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NEOS Guide Optimization Tree
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Continuous Optimization Problems
Typical LP/NLP:

P:  min f(x)
s.t. hj(x) = 0, j = 1,…,m1

gj(x) ≤ 0, j = 1,…,m2
li ≤ xi ≤ ui, i = 1,…,n, (x ∈ Rn)

Where some or all of f, hj, and/or gj are nonlinear.
LP:    If all f, hj,and gj are all linear/affine, then P is LP
NLP: If at least one of f, hj,or gj is nonlinear, P is NLP

Classification:
Unconstrained NLP:----m1 = 0; m2 = 0, li = -∞, and ui = +∞
Equality constrained LP/NLP:----m1 > 1; m2 = 0
Inequality constrained LP/NLP:----m1 = 0; m2 > 1
Mixed inequality constrained LP/NLP:----m1 > 1; m2 > 1
Bounded LP/NLP:----m1 = 0; m2 = 0, li > -∞, and ui < +∞
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Optimization Methods

Ways to solve optimization problems
2D problems may be solved graphically or
by common sense
Simple and some well structured problems 
may be solved analytically
Most will be solved numerically
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Solving NLP graphically (2D)

Sketch the feasible set on the Sketch the feasible set on the xx11--xx22 planeplane
Draw contours (Draw contours (isovalueisovalue curves) of curves) of ff((xx))
Find the contour with the smallest value of Find the contour with the smallest value of 
ff((xx) that ) that ““intersects or touchesintersects or touches”” the feasible the feasible 
set. The intersecting set. The intersecting point(spoint(s) is the optimal ) is the optimal 
solution solution xx*=*= ((xx11*,*,xx22*)*)T and the value of the and the value of the 
optimal contour is optimal contour is f* =f* =ff((xx*).*).
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Example Contours of an objective function 
With no constraint: 

A= local max

B= local min

C = local max

D = point of inflection

E = not a stationary 
point

F = not a stationary 
point

No global max or 
global min
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Example Contours of an objective function 
With constraint (inside 

red curve): 

A= local max (global)

B= local min (global)

C = local max

D = point of inflection

E = not a stationary 
point

F = infeasible point
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funcgrid=(x2-x1
2)2 +(1-x1)2

MATLAB code to draw contours 
of funcgrid
x1=[-3:0.1:3];
x2=[-3:0.1:3];
[X1 X2]=meshgrid(x1,x2);
f=funcgrid(X1,X2);
[cf,handf]=contour(x1,x2,f,[0,2,20],'b-');
clabel(cf,handf);
hold on;
[cf1,handf1]=contour(x1,x2,f,[30:100:600],'r-');
axis([-3,3,-3,3])
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Example: Solving NLP graphically
2

1 2
2

2 1

1 2

1 2

6NLP:   min ( )
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Optimal Solution is:

x1* = 1; x2* = 2; 

f* = 5

NLPex
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Example: Solving NLP by Inspection
3 1 2 3 1 2 2 3 1 2 3

1 2 3

NLP:   min ( ) 3 4 2 2
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Again we note that:   ( , , 1) 4 2 (1 )
and since: 1 0 for all values of 0 1,   * 0
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= = − − −
− ≥ ≤ ≤ =
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Now we must choose  to maximize   ( , 1, 0) 4
Clearly,  *   0   

x f x x x x
x

= = = −
=

1 2 3

Hence, our optimal solution is 
* 0, * 1, * 0, * 4  x x x f= = = =
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Solving NLP Analytically: 
Optimality Conditions

Unconstrained optimization problems:Unconstrained optimization problems:
min min ff((xx), ), x x ∈∈ RRnn

Equality constrained optimization problems:Equality constrained optimization problems:
min min ff((xx), ), hhjj((xx) = 0, ) = 0, jj=1,..,=1,..,mm11 x x ∈∈ RRnn

Mixed equality constrained optimization problems:Mixed equality constrained optimization problems:

min min ff((xx), ), 
hhjj((xx) = 0, ) = 0, jj=1,..,=1,..,mm11

ggjj((xx) = 0, ) = 0, jj=1,..,=1,..,mm22

x x ∈∈ RRnn
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Characterizing Optimal Points: 
Unconstrained Problems
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The "sign definiteness" properties of a symmetric matrix are given by 
the following definitions:

The symmetric matrix A is
• positive definite (pd) if and only if hTAh >0 for all h∈Rn, h ≠ 0

• positive semidefinite (psd) if and only if hTAh ≥0 for all h∈Rn

• negative definite (nd) if and only if hTAh <0 for all h∈Rn h ≠ 0

• negative semidefinite (nsd) if and only if hTAh ≤0 for all h∈Rn

• indefinite (id) if and only if hTAh >0 for some h∈Rn and

hTAh <0 for some h∈Rn

Tests for Sign Definiteness of Matrix
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Sign Definiteness of Symmetric 
Matrix

11 12 1

21 22 2
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This quadratic form is clearly a scalar quantity.
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Sign Definiteness of Symmetric Matrix
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Sign Definiteness of Symmetric Matrix
Sylvester’s Theorem
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Convexity of a Function
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Summary:
Some well known facts for 
unconstrained problems

Optimality Conditions for Unconstrained 
optimization problems:

min f(x), x ∈ Rn

If x* is a local minimizer of f, then
∇f(x*) = 0 and ∇2f(x*) is positive semi-definite (psd)
If ∇f(x*) = 0 and ∇2f(x*) is positive definite (pd),
then x* is a strict local minimizer of f
If f is convex ∇2f(x*) is pd for all x, then any 
local minimizer is global
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To save the world from destruction, James Bond 007 
must reach a skiff 50 meters off shore from a point 100 
meters away on a straight beach (point B) and then 
disarm a timing device.  The agent can run along on the 
shore on the shifting sand at 5 meters per second, swim 
at 2 meters per second and disarm the timing device in 
30 seconds. The device is set to trigger destruction in 
74 seconds. Is it possible for the agent to succeed?

