is unbounded . (Note that
for z to be unbounded, then so must X. However the
converse is not true. That is X can be unbounded but
the optimal z* is still finite)

8/6/2009 Vira Chankong
EECS. CWR8U

8

Convergence of the Simplex Method
Finite Convergence of the Simplex:

If in every move made from one vertex to the next, at
least some FINITE amount of improvement can be made
on z, then the Simplex method will always terminate at
an optimal vertex in a finite number of steps.
This is because for every move made, the new vertex will
be different from the current one. And because of the
strictly monotone improvement on z, no vertex will be
visited more than once. And since there are only a finite
number of vertices of X, an optimal vertex must be found
in a finite number of moves.

5

8/6/2009 Vira Chankong
EECS. CWR9U

9

LP: Basic Steps and Convergence
of the Simplex Method

To implement the simplex method algebraically, we must
be able to answer the following questions efficiently:

How do we define a vertex algebraically?
Basic feasible solution (BFS)/Canonical Form/Tableau

How do we find an initial vertex, if one exists?
2-phase/Big M method

How do we identify a better adjacent vertex?
Most-negative coefficient rule and minimum ration rule

How do we move from one vertex to an adjacent one?
Pivot operation (Pivot form or product form of inverse)

How do we know when to stop? And what conclusion can we
make?

Terminating conditions

8/6/2009 Vira Chankong
EECS. CWR10U

10

An Algebraic View of
the Simplex Method

Consider an LP in standard form:

P: min cTx

s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, b ∈ R+
m , c ∈ Rn

The corresponding dual is:

D: max z= bTy

s.t. ATy + s = c

s ≥ 0

⇔

Since both P and D are linear (convex), x* is global optimal for P
and (y*,s*) is global optimal for D if they are the KKT point of
their respective problem.

6

8/6/2009 Vira Chankong
EECS. CWR11U

11

That is, (x*, y*,s*) is the primal-dual (global) solution if and only if
it satisfies the following joint KKT:

KKT: ATy + s = c (1)

Ax = b (2)

xTs = 0 (xisi = 0, for all i = 1,..,n) (3)

x ≥ 0, s ≥ 0 (4)
Or (x*, y*,s*) is the primal-dual optimal if and only if it satisfies

a) Primal feasibility ---Eq. (2) and x ≥ 0 in (4)

b) Dual feasibility ---Eq. (1) and s ≥ 0 in (4)

c) Complementary Slackness---Eq. (3)

Characterizing an Optimal point
of LP and its Dual

8/6/2009 Vira Chankong
EECS. CWR12U

12

()1 1

1 1

ˆ ˆBV RHS

ˆ

 =

 T T T
N B

B

B

T T
B N

z −

−

−

−

−0 c c B N c

c c

x I B N b B

B

b

b

• Primal-dual simplex: maintains (c) (by
keeping tableau forms or basic
solutions) and works toward achieving
(a): and (b): . This avoids
Phase I.

To solve an LP is therefore
to find a way to achieve all
three conditions (a), (b)
and (c):

ˆ ≥b 0

•Primal simplex: Maintains (a)
and (c) (by keeping canonical
forms at all time) and
works toward achieving (b)—by
achieving nonnegative rcc’s:
ˆT

N ≥c 0

ˆT
N ≥c 0ˆ ≥b 0

ˆ ≥b 0

•Dual simplex: Maintains (b):
and (c) by keeping an-almost canonical
form, and works toward achieving (b):

ˆT
N ≥c 0

Solving Linear Programs

7

8/6/2009 Vira Chankong
EECS. CWR13U

13

()1 1

1 1

ˆ ˆBV RHS

ˆ

 =

 T T T
N B

B

B

T T
B N

z −

−

−

−

−0 c c B N c

c c

x I B N b B

B

b

b

But by enforcing (c) in terms of canonical forms (or variants)
above, the solution path has to visit vertices of the feasible set.
Even though the cost of moving from one vertex to the next is
very cheap, but if the number of vertices to visit is very large as
in very large LPs, then the total cost may indeed be high. In fact,
theoretically, the worst-case complexity of the simplex method
is exponential (although in practice it is really rare for the
simplex method to experience the worst-case complexity).

