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Optimization

PACAsE  Continuous Optimization Problems

Typical LP/NLP:
P: min f{x)

s.t. hj(x) =0,j=1,..m
g(x)<0,j=1,...m,
[;<x,<u,i=1,.,n (x € R")

Where some or all of f; /1, and/or g; are nonlinear.
LP: Ifallf h,and g; are all lincar/affine, then P is LP
NLP: If at least one of £, hj, org; is nonlinear, P is NLP

Classification:

Unconstrained NLP:----m, = 0; m, =0, /, = -c0, and u; = +o0
Equality constrained LP/NLP:----m, > 1; m, =0

Inequality constrained LP/NLP:----m, = 0; m, > 1

Mixed inequality constrained LP/NLP:----m, > 1; m, > 1
Bounded LP/NLP:----m = 0; m, =0, [, > -00, and u; < +o0
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‘Optimization Methods

Ways to solve optimization problems

» 2D problems may be solved graphically or
by common sense

» Simple and some well structured problems
may be solved analytically

» Most will be solved numerically

6-Aug-09 Vira Chankong
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Solving NLP graphically (2D)

» Sketch the feasible set on the x,-x, plane
» Draw contours (isovalue curves) of f(x)

» Find the contour with the smallest value of
f(x) that “intersects or touches” the feasible
set. The intersecting point(s) is the optimal
solution x*= (x,*,x,*)T and the value of the
optimal contour is f* =f{x*).
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Examf)le Contours of an objective function

With no constraint:

)

A= local max
B=local min
C = local max

D = point of inflection

=TT
-_ W

E = not a stationary
point

(

F=-nota stationary
point

No global max or

&, global min

7,
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xample Contours of an objective function

With constraint (inside
red curve):

A= local max (global)
B= local min (global)
C = local max

D = point of inflection

E = not a stationary
point

F = infeasible point
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MATLAB code to draw contours
of funcgrid 2|
x1=[-3:0.1:3];

x2=[-3:0.1:3]; 3
[X1 X2]=meshgrid(x1,x2); '
f=funcgrid(X1,X2);
[cf,handf]=contour(x1,x2,f,[0,2,20],'b-"); f 1 2\2 2
clabel(cf.handf): funcgrid=(x,-x,%)* +(1-x)
hold on;

[cf1,handfl]=contour(x1,x2,f,[30:100:600],'r-");

axis([-3,3,-3,3])

6-Aug-09 9
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= Example: Solving NLP graphically

NLP: min f(x) = %+x—§
xeR? _x2 'xl

st. h(x)=xx,-2=0
g(x)=-x,—x,+1<0

Optimal Solution is:
x*=1;x%=2;

=5

*¥2-value

x1-value

NLPex
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xample: Solving NLP by Inspection
NLP: I;I:Iielgl J(xX)=-3x, +4x, —x; +2x,x, — X,%; + 2X,X,X;
st 0<x<1;0<x,<1; 0<x,<1
Since: f(x) = =3x, +4x, — x; +2x,X, — X,X; + 2X,X,X;
= —3x, —x, + (4 +2x, —x, +2x,x,) x,
and since: 4 +2x, —x, +2xx, >0 for0<x, <1, i=1,23=x,*=1
Now we must choose x, and x; to maximize
S, x5, =1)=4-3x, —x; +2x, —x; + 2x,x; =4 —x, — 2x; + 2x,x;4
Again we note that: f(x,,x;,x, =1)=4—x, —2x,(1-Xx,)
and since: 1—x, >0 for all values of 0 <x, <1, x,*=0

Now we must choose x, to maximize f(x,x,=1x,=0)=4-x
Clearly, x,*=0 Hence, our optimal solution is

6-Aug-09 xl*:O,xz*:Lx}*:O,f*:4 1

P CASE

2 ===-Solving NLP Analytically:
Optimality Conditions

Unconstrained optimization problems:
min f(x), x € R"
Equality constrained optimization problems:
min f(x), hj(x) =0,/=1,.,m; x € R"
Mixed equality constrained optimization problems:

min f(x),

hj(x) =0, /=1,...m,
gj(x) = 0,j=1,..,m2
X € R"

6-Aug-09 12




BCASE. Characterizing Optimal Points:
Unconstrained Problems

Ifatx*e R",

1) Vf(x *) =0

i) h'V?f(x*)h >0 forh#0in R" (i.e.V?f(x*) is pd)
Then x *is a strict local minimizer of f (x)

More x *is a unique global minimizer of /' (x)if /' (x) is convex.