Skiff

100 m

50 m

Agent 007

Water

B

Example 
UNC 1
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Skiff

100 m

50 m

Agent 007

Water

Bx100-x

Example 
UNC 1
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Given a triangle ABC, find 
a parallelogram ADEF 
(with D on AB, E on BC 
and F on AC as shown) that 
has the largest area possible. 
Formulate and solve this as 
an unconstrained 
optimization.A

C

B

D E

F

Example 
UNC 2



6-Aug-09 23

Jaew is now at point A which is d1 meters to the nearest point (C) on 
the shore of the nearby river.  She wants to travel to B, a point on the 
opposite shore of the river.  The river has a relatively constant width 
of d2 meters and the distance from C to the point D directly across 
the river from B is d.  Jaew can run on land at the speed of v1 m/s, 
and can swim in a calm water at v2 m/s. Find the best route for Jaew
to travel in minimum time. 

A

C
D

B

d2

d1

d

Example UNC  3: Snell’s Law
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A

C
D

B

d2

d1

dExample 
UNC 3
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In building a mathematical model of a complex system/process, the 
model structure (i.e. forms of mathematical relationships) is known, but 
the model parameters (for specific applications) are unknown and need to 
be estimated.  Here model calibration has to be performed.  This involves 
designing experiments, measuring outputs for the set of designed inputs, 
and estimating the values of parameters to best fit the calculated outputs 
to the measured outputs.

xi Model

+

Example: Model Calibration/Parameter Estimation

( : )G x a

xi
Real 

System
yi

xi

( )a
i i

calcu
y

lated
G= x : a

measured

-

Error metric.e.g. least squared
2( )i

a
i iye y= −

i=1,..n

( )2
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Typical Optimization Model
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p
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a
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∈ =
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For example if G is affine
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For an affine G
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Numerical Optimization 
Methods

Most optimization problems will have 
to be solved by numerical methods
A numerical method is an iterative 
procedure in which a sequence of 
points--x(1), x(2),.., x(k),..is generated 
from an initial point x(1) , and hopefully 
converging to an optimal point x*



6-Aug-09 29Vira Chankong
EECS. CWRU

29

Numerical Optimization Methods

We look for methods which are 
Effective: Find x* every time, always stop at the 
right solution (convergence issue: Stop or not, 
right point or not)
Efficient: Find x* quickly (speed of convergence 
issue: measured by # of iterations)
Cheap: Low cost per iteration (time: # of 
function evaluations; storage; errors)
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Numerical Optimization 
Methods

2 basic steps:
At a typical iteration k with iterate x(k)

Find the direction of search d(k) emanating  
from x(k)---Direction-finding problem
Find how far to move along d(k) --Line 
search problem to find step-size α(k)

Update: x(k+1) = x(k) + α(k)d(k)

Do until termination
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Termination CriteriaTermination Criteria
• For unconstrained problems, x(k) is a local 

minimizer if
∇f(x(k)) = 0 and ∇2f(x(k)) is positive definite

• We may also want to stop if there is no 
significant change in f(x(k)) and/or x(k) from 
one iteration to the next. 

• These combined with attempts to overcome 
various numerical difficulty regarding 
scaling and units lead to the following 
combined termination criteria:
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Termination CriteriaTermination Criteria
Some or all of the following must be met:

1) ||∇f(x(k))|| ≤ ε1(1+|f(x(k))|)
2) f(x(k)) - f(x(k+1)) ≤ ε2(1+| f(x(k))|)
3) ||x(k) - x(k+1)|| ≤ ε3(1+|x(k)|)
4) ∇2f(x(k)) + ε4I is positive semi-definite

Where
• (4) would only be performed if ∇2f(x(k)) is available
• ε should be chosen appropriately based on machine 

accuracy
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Termination CriteriaTermination Criteria
For example: if a machine arithmetic is 
accurate up to 16 digits, then

ε2 = 10-16

ε1 = ε3 = √ε2 = 10-8

and
choose ε4 = ε2||∇2f(x(k))||
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Direction-Finding Methods
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DirectionDirection--FindingFinding

• Given the current iterate x(k), what should be 
the direction d(k) to move from x(k)?

• Desirable properties of d(k) 

Cheap to compute (time and storage)
Lead to good convergence properties

descent (improving) ⇔∇f(x(k))Td(k) < 0
No sudden changes (closeness)
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DirectionDirection--Finding Finding 
MethodsMethods

Given x(k), let 
g(k) = ∇f(x(k)) = (∂f/∂x1,..,∂f/∂xn)T= gradient of f

and let p(k) = x(k) - x(k-1)) and q(k) = g(k) - g(k-1)

Steepest descent (SD): d(k) = -g(k) negative gradient
• Descent: If g(k) ≠ 0, ∇f(x(k))Td(k) = -||g(k)||2 < 0
• f decreases at fastest rate
• Good when start far from x*, but very slow when 

close to x* since g(k) = ∇f(x(k)) ≈ 0



6-Aug-09 37Vira Chankong
EECS. CWRU

37

NewtonNewton--RaphsonRaphson Method (NR)Method (NR)

NRNR:: d(k) = -H(x(k))-1g(k)

where H(x(k)) is Hessian of f at x(k) ..symmetric
• Descent, if H(x(k)) is positive definite (pd) & g(k) ≠ 0 
∇f(x(k))Td(k) = - g(k) T H(x(k)) g(k) < 0 since H(x(k)) is pd

• Very good if start from near x*, i.e. very good 
when it works.

• May diverge if x(0) is poor
• Very expensive since Hessian and its inverse and 

hence second derivatives have to be computed.
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Conjugate DirectionsConjugate Directions
CG: d(k) = -g(k) + βk d(k-1)

where βk =||g(k) ||2/||g(k-1)||2 …Fletcher-Reeve (FR)
or βk = g(k)T(g(k) - g(k-1))/||g(k-1)||2 ..Polak-Ribere (FR)
• Descent if optimal line search used:
∇f(x(k))Td(k) = -∇f(x(k))Tg(k) + βk ∇f(x(k))Td(k-1) = -||g(k)||2 < 0|

• Superlinear convergence (performance is between SD 
and NR

• Low storage requirement ⇒ good for high n problems
• Quadratic convergence and PR is usually better
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Quasi Newton MethodsQuasi Newton Methods

QN: d(k) = -H(k)g(k)

where H(1) is pd, and subsequent H(k ) are also pd.
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Quasi Newton MethodsQuasi Newton Methods
• Descent if H(k) are kept pd.