Solving Linear Programs

An alternative strategy is not to maintain (c) and follow a solution
path “interior” to the feasible set— interior-point methods

8/6/2009 Vira Chankong
EECS. CWR14U

14

Interior-Point Methods
forfor

Large Linear ProgramsLarge Linear Programs

Vira Chankong
Case Western Reserve University

Electrical Engineering and Computer Science

8

8/6/2009 Vira Chankong
EECS. CWR15U

15

Let’s relax (c) by relaxing the complementary slackness as shown:
ATy + s = c (1)

Ax = b (2)

xisi = τ for all i = 1,..,n, τ > 0 (3)

x > 0, s > 0 (4)
For any τ > 0, let (xτ, yτ, sτ) be a solution of (1)-(4). Then the locus
of (xτ, yτ, sτ) as τ → 0 traces an interior path—named the central
path, to the optimal primal-dual solution (x*, y*,s*).

The idea is then to solve (1)-(4) for a series of values of τk (making
sure that τk → 0), then we have a new class of methods for solving
LPs---interior-point methods. This class of methods can be shown
to have polynomial complexity.

Alternative way to Solving LPs

8/6/2009 Vira Chankong
EECS. CWR16U

16

Central Path in the Primal Feasible Set

C

x*
Central Path C

= {(xτ, yτ, sτ)| τ > 0}

Questions:

1. Does (1)-(4) always have a solution for a given τ > 0?

2. If so, is it always unique?

3. If so, how can we solve (1)-(4) efficiently for a given τ? ---The key
questions are how can we maintain (4) and stay in the neighborhood of
the central path C at all time, and can we numerically solve (1)-(3)
efficiently?

4. How can we vary τ to 0 efficiently?

ATy + s = c (1)

Ax = b (2)

xisi = τ , i = 1,..,n, τ > 0 (3)

x > 0, s > 0 (4)

9

8/6/2009 Vira Chankong
EECS. CWR17U

17

8/6/2009 Vira Chankong
EECS. CWR18U

18

Central Path and Log-Barrier Function

C

x*To answer questions (1) and (2), we first
recognize that the central path C can be
created by solving the log-barrier function
of the primal P to prevent the solution
from reaching a boundary corresponding
to xi = 0 for some i:

1

P : min log

 . .

n
T

j
j

x

s t

τ τ
=

− ∑c x

Ax = b

()

1

Lagrangian of P is:

(,) log
n

T T
j

j

L x

τ

τ τ
=

= − + −∑x c x y b Ax

1

1

Thus the KKT conditions for P are :

: 0

0 if

: (i)

: (ii)

and clearly ,

m

j i ij
ij j

m

j j i ij j
i j

T

j j

L c y a
x x

c s y a s
x

L

L

x s

τ

τ

τ

τ

=

=

∂
− − =

∂

⇒ − − = =

∂
⇒

∂
∂
∂

=

∑

∑

A y + s = c
x

 Ax = b
y

 (iii)

and 0, 0 for =1,.., (iv) j jx s j n> >

Clearly (i)-(iv) are equivalent to
(1)-(4) with xj > 0, sj > 0, for all j

τ > 0

10

8/6/2009 Vira Chankong
EECS. CWR19U

19

Central Path and Log-Barrier Function

Thus solving (1)-(4) for
a given τ > 0 is
equivalent to solving Pτ.
Hence if (1)-(4) has a
solution so does Pτ. So
the central path C can
indeed be generated by
solving a family of Pτ
as τ → 0.

τ = 0.01

τ
τ

τ = ∞ τ = 1

τ= ∞

8/6/2009 Vira Chankong
EECS. CWR20U

20

Uniqueness of Solution of (1)-(4)
Moreover, if (1)-(4) has a solution then it is unique. This is seen
by showing that if Pτ has a minimizer then it is unique.

2
1

2

2

Assume that (1)-(4), hence (i)-(iv), has a solution (, ,) for a
 given > 0, then the Hessian of (,) with respect to at is

. 0
 (,) . . .

0 .

:

n

x
L

x

L

τ

τ

τ

τ τ

τ

τ

τ

τ

⎛ ⎞
⎜ ⎟∇ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

x y
x y x

x y

s
x

which is clearly positive definite.
Hence, (, ,) is a unique global minimizer of P
and is a unique solution of (1)-(4).