[}

higher—order terms

Note: Results are based on analysis of Taylor's series expansion:

F =1 (x%) VY (22 WTV £l

constant 1st—order (linear) term

2nd—order ( quadratic) term

6-Aug-09 13

Tests for Sign Definiteness of Matrix

The "sign definiteness" properties of a symmetric matrix are given by
the following definitions:

The symmetric matrix A is

* positive definite (pd) if and only if h”Ah >0 for all heR", h # 0
* positive semidefinite (psd) if and only if h7Ah >0 for all heR"

* negative definite (nd) if and only if h7Ah <0 for all heR"h =0
+ negative semidefinite (nsd)  if and only if h7Ah <0 for all heR"

* indefinite (id) if and only if h”Ah >0 for some heR" and

h”Ah <0 for some heR"

6-Aug-09 14




Sign Definiteness of Symmetric
Matrix

, A 1s nxn symmetric

hW’Ah=a h*+. +a W2 +2a,h bt 2a, hht + 2a hh 20,00, +.+2a b h

nn'’ n n-1,n""n-1

This quadratic form is clearly a scalar quantity.

6-Aug-09 15
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* Sign Definiteness of Symmetric Matrix

Since A is symmetric, there exists an n x n orthonormal P such that

h"Ah=h" (P'DP)h Zi(cth eh, )

nj"'n

where D = diag(4,,4,,..,4,),and 21,/12,..,/1,1 are real eigenvalues of A

Thus
Aispsd < A,4,..,4, >0 with some 4, =0
Aispd < A,4,.,4, >0
Aisnsd < A, A,,.., A4, <0 with some 4, =0
Aisnd < A,4,,.,4,<0
Aisid < some 4,4,,..,4, >0 and some <0

6-Aug-09 16




PACASE  Sign Definiteness of Symmetric Matrix
Sylvester’'s Theorem
a, a, ... q

Ay Ay 5 Uy,

Symmetric A =

a

n

. .. . a a
Leading principal minors: o, =a,,, a, = det( H 12],..., a,=detA
a,, A4y
Aispd < «a,a,,.,a,>0
Aisnd & a,<0,a,>0,0,<0,4, >0,...
Aisid < A, <0 for some even i

6-Aug-09 17

WACase  Convexity of a Function

Given a function f(x), x€ R",

Gradient of f(x)=Vf(x)=g" = [‘9"{7("),,.,5"5[(")}
ox, X,

(027 (x) 2%f(x) 2% f (x)

o7%x, ox0x, = IxOx,
a7 f(x) a*f(x) 2% f(x)
Hessian of f(x)=V’f(x)= 9x,0x, a%x, Ix,0x,

2’ f(x) a*f(x) 2% f(x)
| Oxx, Ox,0x, ' o%x,

f(x) is convex < its Hessian is psd for all x € R"
f(x) is strictly convex <= its Hessian is pd  for all x € R"
f(x) is concave < its Hessian is nsd for all x € R”

f(x) is strictly concave < its Hessian is nd for all x € R”

f(x) is not convex nor concave < its Hessian is id for all x € R"
6-Aug-09 18




W CasE Summary:
Some well known facts for
unconstrained problems

Optimality Conditions for Unconstrained
optimization problems:
min f(X), X € R"
» If x* is a local minimizer of f, then
V{i(x") = 0 and V*f(x") is positive semi-definite (psd)
» If VI(x") = 0 and V?f(x") is positive definite (pd),
then x* is a strict local minimizer of f
»If f'is convex V2f(x") is pd for all x, then any
local minimizer is global

6-Aug-09 Vira Chankong 19
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To save the world from destruction, James Bond 007
"I must reach a skiff 50 meters off shore from a point 100
meters away on a straight beach (point B) and then
Example disarm a timing device. The agent can run along on the
UNC 1 shore on the shifting sand at 5 meters per second, swim
at 2 meters per second and disarm the timing device in
30 seconds. The device is set to trigger destruction in
74 seconds. Is it possible for the agent to succeed?

Skiff

Water

Agent 007

6-Aug-09 20




Water

50m
Example
UNC 1 Agent 007
100-x X LoV
T e T g
6-Aug-09 21
Given a triangle ABC, find
8 a parallelogram ADEF
Example (with D on AB, E on BC
UNC 2 and F on AC as shown) that
o . has the largest area possible.
Formulate and solve this as
an unconstrained
A F ¢ optimization.