∇f(x(k))Td(k) = -g(k)TH(k)g(k) < 0 since H(k) is pd
• If H(k-1) is pd, so is H(k) if p(k)Tq(k) > 0 ..guaranteed by an 

optimal line search or Wolfe or Wolfe Powell tests
• Superlinear convergence, very good performance 

generally better than conjugate directions(CD) 
methods

• Higher storage requirement than CD methods
• Quadratic convergence
• Best methods for all problems except large ones
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TrustTrust--Region MethodRegion Method
Here we use quadratic approximation of f(x) at x(k)

and find both the direction of search and step size 
by solving a quadratic programming (QP) 
problem:

min q(d) = f(x(k)) + ∇f(x(k))d + 0.5(dT ∇2f(x(k))d)
s.t -h(k) ≤ di ≤ h(k),  i = 1,…,n

Then we set x(k+1) = x(k) + d(k)

The next step-size h(k+1) is then determined by 
examining how well the quadratic function q(.) 
approximates the true function f at x(k+1).
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TrustTrust--Region MethodRegion Method
Compute:

r(k) = Δf/Δq
where

Δf = f(x(k)) - f(x(k+1))
Δq = f(x(k)) - q(d(k))

If r(k) < 0.25, set h(k+1) = d(k) /4
If r(k) > 0.75 and h(k) = d(k) , set h(k+1) = 2h(k)

Otherwise, set h(k+1) = h(k)

Then, proceed to iteration k+1
Until a termination criterion is met.
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Nongradient-based: Nelder-Mead
Basic idea:
• Create a regular simplex (n+1 vertices and its 

convex hull)
• Role it around toward optimum expanding, 

contracting or reflecting as appropriate
• Until the size of the simplex is small enough 

to fit a ball of size ε
• Direction finding and line search are done 

simultaneously
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Line Search Methods
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Line search problemsLine search problems

Given x(k) and a search direction d(k), find how far 
to move along d(k)--i.e. find a step-size α(k) such 
that f(x(k+1)) meets some criteria of improvement.
At a point x along d(k): x = x(k) + αd(k)

⇒⇒ α is the distance from x to x(k) along d(k).
⇒⇒ f(x) = f(x(k)+ αd(k))= φ(α) a function of one 
variable only.
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Line Search Methods
For example, given
f(x) = 3x1

2 + x1x2 + 2x2
2 - 8x1,

and x(1) = (-1,1)T , d(1) = (2,-1)T

⇒⇒ x = x(1)+ αd(1) = (-1,1)T + α(2,-1)T

= (-1 + 2α, 1 - α)T

⇒⇒ φ(α) = f(x(1)+ αd(1))
= 3(-1 + 2α)3 + (-1 + 2α)(1 - α) + 

2(1 - α)2 - 8(-1 + 2α)
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Line Search Methods
If f(x) is unimodal ⇒⇒ φ(α) is unimodal
Also φ′(α) = ∇f(x(k) + αd(k))d(k) (1)
⇒⇒ φ′(0) = ∇f(x(k))d(k) (2)
⇒⇒ φ′(α(k)) = ∇f(x(k) + α(k)d(k))d(k)

= ∇f(x(k+1))d(k) (3)
Thus
d(k) is a descent direction ∇f(x(k))d(k) < 0 ⇔ φ′(0) < 0
e.g. φ′(0) = 18(-1 + 2α)2 + 2(1 - α) - (1 + 2α) - 4(1 - α) - 16
Thus φ′(0) = 1 > 0 ⇒⇒ d(k) is not a descent direction.
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Line Search Methods
In numerical optimization, we require that In numerical optimization, we require that dd((kk)) be a be a 

descent direction to ensure convergencedescent direction to ensure convergence
There are two types of line search methods:There are two types of line search methods:

1.1. InaccurateInaccurate lineline--search: an "acceptable" stepsearch: an "acceptable" step--
size is sought, using some kind of size is sought, using some kind of 
"acceptability" tests."acceptability" tests.

2.2. Optimal Optimal (also known as accurate or exact) line(also known as accurate or exact) line--
search: Here a stepsearch: Here a step--size that gives the "best" size that gives the "best" 
value of value of ff(x(x) along  ) along  dd(k(k)) is sought. This is is sought. This is 
equivalent to solving:  equivalent to solving:  minminαα≥≥00 φφ((αα))
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Line Search Methods
Note:

• Optimal line-search: minα≥0 φ(α) is "almost" an 
unconstrained problem except for α ≥ 0, and

• If α(k) is an optimal step-size with α(k) > 0, then 
φ′(α(k)) = ∇f(x(k) + α(k)d(k))d(k) = ∇f(x(k+1))d(k)= 0

⇒ an optimal line-search will produce a new point 
x(k+1) at which the gradient of f is orthogonal to the 
direction of the search d
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Inaccurate Line Search
The stepThe step--size size αα** is considered "acceptable" if it is is considered "acceptable" if it is 
not too largenot too large and and not too smallnot too small..

NotNot--TooToo--Large TestLarge Test:: For a given For a given 0<0< ρρ <0.5<0.5
φφ((αα**)) ≤≤ φφ(0) + (0) + ρρφ′φ′(0)(0)αα** (NTL)(NTL)

NotNot--TooToo--Small TestSmall Test::
ArmijoArmijo’’ss NTS:NTS: φφ((ηαηα**) > ) > φφ(0) + (0) + ρρφ′φ′(0)(0)ηαηα** , , ηη>1>1
GoldstienGoldstien’’ss NTS:NTS: φφ((αα**) >  ) >  φφ(0)(0) +  +  σσφφ′′(0)(0)αα , , 0.5< 0.5< σσ <1<1
WolfeWolfe’’s s NTS:NTS: φ′φ′((αα*)*) > > σσφφ′′(0)(0), , 0.5 < 0.5 < σσ <1<1
WolfeWolfe--PowellPowell’’s s NTS:NTS: ||φφ′′((αα**)| < )| < -- σσφφ′′(0), (0), 0.5 < 0.5 < σσ <1<1
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Inaccurate Line Search
EXAMPLE: Given  EXAMPLE: Given  φφ((αα) = ) = ee--22αα + + αα, , ηη = 2= 2, , ρρ = 0.1= 0.1, and , and σσ = 0.9= 0.9,  ,  
is is αα** = 0.5= 0.5 is an acceptable stepis an acceptable step--size.size.

φφ(0) = 1, (0) = 1, φ′φ′((αα) = ) = -- 22ee--22αα + 1, and + 1, and φ′φ′(0) = (0) = --1 <0.1 <0.