τ τ τ τx y s

11

8/6/2009 Vira Chankong
EECS. CWR21U

21

It can also be shown that, solution of (1)-(4)
always exists for any given τ > 0 if and only
if the primal problem P and the dual D both
have nonempty interiors.

Existence of Solution of (1)-(4)

See a sketch of the proof next slide or in Vanderbei, Linear Programming:
Foundations and Extensions, second edition, Kluwer, 2001.

8/6/2009 Vira Chankong
EECS. CWR22U

22

The “only if” part is trivial and not important. So we prove the “if” part.

First, for any given τ > 0, solution of (1)-(4) exists if and only if solution of the
corresponding log-barrier problem exists.

Existence of Solution of (1)-(4)

}0,|{ where,)log()(min:
1

≥=∈=−= ∑
=

∈
xbAxRxCxxcxzP n

n

j
j

T

Cx
τ

() (1) ˆ)log(ˆ)log()ˆˆ()(

:as any for)(rewritecan we,0ˆ,ˆˆ
and ,ˆ,0ˆsuch that)ˆ,ˆ,ˆ(exist theresince Now

11
∑∑

==

−−=−+=

∈>=+

=>

n

j

T
jjj

n

j
j

TT

T

ybxxsxxsyAxz

CxxzscsyA
bxAxsyx

ττ

()

)}ˆ()(|{ˆ ..

 ˆ)log(ˆ)(min:solving toequivalent is solving Thus
1

xzxzRxCCxts

ybxxsxzP

n

n

j

T
jjj

≤∈∩=∈

−−= ∑
=

τ

shown. be torequired as ˆin minimizer a

havemust it ,continuous is)(Since bounded. and closed is ˆ Hence .0ˆat minimizer unique a

with ˆ unimodal is)(summand in the each term andconstant is ˆˆ Since

C

xzCsτ/

x
s

dx
dz

xzyb

j

j
j

j

j
jj

T

>

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

τ

12

8/6/2009 Vira Chankong
EECS. CWR23U

23

It is clear then that we can follow the central
path to a solution of P and D by solving a
family of (1)-(4) for τ→0.

Now we turn to Questions (3) and (4). The
following predictor-corrector Primal-Dual
method by Mehrotra is most popular:

Solving (1)-(4)—Following
the Central Path

8/6/2009 Vira Chankong
EECS. CWR24U

24

1. Given (x(0), y(0), s(0)) with (x(0), s(0)) > 0, set k = 0.

2. Check for optimality: STOP if all of the following are true:

Predictor-Corrector
Primal-Dual Version

()
()

()

() ()
1

() () ()
2

() ()
3

 primal feasibility: 1

 dual feasibility: 1

 duality gap:

k k
b

k T k k
c

Tk k

ε

ε

ε

• = − ≤ +

• = + − ≤ +

• ≤

r Ax b b

r A y s c c

x s

()

()

3. Solve

 to get predicted Newton's direction

T aff k
c

aff k
b

aff

aff

aff

aff

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞Δ
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s XSe

x
y
s

13

8/6/2009 Vira Chankong
EECS. CWR25U

25

Predictor-Corrector
Primal-Dual Version

() ()

: 0 : 0

()

(

predicted stepsizes min 1, min ; min 1, min4. Comput

e :

 Compute

aff aff
i i

k k
primal duali i
aff affaff affi x i s

i i

aff k primal aff
aff

aff

x s
x s

α

α α
Δ < Δ <

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝

+
⎠

= Δ

=

x x x

y y

() ()()

)

()

()

3

 Compute estimated measure

 and estimated

duality

centeri parameter

gap ; a

n

nd

g

T

k dual aff
aff

aff k dual aff
aff

af

Taff aff k k

aff k

f
k

k

n n
μ

σ

μ

α

α

μ

μ =

+ Δ

= + Δ

⎛ ⎞
= ⎜ ⎟

⎠

=

⎝

y

x s s

s

x

s s

(

()

()

(

)

)

)

(

corrected ce

5. Solve

 ntering d to irectget i n o

T k
c

k
b

aff aff

k

k k

k

k

σ μ

⎛ ⎞ ⎛ ⎞Δ −⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟Δ − − Δ Δ +⎝

⎛ ⎞Δ
⎜ ⎟

⎠⎝

Δ⎜ ⎟
⎜ ⎟
⎝

⎝ ⎠

Δ

⎠

⎠

0 A I x r
A 0 0 y r
S 0 X s XSe

x
y
s

X S e e

8/6/2009 Vira Chankong
EECS. CWR26U

26

Predictor-Corrector
Primal-Dual Version

(

() ()

max () (): 0

)

: 0
6. Compute :

 Compute the to ensure stshortened ste

full stepsizes min

rict interior (i.e.