6-Aug-09
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Example UNC 3: Snell’s Law

Jaew is now at point A which is d, meters to the nearest point (C) on
the shore of the nearby river. She wants to travel to B, a point on the
opposite shore of the river. The river has a relatively constant width
of d, meters and the distance from C to the point D directly across
the river from B is d. Jaew can run on land at the speed of v, m/s,
and can swim in a calm water at v, m/s. Find the best route for Jaew
to travel in minimum time.

A
dl
e Ao > D
C 0
d;
6-Aug-09 \‘I‘B 23
A
dl
Example P d s D
UNC 3 € 4
d,
5
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« | Example: Model Calibration/Parameter Estimation

In building a mathematical model of a complex system/process, the
model structure (i.e. forms of mathematical relationships) is known, but
the model parameters (for specific applications) are unknown and need to
be estimated. Here model calibration has to be performed. This involves
designing experiments, measuring outputs for the set of designed inputs,
and estimating the values of parameters to best fit the calculated outputs
to the measured outputs.

measured
x, | Real | _
rror metrlc.e.g. east square
| System 4 F ice.g.| fared
X — a
i=1 .7 A ¢ _(yi_yi)
b ¢ Model
G(x:a) | » =& ¥ Typical Optimization Model
calculated R ,
gg;9=;(yf -)
6-Aug-09 25
Case

For example if G is affine

ie. y=a'x+b Then,y’ =a’x, +b, and

the least squared error e(a,b) = Z(aTxl. +b-y, )2
i=l

So we choose the model parameters (a,b) to minimize e(a,b)

This 1s what is typically called the least square estimator.

6-Aug-09
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For an affine G
Squared error: e(a,b) = Z(arx, +b-y, )2
i1
First de%b,b) = ZZ(aTxl. +b—yl.):0:> a’ [inj+nb—2yi =0
i=1 i=l i=1
WithileXi; we have a’X+b-y=0 -(1)
ni-
de(a,b) o - _ —
Next:————==2» (a'x. +b—ypy. x. =0=> Xa+bx—yx=0 -2
™ Z:,( b=y, y ®)
where X, =x,x,/; X = lZXI‘; and yx = lZyixi
n; nio
Thus the least squared estimator (ﬁ,l;) is a solution of the (n+1) x (n+1) linear system:

5 Y2

6-Aug-09 27

Numerical Optimization
Methods

» Most optimization problems will have
to be solved by numerical methods

» A numerical method is an iterative
procedure in which a sequence of
points--x(1), x®_ x®  is generated
from an initial point x| and hopefully
converging to an optimal point x*

6-Aug-09 Vira Chankong 28
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Numerical Optimization Methods

We look for methods which are

» Effective: Find x* every time, always stop at the
right solution (convergence issue: Stop or not,
right point or not)

» Efficient: Find x* quickly (speed of convergence
issue: measured by # of iterations)

» Cheap: Low cost per iteration (time: # of
function evaluations; storage; errors)

6-Aug-09 Vira Chankong 29
EECS. CWRU

MCsse Numerical Optimization
Methods

2 basic steps:
At a typical iteration & with iterate x®

» Find the direction of search d® emanating
from x®---Direction-finding problem

» Find how far to move along d® --Line
search problem to find step-size of®

Update: x*D = x® + oAHd®
Do until termination

6-Aug-09 Vira Chankong 30
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Termination Criteria

 For unconstrained problems, x* is a local
minimizer if
VAx®) = 0 and V*Ax®) is positive definite
* We may also want to stop if there 1s no

significant change in f(x®) and/or x® from
one iteration to the next.

* These combined with attempts to overcome
various numerical difficulty regarding
scaling and units lead to the following
combined termination criteria:

6-Aug-09 Vira Chankong 31
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Termination Criteria

Some or all of the following must be met:
D) [VAX®)]| < & (1HAXD)))
2) fxB) - fAxED) < (14 AxD)))

3) [x® - x*E || < g(1+HxW))
4) V2(x0) + g1 is positive semi-definite
Where
* (4) would only be performed if V3/{x®) is available

* ¢ should be chosen appropriately based on machine
accuracy

6-Aug-09 Vira Chankong 32
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Termination Criteria

For example: if a machine arithmetic is
accurate up to 16 digits, then

& =10-16
g =2g=g =108
and

choose ¢, = &||V(xW)|

6-Aug-09 Vira Chankong
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Direction-Finding Methods

6-Aug-09 Vira Chankong
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Direction-Finding

 Given the current iterate x®, what should be
the direction d® to move from x®?