NTL?:NTL?: φφ( 0.5) = 0.8679( 0.5) = 0.8679
φφ(0) + (0) + ρρφ′φ′(0)(0)αα** = 1 + (0.1)(= 1 + (0.1)(--1)(0.5) = 0.951)(0.5) = 0.95
⇒⇒ φφ((αα)  >  )  >  φφ(0) + (0) + ρρφ′φ′(0)(0)αα** ⇒⇒ αα** is not too large.is not too large.
NTS?:NTS?: Armijo'sArmijo's: : φφ((ηαηα**) = ) = φφ(1) = 1.1353(1) = 1.1353
⇒⇒ φφ(0) +  (0) +  ηηφ′φ′(0)(0)ηαηα** = 1 + (0.1)(= 1 + (0.1)(--1)(0.5) = 0.951)(0.5) = 0.95
⇒⇒ φφ((ηαηα**) > ) > φφ(0) + (0) + ρρφ′φ′(0)(0)ηαηα**,,
⇒⇒αα** is not too small according to is not too small according to Armijo'sArmijo's test.test.
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Inaccurate Line Search
Goldstein's NTS:Goldstein's NTS: φφ((αα**) = ) = φφ(0.5)  = 0.8679(0.5)  = 0.8679
φφ(0) +  (0) +  σσφ′φ′(0)(0)αα* = 1 + (0.9)(* = 1 + (0.9)(--1)(0.5) = 0.9551)(0.5) = 0.955
⇒⇒ φφ((αα**)  < )  < φφ(0) +  (0) +  σσφ′φ′(0)(0)αα**
⇒⇒ αα** is too small according to Goldstein's test.is too small according to Goldstein's test.
Wolfe's NTS:Wolfe's NTS: φ′φ′((αα**)  = )  = φ′φ′(0.5) = 0.2642(0.5) = 0.2642

σσφ′φ′(0) = (0.9)((0) = (0.9)(--1) = 1) = --0.9 0.9 ⇒⇒ φ′φ′((αα**) > ) > σσ φ′φ′((00))
⇒⇒ αα** is not too small according to Wolfe's test.is not too small according to Wolfe's test.
WolfeWolfe--Powell's NTS:Powell's NTS: ||φ′φ′((αα**)| =  )| =  φ′φ′(0.5) = 0.2642(0.5) = 0.2642, , 
and and -- σσφφ′′(0) = (0) = --(0.9)((0.9)(--1) = 0.9 1) = 0.9 ⇒⇒ ||φ′φ′((αα**)| < )| < -- σσφ′φ′(0)(0)
⇒⇒ αα** is not too small based on Wolfeis not too small based on Wolfe--Powell's testPowell's test..
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Accurate Line Search
Popular Methods:Popular Methods:

Interval Reduction Methods
Golden Section Search
Fibonacci
Quadratic Interpolation
Brent’s
Others: Bisection, Equal Interval

Approximation (Extrapolation) Methods
NewtonNewton’’ss
Method of False Position or Sectioning SearchMethod of False Position or Sectioning Search
BisectionBisection
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Accurate Line Search
 Interval Reduction Approximation 

Methods 
Derivatives 
not 
available 

• Golden Section GSS 
• Fibonacci 
• Quadratic Interpolation
• Brent’s method 
• Others: Bisection, Equal 

Interval , etc… 
 

 

Derivatives 
available 

• Bisection • Newton’s 
• Method of 

False Position 
• Cubic 

Interpolation 
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Interval Reduction
Find an initial bracket with one end at Find an initial bracket with one end at αα11

Successively reduce the bracket until its Successively reduce the bracket until its 
length is within a desired tolerance limitlength is within a desired tolerance limit

⇒⇒ Any point in the final bracket Any point in the final bracket ≈≈ αα**
These methods consist of two phases: These methods consist of two phases: 

the bracketing phasethe bracketing phase
the interval reduction phase.the interval reduction phase.

A bracket = an interval that is known toA bracket = an interval that is known to
contain the true contain the true minimizerminimizer αα** with certaintywith certainty
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Brackets
A bracket = an interval that is known toA bracket = an interval that is known to
contain the true contain the true minimizerminimizer αα** with certaintywith certainty
[a,b] = BracketBracket

ifif ∃∃ cc ∈∈ ((aa,,bb) ) ∋∋ φφ((aa) > ) > φφ((cc)) and φφ((cc) < ) < φφ((bb)) oror
If If φ′φ′((aa) < 0) < 0 and and φ′φ′((bb)) > 0> 0

The first test is good if derivatives ofThe first test is good if derivatives of φφ((αα)) are are 
difficult or expensive to finddifficult or expensive to find
The second is good if derivatives ofThe second is good if derivatives of φφ((αα) are easy ) are easy 
or cheap to findor cheap to find
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Bracketing Procedure
Begin with Begin with αα11 (Given (Given xx((kk)) and direction and direction dd((kk))):):

Select a suitable step length Δ and verify 
that d(k) is descending, i.e. φ(α1+Δ) < φ(α1)
If φ(α1+Δ) > φ(α1) reset the step-size Δ← -Δ
If φ(α1+Δ) = φ(α1) the interval [α1, α1+Δ]
represents an initial bracket and no further 
work is needed
Then proceed as follows:
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Bracketing Procedure
(if(if φφ′′((αα)) is not available)is not available)

For For kk = = 1,2,3,4,.....1,2,3,4,.....
1:1: DODO

ααkk+1+1 = = ααkk + 2+ 2kk--11ΔΔ
UNTILUNTIL

φφ((ααkk) < ) < φφ((ααkk+1+1))
2:2: Compute Compute ααtrytry = = ααkk + 2+ 2kk--22ΔΔ
If If φφ((ααkk) < ) < φφ((ααtrytry),), BRACKET = BRACKET = [[ααkk--11, , ααkk, , ααtrytry]]
Else BRACKET = Else BRACKET = [[ααkk, , ααtrytry, , ααk+k+11]]
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Bracketing Procedure
min min φφ((αα) = ) = αα22 + 10/(+ 10/(αα+1+1) given that ) given that αα11 = 0= 0 and and ΔΔ = 0.2= 0.2. . 

kk ααkk+1+1 = = ααkk+2+2kk--11ΔΔ φφ((ααkk) ) CommentComment
1 0 10 αα1 = 0
2 0.2 8.3733 φφ((αα22) ) < φφ((αα11) ) ⇒⇒ retain +Δ
3 0.6 6.61
4 1.4 6.1267
5 3.0 11.5 φφ((αα22) ) < φφ((αα11) ) ⇒⇒ step back
try 2.2 7.9650

ααtry = αα4+22Δ
Since φφ((αα44) ) < φφ((ααtrytry) ) ⇒⇒ our initial bracket is [0.6, 1.4, 2.2]
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Bracketing Procedure
(if(if φφ′′((αα)) is available)is available)

If If φφ′′((αα11) > 0) > 0, set , set Δ← -Δ and proceed. Otherwise, proceed
For For k k = 1,2,3,4,.....= 1,2,3,4,.....