1, min ; min 1, m

psi

i

z s

n

e

aff aff
i i

k k
primal duali i

affk k

k

i x i s
i i

x s
x s

α α
Δ < Δ <

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟Δ Δ

>

⎝ ⎠ ⎝ ⎠

x

() ()
(

m

1

ax max

) () ()

(1) () ()

)

1

(

(

0 and 0) :

 where 0.9 < 1

 Compute

min 1, ; min

,

1 ; primal primal

k k p

dual primal
k

rimal k
k

k k dual k
k

k

k

kα ηα α ηα

α

α

η
+

+

+

= =

= +

>

Δ

= + Δ

≤

x x x

y y y

s

s

) () ()

 Repeat Ste

p 2.

k dual k
kα= + Δs s

Notes:

1. It can be shown that a simpler version of interior-point methods
is a polynomial algorithm.

2. Predictor-corrector algorithms as above perform very well in
practice. In fact they are competitive (sometime even better
than) with the simplex method for very large LPs.

14

8/6/2009 Vira Chankong
EECS. CWR27U

27

Implementation
The most expensive steps are Steps 3 and 5, which involve solving a
system of linear equations of the form:

1

2

3

T⎛ ⎞ Δ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ −⎝ ⎠ ⎝ ⎠⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s r

Two most effective ways to solve the above system begin with the
following reduction step (eliminate Δs):

1

2

3

 (1)
 (2)
 (3)

T Δ + Δ = −
Δ = −
Δ + Δ = −

A y s r
A x r
S x X s r

8/6/2009 Vira Chankong
EECS. CWR28U

28

Implementation
1

2

3

T⎛ ⎞ Δ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ = − ⇒⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ −⎝ ⎠ ⎝ ⎠⎝ ⎠

0 A I x r
A 0 0 y r
S 0 X s r

To solve (1)-(3) we first eliminate Δs.

1

2

3

 (1)
 (2)
 (3)

T Δ + Δ = −
Δ = −
Δ + Δ = −

A y s r
A x r
S x X s r

1 1
3

1 1 1 1
1 3 1 3

2 2

2

From (3),
Substituting in (1) and rearranging,

T

T

T

− −

− −

−

− −

Δ = − Δ −

Δ − Δ = − + ⇒ Δ − Δ

⎛ ⎞−

= −
Δ = −

⎜ ⎟
−

Δ = −

Δ⎛
⇒

⎝ ⎠ Δ

s X S x X r

A y X S x r X r X S x A y r X r
A x r

D

A

A

x r

x
0 yA

1
2 11 3

2

where (which is)pd
−

−⎛ ⎞−⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

r X r
D S X

r

2

Clearly is symmetric and sparse (if is).

The augmented system can be solved efficiently using
 the (discussed elsewh ere).
It is however les

s

T

sparse symmetric indefinite factorization

−⎛ ⎞−
⎜ ⎟

−⎝ ⎠
A

D A
A 0

 stable than the next method.

This is called
 the . augmented system

15

8/6/2009 Vira Chankong
EECS. CWR29U

29

Alternative method:
Normal Equations

Assuming A has a full rank, i.e. rank(A) = m, and let B = AD2AT,
and b = -r2 – AD2(r1 – X-1 r3), the normal equations to be solved are:

BΔy = b (1)

()

1
1 3

2

1
1 3

2

2 2

From the augmented system:

We can use the top portion to eliminate :

Substituting this in the bottom portion we obtain the

T

T

norm

−

−

−⎛ ⎞−
⎜ ⎟−⎝ ⎠

+

Δ ⎛ ⎞−⎛ ⎞
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

Δ

Δ = Δ −

D A
A 0

D A

x r X r
y r

x

x y r X rD

() ()2 2 1
2 1 3

:

 T

al equations
−Δ = − − −AD y r AD r X rA

Note: B is pd. It is also sparse--if A is and does not have a dense column.
Thus (1) can be solved by

• Sparse Cholesky Factorization --for large LPs (in all general-purpose solvers)

• Conjugate Gradient method ---for very large dense LPs

8/6/2009 Vira Chankong
EECS. CWR30U

30

Recalling Cholesky Factorization

3

1. Fi

where

nd the Cho

 is low

lesky Factororizat

er traingular with

ion of :

 (If is dense, this will cost about ().)