* Desirable properties of d®
@ Cheap to compute (time and storage)
@ Lead to good convergence properties
¢ descent (improving) < VAx®)Td® <0
¢ No sudden changes (closeness)

6-Aug-09 Vira Chankong
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35

Direction-Finding
Methods

Given x®, et
g® = VAx®) = (of/ox,,..,0f/0x,) = gradient of f
and let p® = x® - x&-) and q® = g® - gk-»

Steepest descent (SD): d¥ = -g negative gradient
+ Descent: If g® = 0, VAx®)Td® = -||g®|]2 <0
* fdecreases at fastest rate

* Good when start far from x*, but very slow when
close to x* since g = VA{x®) = 0

6-Aug-09 Vira Chankong
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" Newton-Raphson Method (NR)

NR: d® = -H(x®)-1g®

where H(x®) is Hessian of /at x® ..symmetric

 Descent, if H(x®) is positive definite (pd) & g = 0
Vx®)Td® = - g® TH(x®) g® < 0 since H(x®) is pd

* Very good if start from near x*, i.e. very good
when it works.

* May diverge if x© is poor
* Very expensive since Hessian and its inverse and
hence second derivatives have to be computed.

6-Aug-09 Vira Chankong 37
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Conjugate Directions

CG: d® =-gh+ B dtD
where S =|g® |?/||g*D]]? ...Fletcher-Reeve (FR)
or L, =g®l(g® - gk-Dy/||g-D]|2_ Polak-Ribere (FR)
* Descent if optimal line search used:
VAXO)AH = VAXO)gH + 4 VAXO)dkD = |go|P < o)

* Superlinear convergence (performance is between SD
and NR

* Low storage requirement = good for high n problems
* Quadratic convergence and PR is usually better

6-Aug-09 Vira Chankong 38
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P Case

Quasi Newton Methods

QN: d(k) = _H(k)g(k)
where HV is pd, and subsequent H*) are also pd.

Let p® =x® —x* and ¢ =g® —g

(k) N(K)T k=1) (k) ()T gy(k-1)

H(k)zH(k—l)_chp _H( q"q""H
(k)T (k) ()T y(k=1) (k)

pP”q?  q"Hq

(DEP)
or

(OTggk-D) k) (k) ()T (k) (T k-1 k=1) (k) ()T
HO gt (14 9 Hq" p“p™"  p“q"HY +H'¢"p

(T (k) ()T (k) ()T (k)

P q P q P q

(BFGS)

6-Aug-09 Vira Chankong 39
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Quasi Newton Methods

« Descent if H® are kept pd.
Vi(x®)7d® = -gWTH®g® < 0 since HX is pd

o IfH®Dis pd, so is HY if p®7q® > ( ..guaranteed by an
optimal line search or Wolfe or Wolfe Powell tests

* Superlinear convergence, very good performance
generally better than conjugate directions(CD)
methods

* Higher storage requirement than CD methods
* Quadratic convergence
* Best methods for all problems except large ones

6-Aug-09 Vira Chankong 40
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P CasE

Trust-Region Method

Here we use quadratic approximation of f(x) at x®
and find both the direction of search and step size
by solving a quadratic programming (QP)
problem:

min q(d) = f(x®) + Vi(x®)d + 0.5(d” V2f(x®)d)
s.t O <d <hO, i=1,...n

Then we set x**D = x® + d®

The next step-size /#“'D is then determined by
examining how well the quadratic function q(.)
approximates the true function f at x**),

6-Aug-09 Vira Chankong 41
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Trust-Region Method

Compute:
0 = AflAg
where
Af = fixB) - AAx*D)

Aq = f(x®) - g(d®)
If 0 < 0.25, set h&+D = ||d®)]|/4

If #©>0.75 and 7% = ||dP)]|, set 2D =240
Otherwise, set 4" = j(0)

Then, proceed to iteration i+1

Until a termination criterion is met.

6-Aug-09 Vira Chankong 42
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WACAsE :
4" Nongradient-based: Nelder-Mead
Basic idea:

 Create a regular simplex (n+1 vertices and its
convex hull)

* Role it around toward optimum expanding,
contracting or reflecting as appropriate

 Until the size of the simplex is small enough
to fit a ball of size £

* Direction finding and line search are done
simultaneously

6-Aug-09 Vira Chankong 43
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Line Search Methods

6-Aug-09 Vira Chankong 44
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P CAsE

Line search problems

Given x and a search direction d®, find how far
to move along d®--i.e. find a step-size of® such
that f{x**D) meets some criteria of improvement.