1:1: DODO
ααk+k+11 = = ααkk ++ 22kk--11ΔΔ

UNTILUNTIL
φφ′′((ααk+k+11) > 0) > 0

2:2: Compute Compute ααtrytry = = ααkk + 2+ 2kk--22ΔΔ
If If φφ′′((ααtrytry) > 0) > 0 , BRACKET = , BRACKET = [[ααkk--11, , ααkk, , ααtrytry]]
Else BRACKET = Else BRACKET = [[ααkk, , ααtrytry, , ααkk+1+1]]
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Interval Reduction
Given an initial bracket, successively reduce 
the bracket to a desired length and location.

When φ′(α) is not available:
CCompare the values of ompare the values of φφ((αα)) at two distinct interior at two distinct interior 
points in the bracket points in the bracket 
use the following rule to reduce the interval:use the following rule to reduce the interval:

Let Let xx∈∈ [[a, ba, b]], and , and yy ∈∈ [[a, ba, b]] with with x < yx < y..
If If φφ((xx) > ) > φφ((yy),), then then αα** ∈∈ [[x, bx, b]]
Else Else αα** ∈∈ [[a, xa, x]]
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Golden Section search (GSS) Golden Section search (GSS) 
and Fibonacci methodand Fibonacci method

Use one function per iteration (except the first) Use one function per iteration (except the first) 
Guarantee predictable rate of interval reduction by placing Guarantee predictable rate of interval reduction by placing 
xxkk and and yykk so that the length of the next bracket so that the length of the next bracket [[aakk,y,ykk]] or or 
[[xxkk,b,bkk] ] is the same is the same 
Successively application yields the following relationship of Successively application yields the following relationship of 
lengths of three successive bracketslengths of three successive brackets

LLkk = L= Lk+k+11 + L+ Lk+k+22 (1)(1)
Note if Note if [[aakk+1+1,b,bk+1k+1] = [] = [xxkk,b,bkk],], yykk →→ xxkk++11 and and yykk+1+1 is the only is the only 
new point generated at iteration new point generated at iteration kk+1+1. Similarly if . Similarly if 
[[aakk+1+1,,bbkk+1+1] = [] = [aakk,y,ykk], ], xxkk →→ yykk+1+1 and and xxkk+1+1 is the only new is the only new 
point generated. point generated. 

Both GSS and the Fibonacci method make use of (1), but Both GSS and the Fibonacci method make use of (1), but 
this is where the similarity ends.this is where the similarity ends.
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Golden Section search (GSS) Golden Section search (GSS) 
and Fibonacci methodand Fibonacci method

GSSGSS
a constant rate of interval reduction is desired and 
the calculations are made using as many iterations 
as needed to reduce the bracket to a desired 
accuracy.

Fibonacci methodFibonacci method
the number of iterations is pre-determined and 
an effort is made to make the best possible reduction 
within the predetermined number of iterations.

6-Aug-09 64Vira Chankong
EECS. CWRU

64

Golden Section search (GSS)Golden Section search (GSS)
Let τ be the constant rate of interval reduction sought in 
GSS, i.e. Lk+1/Lk = τ, for all k = 1,2,3,.....

Dividing (1) through by Lk ⇒⇒
1= Lk+1/Lk + (Lk+2/Lk+1)*(Lk+1/Lk) = τ + τ2

⇒⇒ τ2 + τ - 1 = 0 
⇒⇒positive root of (2) is τ = (√5 - 1)/2 = 0.618034 ⇒⇒
Golden Number (⇒⇒ name Golden Section Search).
⇒⇒ Lk+1 = τLk = 0.618Lk = τkLk = 0.618kL1

where L1 = b1 - a1, the length of the initial bracket.
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Golden Section search (GSS)Golden Section search (GSS)
Typical calculations of the GSS method:Typical calculations of the GSS method:
0:0: Given an initial bracket [aGiven an initial bracket [a11,b,b11] and the interval of uncertainty ] and the interval of uncertainty εε

ComputeCompute xx11 = = bb11 -- ττLL11; ; φ((xx11) and ) and yy11 = = aa11 + + ττLL11; ; φ((yy11))
1:1: For For k k = 1,2,3,...= 1,2,3,...

DODO
If If φφ((xxkk) < ) < φφ((yykk),), thenthen

set set aakk+1+1 = = aakk; ; bbkk+1+1 = = yykk; and ; and yyk+1k+1 = = xxkk (hence (hence φφ((yykk+1+1) = ) = φφ((xxkk))))
Compute Compute LLk+k+22 = = ττLLk+k+11 or or ττk+1k+1LL11

Compute Compute xxk+1k+1 = b= bk+1k+1 -- LLk+2k+2

Compute Compute ff((xxkk+1+1))
Else Else 

set set aak+1k+1 = = xxkk; ; bbk+1k+1 = = bbkk; and ; and xxk+1k+1 = = yykk

Compute Compute LLk+2k+2 = = ττLLk+1k+1 or or ττk+1k+1LL11

Compute Compute yyk+1k+1 = a= ak+1k+1 + L+ Lk+2k+2

Compute Compute ff((yykk+1+1))
UNTILUNTIL

LLkk < < εε
2:2: ReturnReturn

the final bracket the final bracket [[aakk,b,bkk]] andand

αα** = = ((aakk+b+bkk)/2)/2 or the best known interior point in the final bracket or the best known interior point in the final bracket [[aakk,b,bkk].].
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Golden Section search (GSS)Golden Section search (GSS)
Example: Given φ(α) = 2e-2α + α, and ε = 0.1, and 
the initial bracket [a1,b1] = [0,1.2707] ⇒⇒ L1 = b1 - a1 = 1.2707

kk LLk+1k+1==ττkkLL11 aakk xxkk yykk bbkk f(xf(xkk)) f(yf(ykk))
1 .7853 0 .4854 .7853 1.2707 1.2429 1.2011
2 .4854 .4854 .7853 .9706 1.2707 1.2011 1.2577
3 .2999 .4854 .6707 .7853 0.9706 1.1937 1.2011
4 .1854 .4854 .5999 .6707 0.7853 1.2024 1.1937
5 .1145 .5999 .6707 .7144 0.7853 1.1937 1.1936
6 .0708 .6707 .7144 .7415 0.7853 1.1936 1.1954