 (or
0.

)

i

T

i

T

O

pd

l

n

=
>

B

B
B LL LDL

L

2. Solve
 (forward substitution)
 (backward substitution)T

=

Δ =

Lz b
L y z

16

8/6/2009 Vira Chankong
EECS. CWR31U

31

Example of Cholesky Factorization

2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟= − −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

B

5 1

2 2

1 5

2 2

2 1 1

1 1 1

1 2 1
1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟⇒ − −
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 13 6

5 5 5
1 1 6 5

2 5 5 2

2 1 1

1 1 1

1

1

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 11 11

5 8 8
1 1 11 19

2 5 8 8

2 1 1

1 1 1

1

1

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

5 1

2 2
8 7 1

5 5 5
7 11 11

5 8 8
1 1 11

2 5 8

2 1 1

1 1 1

1

1

1 1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟⇒ ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

1

2
7 1

5 5
7 1

5

2
8

5
1

5 8

1

1 1 11

2 5

1

8

8

1 1

1 1 1

1

1

1

2

1

−

− −

− −

− − −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜
⎝ ⎠

⇒

⎟

Bhat

8/6/2009 Vira Chankong
EECS. CWR32U

32

Example of Example of CholeskyCholesky FactorizationFactorization
2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟= − −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

B

1 1
1 2 2
2 2 2 1

2 5 5 2
5 7 1
2 7 8 8

5

2
8

5
11

8
5 8

1 1 1

2 5 8

1
1

1

1
1

1

2

1

1
1 1

11 1

− −
−

− − −
−

− −
− −

− − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=

L D LT

Note: For each column j, j=1,..,n

L(i,j) = Bhat(i,j)/Bhat(j,j), for each i = j +1,..,n

D(j,j) = Bhat(j,j)

17

8/6/2009 Vira Chankong
EECS. CWR33U

33

Sparse Sparse CholeskyCholesky Factorization MethodFactorization Method
2If is sparse, then we can use sparse Cholesky :

1. Apply heuristics (e.g. minimum-degree heuristics) to do symmetric
 reordering of rows/columns to increase sparsity of based on the

Tpd =B AD A

L
 sparsity pattern , which is the same as the sparsity pattern of

 where is a unit lower traingular
 (For sparse , this could c

 with 1.
 (or

)

T

T

i

T T

il
=

=

B AA
P BP L

B

DL LL
L

ost about ().)O n

1

2. Solve to get
 Solve to get
 Set

T

T −

=

=
Δ =

Lz P b z
L z D z z

y Pz

8/6/2009 Vira Chankong
EECS. CWR34U

34

Example of Sparse Example of Sparse CholeskyCholesky FactorizationFactorization

2 1 1
1 3 1 1

1 2 1
1 1 3 1

1 1 3

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

5 1

2 2

1 5

2 2

2 1 1

1 1 1

1 2 1
1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟⇒ − −
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

First we reorder (symmetrically permute) the row/column with the least number
of nonzero elements (minimum degree) to the first row/column and pivot:

Next we repeat the above process on the remaining rows/columns (the bottom
left block of the (red) lines): Here we see row/column 3 and row/column 5
having the lowest degree of 3. We select row/column 3 and permute them to the
top/left of the remaining block (swapping row/column 2 and row/column 3 in
this case). After we perform the pivoting:

5 1

2 2

1 5

2 2

2 1 1
2 1 1

1 1 1

1 1 3 1

1 1

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− − −⎜ ⎟⇒
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