At a point x along d®: x = x® + ad®
a is the distance from x to x® along d®,
f(x) = f(xH+ ad®)= K ) a function of one
variable only.

6-Aug-09 Vira Chankong 45
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Line Search Methods

For example, given
f(x) =3x.2+x.x, +2x,% - 8x,
and x(V = (-1,1)7,dD=(2,-1)T
x =xW+ ad® = (-1,1)T + a(2,-1)"
=(-1+2a 1-a)T
A a) = f(xD+ adD)
=3-1+t2aP+t(-1+2a)(1 - @) +
2(1 - @) -8(-1 +2a)

6-Aug-09 Vira Chankong 46
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P Case

Line Search Methods

If f(x) is unimodal = & ) is unimodal

Also ¢ (o) = VI® + ad®@)d® (1)
= ¢(0) = Vi(x®)d® (2)
= F(a®) = Vix® + a0d®)d®

= V(xD)d® 3)
Thus

d® is a descent direction V/{(x®)d® <0 < #(0)<0
e.g. #(0)=18(-1+ 202 +2(1 -a) - (1 +2a) - 4(1 - @) - 16
Thus ¢(0) =1 >0 = d® is not a descent direction.

6-Aug-09 Vira Chankong 47
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‘Line Search Methods

In numerical optimization, we require that d® be a
descent direction to ensure convergence

There are two types of line search methods:

1. Inaccurate line-search: an "acceptable' step-
size is sought, using some kind of
"acceptability" tests.

2. Optimal (also known as accurate or exact) line-
search: Here a step-size that gives the "best"
value of f(x) along d® is sought. This is
equivalent to solving: min ., ¥ @)

6-Aug-09 Vira Chankong 48
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W CAsE

Line Search Methods

Note:

 Optimal line-search: min _, ¢( ) is "almost" an
unconstrained problem except for « > 0, and

« If &P is an optimal step-size with /Y > 0, then
¢'(a®) = VE® + ohd®)d® = VE(xED)d®= 0

= an optimal line-search will produce a new point
x*1) at which the gradient of /'is orthogonal to the
direction of the search d

6-Aug-09 Vira Chankong 49
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W CA.SE

- “Inaccurate Line Search

The step-size o™ is considered "acceptable" if it is
not too large and not too small.

Not-Too-Large Test: For a given 0< p<0.5
#a") < 40) + p'(0)a* (NTL)

Not-Too-Small Test:

Armijo’s NTS: ¢(na*) > ¢(0) + pdp'(0)na*  n>1
Goldstien’s NTS: ¢(a*) > #(0) + o9'(0)r, 0.5< o <1
Wolfe’s NTS:  ¢'(*) > a¢'(0), 0.5 <o <1
Wolfe-Powell’s NTS: |¢'(a¥)| <- 09'(0),05<0o<1

6-Aug-09 Vira Chankong 50
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P CAsE

~lnaccurate Line Search

EXAMPLE: Given @(Q) =e2*+ o, n=2, p=0.1,and 0=0.9,
is &* = 0.5 is an acceptable step-size.

#0) =1, ¢'(@) = - 2¢% + 1, and ¢'(0) = -1 <O0.

NTL?: ¢(0.5) =0.8679
#0) + pd'(0)a* =1 + (0.1)(-1)(0.5) = 0.95
#a) > #0) + pd'(0)a* = a* is not too large.
NTS?: Armijo's: ¢(na*) = ¢(1) = 1.1353
#0) + n¢'(0)na* =1+ (0.1)(-1)(0.5) = 0.95
Hna) > §(0) + po'(O)nar,

a* is not too small according to Armijo's test.

6-Aug-09 Vira Chankong 51
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w C ASE

= ""naccurate Line Search

Goldstein's NTS: ¢(a”) = ¢(0.5) = 0.8679
#0) + o¢'(0)a* =1 + (0.9)(-1)(0.5) = 0.955

Ha) < H0) + o (0)a*

a* is too small according to Goldstein's test.
Wolfe's NTS: ¢'(a*) = ¢'(0.5) = 0.2642

a'(0) = (0.9)(-1) = -0.9 = (@) > 0 ¢(0)

a* is not too small according to Wolfe's test.
Wolfe-Powell's NTS: |¢'(«*) | = ¢'(0.5) =0.2642,
and - o¢'(0) = -(0.9)(-1) = 0.9 = [¢'(e)| <-$'(0)

a* is not too small based on Wolfe-Powell's test.