< < εε⇒⇒ STOP
⇒⇒ Final bracket [[aa77,b,b77]] = [0.6707,0.7415],= [0.6707,0.7415],
⇒⇒ a good estimate of x*= 0.71440.7144 or (0.6707+0.7415)/2 = 0.70610.7061.
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Fibonacci SearchFibonacci Search
• For a fixed number of iterations N, to find α* to within the 

level of accuracy ε, use Fibonacci searchuse Fibonacci search
•• Let Let FF00=1, =1, FF11=1, and =1, and FFkk = = FFkk--11 + F+ Fkk--22 for for kk = 2, 3,..= 2, 3,..

where where FFkk’’ss are known as Fibonacci numbersare known as Fibonacci numbers
⇒⇒ Require Require LN = L* ≤ ε (also LN = LN+1 = LN+2 =….) 
⇒⇒ LN-1 = LN + LN+1 =  LN + LN = F0L* + F1L* = F2L*
⇒⇒ LN-2 = LN-1 + LN = 2LN + LN = F1L* + F2L* = F3L* 

…..

⇒⇒ LN-k = LN-k+1 + LN-k+2=Fk-1L* + FkL* = Fk+1L*
…..

⇒⇒ LL22 = L= LNN--(N(N--22)) = F= FNN--11L*L*
⇒⇒ LL11 = L= LNN--(N(N--11)) = F= FNNL* L* ⇒⇒ L* = LL11/F/FNN
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Fibonacci SearchFibonacci Search
⇒⇒ LN = (F1/F/FNN))LL11≤ ε
⇒⇒ LN-1 = (F2//FFNN)LL11

⇒⇒ LN-2 = (F3//FFNN)LL11
…..

⇒⇒ LN-k = (Fk+1//FFNN)LL1 1 ⇒⇒ LLkk = (= (FN-k+1//FFNN)LL11
….. 

⇒⇒ LL22 = (= (FFNN--11//FFNN)LL1 1 

⇒⇒ LL11 = (= (FFNN/F/FNN)LL11

where where FFkk’’ss are Fibonacci numbersare Fibonacci numbers
FF00=1, =1, FF11=1, =1, 
FF22 = = FF11 + + FF00 = 2, = 2, FF33 = = FF22 + + FF11 = 3, = 3, FF44 = = FF33 + + FF22 = 5, ...= 5, ...
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Fibonacci SearchFibonacci Search
Typical calculations of the Fibonacci method:Typical calculations of the Fibonacci method:
0:0: Given an initial bracket [aGiven an initial bracket [a11,b,b11] and the interval of uncertainty ] and the interval of uncertainty εε

Find N: LFind N: LNN = = LL11/F/FN N ≤≤ εε⇒⇒ FFNN ≥≥ LL11/ / εε⇒⇒ N can be found from Table of Fibonacci numbersN can be found from Table of Fibonacci numbers
Then compute LThen compute L22 = (= (FN-1/F/FNN)L)L11; x; x11 = b= b11 -- LL22; ; φ(x(x11) and y) and y11 = a= a11 + L+ L22; ; φ(y(y11))

1:1: DODO k = 1,2,3,k = 1,2,3,……,N,N
If If φφ((xxkk) < ) < φφ((yykk), then), then

set aset ak+1k+1 = = aakk; b; bk+1k+1 = = yykk; and y; and yk+1k+1 = = xxkk (hence (hence φφ(y(yk+1k+1) = ) = φφ((xxkk))))
Compute LCompute Lk+2k+2 = (F= (FNN--kk--11/F/FNN)L)L11

Compute xCompute xk+1k+1 = b= bk+1k+1 -- LLk+2k+2

Compute f(xCompute f(xk+1k+1))
Else Else 

set aset ak+1k+1 = = xxkk; b; bk+1k+1 = = bbkk; and x; and xk+1k+1 = = yykk

Compute LCompute Lk+2k+2 = (F= (FNN--kk--11/F/FNN)L)L11

Compute yCompute yk+1k+1 = a= ak+1k+1 + L+ Lk+2k+2

Compute f(yCompute f(yk+1k+1))
CONTINUECONTINUE

2:2: ReturnReturn the final estimate the final estimate xxNN = = yyNN ≈≈ αα** (T(This assumes small calculation errors.)his assumes small calculation errors.)
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Quadratic InterpolationQuadratic Interpolation
Given the current bracketGiven the current bracket [[ak,xk,bk]]
and the valuesand the values φ(ak), φ(xk), φ(bk)
we could approximate by a quadratic curvewe could approximate by a quadratic curve

q(α) = c0 + c1α + c2α 2

passing through the same 3 points aspassing through the same 3 points as φ(α): 
[ak, φ(ak)], [xk, φ(xk)], [bk, φ(bk)]

i.e.
q(ak) =  c0 + c1ak + c2ak

2 = φ(ak)
q(xk) =  c0 + c1xk + c2xk

2 = φ(xk)
q(bk) =  c0 + c1bk + c2bk

2 = φ(bk)
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Quadratic InterpolationQuadratic Interpolation
We can solve forWe can solve for c0, c1, c2 and find a minimizer yk
of q(α) = c0 + c1α + c2α 2 (by finding the root of
q´(α) = 0) to get:

We can now check whether we can useWe can now check whether we can use yk toto
reduce the interval and form a smaller bracketreduce the interval and form a smaller bracket
e.g. ife.g. if ak << yk < < xk and is not too close to any eitherand is not too close to any either
ak or or xk and ifand if φ(yk), > φ(xk) then the new bracket 
is [[yk,xk,bk]] (i.e.(i.e. [[ak+1,xk+1,bk+1]] ←← [[yk,xk,bk]] ))

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )1
2 ( ) ( ) ( ) ( ) ( ) ( )

k k k k k k k k k
k

k k k k k k k k k

b c a c a b a b cy
b c a c a b a b c

φ φ φ
φ φ φ

⎛ ⎞− + − + −
= ⎜ ⎟− + − + −⎝ ⎠
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Quadratic InterpolationQuadratic Interpolation
Typical calculations of the QI method:Typical calculations of the QI method:
0:0: Given an initial bracket [Given an initial bracket [aa11,,xx11, , bb11] and the interval of uncertainty ] and the interval of uncertainty εε
1:1: For k = 1,2,3,...For k = 1,2,3,...