3 1

2 2
3 5

2 2
1 5

2 2

2 1 1
2 1 1

1 1 2

1 1

1 1

− −

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎝ ⎠

18

8/6/2009 Vira Chankong
EECS. CWR35U

35

Now we repeat the process. In the remaining block (bottom left block
below/left of the (red) lines. Since each row/column has the same degree 3, we
don’t need to do any permutation for now:

3 1

2 2
3 5

2 2
1 5

2 2

2 1 1
2 1 1

1 1 2

1 1

1 1

− −

−

−

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎝ ⎠

3 1

2 2
3 11 11

2 8 8
1 11 19

2 8 8

2 1 1
2 1 1

1 1 2

1

1

− −

− −

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

3 1

2 2
3 11 11

2 8 8
1 11

1
2 8

2 1 1
2 1 1

1 1 2

1

1

− −

− −

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⇒ ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

11

8

11

8

1
11

3 1

2 2
3

2
1

2 8

2 1 1
1 1

1 1

1

1

2

2

−

− −

−

− −

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎝ ⎠

⇒

Example of Sparse Example of Sparse CholeskyCholesky FactorizationFactorization

8/6/2009 Vira Chankong
EECS. CWR36U

36

1 1
1 1

1 1
1 1

1 1

2 1 1
1 3 1

2 1 1
1 2 1 1

1 3 1
1 1 3 1

1 1

1
1 2 1
1 1 1

1 1 3
3

3

⎛ ⎞ ⎛− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −⎝

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− −

⎞
⎜ ⎟

⎜ ⎟− − −⎜ ⎟
⎜ ⎟−

⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎠⎠ −⎝

1 1

2 2
1 11 1
2 22 2

3 11 3
4 42 4

11 1
1

2

2

2

11

8
1

4

1 121

11

11

1
1 1

− −

− −− −

− −− −

−
− − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝

=

⎠ ⎝ ⎠

L D LT

PPT B

Example of Sparse Example of Sparse CholeskyCholesky FactorizationFactorization

19

8/6/2009 Vira Chankong
EECS. CWR37U

37

What to do if B is dense?
It is known that if A has a dense column, then B = AD2AT would be
dense as illustrated below:

In this case, the sparse Cholesky would be worst than the regular
Cholesky factorization. Also in this case, it may be better to work
with the augmented system and use the symmetric indefinite
factorization method, even though it may be less stable numerically
(practical experience has shown that such a scheme works well).

A D2 AT
B

8/6/2009 Vira Chankong
EECS. CWR38U

38

Conjugate Gradients for Very Large Conjugate Gradients for Very Large
BBΔΔyy = b= b

This is just an application of the CG method to minimize the following
strictly convex quadratic function:

min 0.5ΔyTBΔy –– bbT Δy

• Select an initial Δy(0)=0 and d(0) = -g(0)= b, μ0 = bTb. Set k = 0.

• While k ≤ n-1 (at this point we have d(k) and g(k))

• If || g(k)||< ε(1+||b||), a solution Δy* has been found.

• Otherwise, compute

q(k) = Bd(k), rk = (d(k))Tq(k), μk = (g(k))Tg(k), and αk = μk/rk

• Update Δy(k+1) = Δy(k)+ αkd(k) and g(k+1) = g(k)+αkq(k)

• Compute βk = (g(k+1))Tq(k)/rk and update d(k+1) = -g(k+1)+ βkd(k)

• Set k = k+1, and repeat.

B = AD2AT

20

8/6/2009 Vira Chankong
EECS. CWR39U

39

• Due to the Quadratic Convergent property, the iterative process
should not take more than n iteration to find the unique solution
Δy*.

• Require much less storage than the Cholesky Methods

• Faster than Cholesky for very large B = AD2AT, if Bd(k) is cheap
(i.e. ATd(k) and A(D2 ATd(k)) are cheap, which is true if A is
sparse).

• However, may be less accurate and less robust

Conjugate Gradients for Very Large Conjugate Gradients for Very Large
BBΔΔyy = b= b

8/6/2009 Vira Chankong
EECS. CWR40U

40

Available Codes for Interior-Point Method

• A free MATLAB-based software

LIPSOL: Linear Programming Interior Point Solver

is available from

http://www.caam.rice.edu/~zhang/lipsol/

• Most commercial software (e.g. CPLEX) now have versions of
interior-point solvers

• Codes are easier to write than the Simplex method. So try it.