6-Aug-09 Vira Chankong 52
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WA CASE

*“""~ Accurate Line Search
Popular Methods:

» Interval Reduction Methods
» Golden Section Search
» Fibonacci
» Quadratic Interpolation
>» Brent’s
» Others: Bisection, Equal Interval

» Approximation (Extrapolation) Methods

>» Newton’s
>» Method of False Position or Sectioning Search
> Bisection
s EECe, CWRU ®
WA CAsE

MO\ ceurate Line Search

Interval Reduction Approximation
Methods

Derivatives o Golden Section GSS
not e Fibonacci
available ¢ Quadratic Interpolation
e Brent’s method
e Others: Bisection, Equal
Interval, etc...

Derivatives o Bisection e Newton’s
available e Method of
False Position
e Cubic
Interpolation

6-Aug-09 Vira Chankong 54
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W CAsE

“Interval Reduction

» Find an initial bracket with one end at ¢
» Successively reduce the bracket until its
length is within a desired tolerance limit
=> Any point in the final bracket = o*
» These methods consist of two phases:
» the bracketing phase

» the interval reduction phase.

» A bracket = an interval that is known to
contain the true minimizer ¢* with certainty

6-Aug-09 Vira Chankong 55
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Brackets

» A bracket = an interval that is known to
contain the true minimizer o* with certainty
» [a,b] = Bracket

» ifdce(ab)> da)> ¢c) and ¢c) < db) or
» If ¢'(a) <0 and ¢'(b) >0

» The first test is good if derivatives of ¢ a) are
difficult or expensive to find

» The second is good if derivatives of @) are easy
or cheap to find
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- " Bracketing Procedure

Begin with ¢, (Given x®) and direction d®):

» Select a suitable step length A and verify
that d® is descending, i.e. ¢ +A) < k)

> If ¢(oytA) > ¢(r)) reset the step-size A < -A

> If ¢y tA) = ¢(r)) the interval [, g +A]
represents an initial bracket and no further
work is needed

» Then proceed as follows:
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Bracketing Procedure
(if #'(«) is not available)

»Fork=1,2,34,.....
1: DO
Oy = @+ 251A
UNTIL
) < Aey.)
2: Compute o, = ¢ +252A
If §() < ¢(e,,), BRACKET =[¢; ,, @, @,,]
Else BRACKET =[¢,, «,,, &,/]
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A CASE

M B acketing Procedure

min @) = &* + 10/(a+1) given that o, =0 and A =0.2.

k au = qt2F1A N Comment

1 0 10 a,=0

2 0.2 8.3733 Ha,) < d(,) = retain +A
3 0.6 6.61

4 1.4 6.1267

5 3.0 11.5 A a,) < ;) = step back
try 2.2 7.9650

Oy = ay+22A
Since ay) < A @,,,) = our initial bracket is [0.6, 1.4, 2.2]
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BC+sE. Bracketing Procedure
(if #'(«) is available)

> If ¢ (e)) > 0, set A < -A and proceed. Otherwise, proceed
» For k=1,2,3,4,.....
1: DO
., = a, +2F1A
UNTIL
# (@) >0
2: Compute a,, = g, +22A
If #(a,,) >0, BRACKET =[¢, ,, @, ,,]
Else BRACKET = [« «,.. &.]

try’
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" Interval Reduction

Given an initial bracket, successively reduce
the bracket to a desired length and location.

When ¢/(@) 1s not available:

» Compare the values of @) at two distinct interior
points in the bracket
» use the following rule to reduce the interval:
>» Letxe [a, b],and y € [a, b] with x < y.
> If #(x) > Hv), then o™ € [x, D]
> Else a* € [q, x]
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WACASE  Golden Section search (GSS)

and Fibonacci method
» Use one function per iteration (except the first)

» Guarantee predictable rate of interval reduction by placing
x; and y, so that the length of the next bracket [q;,);] or
[x;, 0] is the same

» Successively application yields the following relationship of
lengths of three successive brackets

> Ly =Ly t Ly, @

> Note if [a;, by, ] = [x,. 5], i = X;4y and yy,, is the only
new point generated at iteration 4+1. Similarly if
[a1s1,011] = [apyi]s X = Vi and Xy, is the only new
point generated.

» Both GSS and the Fibonacci method make use of (1), but
this is where the similarity ends.
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PACASE Golden Section search (GSS)
and Fibonacci method
> GSS
» a constant rate of interval reduction is desired and

» the calculations are made using as many iterations
as needed to reduce the bracket to a desired
accuracy.