DODO
Compute Compute φ((aakk), ), φ((xxkk), ), φ((bbkk))
Compute Compute yykk, , andand φ((yykk) ) 
If If yykk > > xxkk andand

If If φ((yykk) ) ≤≤ φ((xxkk), then), then set set aak+1k+1 = = xxkk; ; xxk+1k+1 = = yykk; ; bbk+1k+1 = = bbkk

Else Else set set aak+1k+1 = = aakk; ; xxk+1k+1 = = xxkk; ; bbk+1k+1 = = yykk

If If yykk < < xxkk andand
If If φ((yykk) ) ≤≤ φ((xxkk), then), then set set aak+1k+1 = = aakk; ; xxk+1k+1 = = yykk; ; bbk+1k+1 = = xxkk

Else Else set set aak+1k+1 = = yykk; ; xxk+1k+1 = = xxkk; ; bbk+1k+1 = = bbkk

UNTILUNTIL ||aakk -- bbkk |< |< εε
2:2: RETURNRETURN

the final bracket [the final bracket [aakk, , xxkk,,bbkk] and ] and αα** = (= (aakk++bbkk)/2 or )/2 or xxkk which is the which is the 
best known interior point in the final [best known interior point in the final [aakk, , xxkk, , bbkk].].



6-Aug-09 73Vira Chankong
EECS. CWRU

73

Quadratic InterpolationQuadratic Interpolation
•• In the above algorithm, it is assumed that the In the above algorithm, it is assumed that the 

new point new point yykk generated is generated is not to closenot to close to any of to any of 
the existing points the existing points aakk, , xxkk, , bbkk . . In practice, In practice, 
however such situation could easily occur and however such situation could easily occur and 
if it does we should disregard if it does we should disregard yykk and use and use 
another way to generate a new another way to generate a new yykk.

•• The popular BrentThe popular Brent’’s Method uses GSS to s Method uses GSS to 
generate newgenerate new yykk when the one generated by when the one generated by 
regular QI is too close to any one of the existing regular QI is too close to any one of the existing 
three points. Then QI is reactivated from that three points. Then QI is reactivated from that 
point on.point on.

6-Aug-09 74Vira Chankong
EECS. CWRU

74

Modified QI (a version of BrentModified QI (a version of Brent’’s)s)
0:0: Given an initial bracket [Given an initial bracket [aa11,,xx11, , bb11] and the interval of uncertainty ] and the interval of uncertainty εε.  Set k =1..  Set k =1.
1:1: Compute Compute φ((aakk), ), φ((xxkk), ), φ((bbkk), and compute ), and compute yykk usingusing QI.QI.

If If yykk is indistinguishable from is indistinguishable from aakk,,xxkk, or , or bbkk, GO TO 4. Else continue., GO TO 4. Else continue.
2:2: ComputeCompute φ((yykk).).

If If yykk > > xxkk andand
If If φ((yykk) ) ≤≤ φ((xxkk), then), then set set aak+1k+1 = = xxkk; ; xxk+1k+1 = = yykk; ; bbk+1k+1 = = bbkk

Else Else set set aak+1k+1 = = aakk; ; xxk+1k+1 = = xxkk; ; bbk+1k+1 = = yykk

If If yykk < < xxkk andand
If If φ((yykk) ) ≤≤ φ((xxkk), then), then set set aak+1k+1 = = aakk; ; xxk+1k+1 = = yykk; ; bbk+1k+1 = = xxkk

Else Else set set aak+1k+1 = = yykk; ; xxk+1k+1 = = xxkk; ; bbk+1k+1 = = bbkk

3:3: If |If |aakk -- bbkk |< |< εε,STOP,STOP and RETURN the final bracket [and RETURN the final bracket [aakk, , xxkk,,bbkk] and ] and αα** = (= (aakk++bbkk)/2 )/2 
or or xxkk which is the best known interior point in the final [which is the best known interior point in the final [aakk, , xxkk, , bbkk].].
OTHERWISE, set k = k+1 and GO TO 1.OTHERWISE, set k = k+1 and GO TO 1.

4:4: If If xxkk isis distinguishable from the midpoint of [distinguishable from the midpoint of [aakk,,bbkk], then set ], then set yykk = (= (aakk++bbkk)/2, set k = )/2, set k = 
k+1 and GO TO 2.k+1 and GO TO 2.
Else, set Else, set yykk = (= (aakk++xxkk)/2 if )/2 if φ((aakk) ) ≤≤ φ((bbkk) or () or (xxkk++bbkk)/2 if )/2 if φ((aakk) ) > > φ((bbkk). Set k = k+1 and ). Set k = k+1 and 
GO TO 2.GO TO 2.

NOTE:NOTE: Can also use GSS to find new Can also use GSS to find new xxkk andand yykk in 4, or any suitable method to find in 4, or any suitable method to find 
new new yykk..
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Interval ReductionInterval Reduction
(when(when φφ′′((αα)) is available)is available)

•• Given the current estimation point Given the current estimation point 
αα((kk)) and the value and the value φφ((αα((kk))))

•• Suppose we also know value of Suppose we also know value of 
φφ′′((αα((kk))))

⇒⇒ The most efficient interval The most efficient interval 
reduction method is the reduction method is the 
BISECTION MethodBISECTION Method
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Bisection MethodBisection Method
(when(when φφ′′((αα)) is available)is available)

0:0: Given an initial bracket [Given an initial bracket [aa11,,bb11] and the interval of uncertainty ] and the interval of uncertainty εε
(Since this is a bracket (Since this is a bracket φ'((aakk) < 0 and ) < 0 and φ'((bbkk) > 0.)) > 0.)