» Fibonacci method

> the number of iterations is pre-determined and

> an effort is made to make the best possible reduction
within the predetermined number of iterations.
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Golden Section search (GSS)

Let 7 be the constant rate of interval reduction sought in
GSS,i.e. L, /L, = 7, for all k=1,2,3,.....
Dividing (1) through by L,

1= Lyt /Ly + Ly Ly )* (Lyt/L) = 7 + 72

?+7-1=0
positive root of (2) is 7= (\5 - 1)/2 = 0.618034
Golden Number (= name Golden Section Search).
L., =1L,=0.618L,=7L,=0.618L,
where L, = b, - a,, the length of the initial bracket.
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ACSE._Golden Section search (GSS)

Typical calculations of the GSS method:
0: Given an initial bracket [a,,b;] and the interval of uncertainty &
Compute x; =b; - 1L;; d(x)) and y; = a, + 1L;; d(y,)
1: Fork=1,23,..
DO
If ¢(x;) < ¢(y,), then
set @, = a; b,y =y, and y,,, = x, (hence ¢(y,,,) = ¢(x,))
Compute L, = 7L, or T*1L,
Compute x;,; = b,y - Ly,

Compute f(x,,;)

Else
seta,; = X,; by, = by and xp, =y,
Compute L,,, = 1L, or 71,
Compute y,,; = .y + Ly,
Compute fiy..)

UNTIL
L,<e

2: Return
the final bracket [a,,b,] and
o = (a,+b,)/2 or the best known interior point in the final bracket [a,b,].
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WA CAsE

" Golden Section search (GSS)

Example: Given ¢(@) =2¢?%+ a, and ¢ = 0.1, and
the initial bracket [a,b,] =[0,1.2707] = L, = b, - a, = 1.2707

k Li=tL,  a X Vi by ) fo)
1 7853 0 4854 7853 1.2707 1.2429 1.2011
2 4854 4854 7853 9706 1.2707 1.2011 1.2577
3 2999 4854  .6707 7853  0.9706 1.1937 1.2011
4 1854 4854 5999 6707  0.7853 1.2024 1.1937
5 1145 5999 .6707 7144 0.7853 1.1937 1.1936
6 .0708 6707 7144 7415 0.7853 1.1936 1.1954
<& = STOP
Final bracket [a,b,] = [0.6707,0.7415],
a good estimate of x*= (.7144 or (0.6707+0.7415)/2 = 0.7061.
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Fibonacci Search

* For a fixed number of iterations /, to find o* to within the
level of accuracy &, use Fibonacci search

Let Fj=1, F;=1,and F, =F, | + F,,for k=2, 3,..
where F;’s are known as Fibonacci numbers
= Require L, = L*< ¢g(also L, = Ly, =Ly, =....)
=Ly, =Ly+Ly,=LytLy=F/L*+FL"=F,L*
=>Ly,=Ly,+Ly=2Ly+Ly=F,L*+F,L* =F,L*

=Ly =Ly g = Fy L*
=L, =Ly, = FL*= L* = L/F
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Fibonacci Search

=L, =(F/F)L<¢
= Ly, = (F)/Fy)L,
= Ly, = (F5/F))L,

= Ly, = (F/Fy)L, = L, = (Fy i /FyL,

= L, = (F\,/Fy)L,

= L, =(F/FyL,

where F,’s are Fibonacci numbers

F=1,F =1,

F,=F\+F,=2,F,=F,+F =3,F,=F,+F,=5, ...
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AE. Fibonacci Search

Typical calculations of the Fibonacci method:
0:  Given an initial bracket [a;,b,] and the interval of uncertainty &
Find N: Ly =L,/Fy< &= Fy2 L,/ &= N can be found from Table of Fibonacci numbers
Then compute L, = (Fy_,/Fy)Ly; Xy = b, - Ly; ¢(x;) and y; = a; + Ly; ¢(yy)
1: DO k=123,..,N
If ¢(x;) < d(yy), then
set a,; = a3 by =¥y and yy,y = X (hence ¢(yy+1) = §(x)))
Compute Ly, = (Fy,.1/Fy)L,
Compute X,y = by - Ly,
Compute f(x;,)
Else
set 8y = X3 by = by and Xy =y
Compute Ly, = (Fy,.1/Fy)L,
Compute yy,; = ay,; + Lyyy
Compute f(y,,)
CONTINUE
2:  Return the final estimate x, = y, = o* (This assumes small calculation errors.)
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~ Quadratic Interpolation