1:1: For k = 1,2,3,...For k = 1,2,3,...
DODO

Compute midpoint Compute midpoint xxkk = = ((aakk++bbkk)/2 and)/2 and φ´((xxkk) ) 
If If φ'((xxkk) < 0, set ) < 0, set aak+1k+1 = = aakk; ; bbk+1k+1 = = xxkk

If If φ'((xxkk) > 0, set ) > 0, set aak+1k+1 = = xxkk; ; bbk+1k+1 = = bbkk

UNTILUNTIL
||φ'((xxkk)| < )| < εε1 1 oror ||aakk -- bbkk|< |< εε22

2:2: RETURNRETURN
the final bracket [the final bracket [aakk,,bbkk] and ] and αα** = (= (aakk++bbkk)/2 or )/2 or xxkk

NOTE:NOTE: Rate of reduction = 50% (best of all) compared with 32% of GSSRate of reduction = 50% (best of all) compared with 32% of GSS
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Approximation MethodsApproximation Methods
NEWTONNEWTON’’S METHODS METHOD
•• Given the current estimation point Given the current estimation point αα((kk)) and the and the 

value value φφ((αα((kk))))
•• Suppose we also know values of some derivatives Suppose we also know values of some derivatives 

e.g. e.g. φ′φ′((αα((kk)))) and and φ″φ″((αα((kk))))
•• We could approximate We could approximate φφ((αα)) by a quadratic functionby a quadratic function

qq((αα) = ) = φφ((αα((kk)))+ )+ φ′φ′((αα((kk))))((αα -- αα((kk)))+)+φ″φ″((αα((kk)))()(αα -- αα((kk))))22

Note that: Note that: qq((αα((kk)))   = )   = φφ((αα((kk))) ) 
qq′′((αα((kk)))  = )  = φ′φ′((αα((kk))))
qq″″((αα((kk))) = ) = φ″φ″((αα((kk))))
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NEWTONNEWTON’’S METHODS METHOD
•• If If φ″φ″((αα(k)(k)) > 0) > 0 ⇒⇒ qq″″((αα(k(k))) > 0) > 0 ⇒⇒ qq((αα)) has a minimum.has a minimum.
•• We can use the We can use the minimizerminimizer of of qq((αα)) as the next as the next 

approximation of approximation of αα**
•• The The minimizerminimizer of of qq((αα)) satisfies satisfies qq′′((αα) = 0) = 0 or or 

φ′φ′((αα(k)(k))+ )+ φ″φ″((αα(k)(k))()(αα -- αα(k)(k)) = 0) = 0
•• If If αα(k+1)(k+1) isis a a minimizerminimizer ofof qq((αα) ,) , thenthen

φ′φ′((αα(k)(k))+)+φ″φ″((αα(k)(k))()(αα(k+1)(k+1) -- αα(k)(k)) = 0) = 0
oror αα(k+1)(k+1) = = αα(k)(k) -- φ′φ′((αα(k)(k))/ )/ φ″φ″((αα(k)(k)))
which is used to produce successive which is used to produce successive 
approximations of approximations of αα**
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NEWTONNEWTON’’S METHODS METHOD
Notes:Notes:

•• When NewtonWhen Newton’’s method works, it is the s method works, it is the 
best since it converges to best since it converges to αα** very quicklyvery quickly

•• It requires It requires φ″φ″((αα(k)(k))) which is often which is often 
expensive or impractical to get which expensive or impractical to get which 
limtslimts the use of this methodthe use of this method

•• It requires It requires φ″φ″((αα(k)(k)) > 0) > 0 to converge so it to converge so it 
requires a very good starting requires a very good starting point point αα(k)(k)
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Method of False PositionMethod of False Position
•• To overcome the need to compute To overcome the need to compute φ″φ″((αα(k)(k))) but but 

still use 2nd order info to have good still use 2nd order info to have good 
convergence, approximate convergence, approximate φ″φ″((αα(k)(k))) byby

φ″φ″((αα(k)(k)) ) ≈≈ ((φ′φ′((αα(k)(k)) ) -- φ′φ′((αα(k(k--1)1)) )/() )/(αα(k) (k) -- αα(k(k--1) 1) ))

⇒⇒ αα(k+1)(k+1) = = αα(k)(k)-- φ′φ′((αα((k)k))()(αα(k(k) ) -- αα(k(k--1)1))/()/(φ′φ′((αα(k)(k)) ) -- φ′φ′((αα(k(k--1)1)))))
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Cubic InterpolationCubic Interpolation

•• Given Given αα(k(k--1)1), , φφ((αα(k(k--1)1)), ), φφ´́((αα(k(k--1)1))) and and αα(k)(k), , φφ((αα(k)(k)),),
φ′φ′((αα(k)(k))) are available, such thatare available, such that
φ′φ′((αα(k(k--1)1)) < 0) < 0 and and φ′φ′((αα(k)(k)) > 0) > 0
or or φ′φ′((αα(k(k--1)1)) < 0) < 0 and and φφ((αα(k(k--1)1)) < ) < φφ((αα(k)(k)))

•• We can fit a cubic function  We can fit a cubic function  cc((αα)) though though αα(k(k--1)1)

and and αα(k)(k) having the same function values and having the same function values and 
derivatives at derivatives at αα(k(k--1)1) and and αα(k)(k) as those of as those of φφ((αα))

•• The The minimizerminimizer of of cc((αα)) can then be used as the can then be used as the 
next approximation of next approximation of αα**
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Cubic InterpolationCubic Interpolation
Here are the necessary formulas for Cubic Here are the necessary formulas for Cubic 

Interpolation Method:Interpolation Method:

αα(k+1)(k+1) = = αα((k)k)--((αα(k(k))-- αα(k(k--1)1)))[[φφ´́((αα(k)(k)) +u) +u22--uu11]]/[/[φ′φ′((αα(k)(k)))--φ′φ′((αα(k(k--1)1))+2u)+2u22]]
where where 

uu11 = = φ′φ′((αα(k)(k)) + ) + φ′φ′((αα(k(k--1)1)) ) -- 3[3[φφ((αα(k)(k)) ) --φφ((αα(k(k--1)1))])]//[[αα(k)(k)-- αα(k(k--1)1)]]
andand

uu22 = = [[uu11
22-- φ′φ′((αα(k(k--1)1)) ) φ′φ′((αα(k)(k))])]1/21/2

•• Quite powerful and not too difficult to implement Quite powerful and not too difficult to implement 
on computers  if the assumptions are OKon computers  if the assumptions are OK