Given the current bracket [a,,x,,b,]

and the values ¢(a,), §(x;), ¢(b;)

we could approximate by a quadratic curve
9(@) =, + ca+ @’

passing through the same 3 points as ¢(a):
[a d(@d], [xp $(x)], [Dr ¢(b))]

i.e.
q(a) = ¢y + cay + > = d(ay)
qlxg) = o+ opxp + 62 = ()
q(by) = ¢y + c1by + c,b, 2= (b))
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~ Quadratic Interpolation

We can solve for ¢, c;, ¢, and find a minimizer y,
of g(@) = ¢y + cya + c,a? (by finding the root of
q (o) =0) to get:

. ((b,f —c)pla,) +(c; —a))p(b,) + (a; —b,f)¢<ck)J
) (bk —C )¢(ak) + (ck —a; )¢(bk) + (ak - bk )¢(Ck)

We can now check whether we can use y, to
reduce the interval and form a smaller bracket

e.g. if a;, <y, <x; and is not too close to any either
a; or x; and if ¢(y;), > ¢0(x;) then the new bracket
is [y, x5, by (i€ [s1, Xperq U] = [V 0c] )
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= Quadratic Interpolation

Typical calculations of the QI method:
0: Given an initial bracket [a,,x,, b;] and the interval of uncertainty €
1: Fork=1,23,..
DO
Compute ¢(ay), d(x), $(by)
Compute y,, and ¢(y,)
If y, > x, and
If ¢(y) < 0(x,), then set 4,y = X Xiq = Yy by = by
Else set a ., = a; X1 = %5 Uy = Y
If y, <x,and
If §(yy) < d(x,), then set a4y, = 4 X1 = Yio Disr = X
Else set 4y, = Yy X1 = X5 byig = by
UNTIL |a,-b, |<e
2: RETURN

the final bracket [a,, x,,b,] and o’ = (a,+b,)/2 or x, which is the

best known interior point in the final [a,, x,, b,].
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~ Quadratic Interpolation

* In the above algorithm, it is assumed that the
new point i, generated is not to close to any of
the existing points a,, x,, b, . In practice,
however such situation could easily occur and
if it does we should disregard y, and use
another way to generate a new v,

The popular Brent’s Method uses GSS to
generate new i, when the one generated by
regular QI is too close to any one of the existing
three points. Then QI is reactivated from that
point on.
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“~Modified QI (a version of Brent’s)

Given an initial bracket [a;,x;, b;] and the interval of uncertainty &. Set k =1.

Compute ¢(ay), ¢(x1), $(by), and compute y; using QI.
If y, is indistinguishable from a,,x, or b,, GO TO 4. Else continue.
Compute ¢(y,).
If y, > x; and
If $(yi) < 0(xy), then  set ayyq = X5 Xis1 = Yig bras = by
Else set a4 = A5 Xiaq = X Diar = Yie
If y, <x, and
If o(11) < d(x), then  set ay,q = ay; Xiuq = Yo brwn = X
Else set a1 = Y1 Xiaq = Xjg Draq = by
If | ay - b, | <&, STOP and RETURN the final bracket [a,, x,b,] and & = (a,+b,)/2
or x;, which is the best known interior point in the final [a,, x,, b,].
OTHERWISE, set k = k+1 and GO TO 1.

If x, is distinguishable from the midpoint of [a,,b,], then set y, = (a,+b,)/2, setk =
k+1 and GO TO 2.
Else, set y; = (a;+x,)/2 if ¢(ay) < d(by) or (x +b,)/2 if d(ay) > ¢(by). Set k = k+1 and
GO TO2.

Can also use GSS to find new x; and y; in 4, or any suitable method to find
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Interval Reduction
(when ¢'(«) is available)

* Given the current estimation point
o and the value ¢(a)

* Suppose we also know value of
# ()
— The most efficient interval

reduction method is the
BISECTION Method

6-Aug-09 Vira Chankong 75
EECS. CWRU

Bisection Method
(when ¢'(«) is available)

0: Given an initial bracket [a,,b,] and the interval of uncertainty &
(Since this is a bracket ¢(a,) <0 and #(b,) > 0.)
1: Fork=1,23...
DO
Compute midpoint x, = (3, +b,)/2 and ¢"(X,)
If #(x,) <0, seta,,, =a; b, =X,
If #(x,) >0, set a,,, =X, b,,, =b,
UNTIL
[Pl <& or |a - byl<e,
2: RETURN
the final bracket [a,,b,] and " = (a,tb,)/2 or X,

NOTE: Rate of reduction = 50% (best of all) compared with 32% of GSS
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~ Approximation Methods
NEWTON’S METHOD

* Given the current estimation point ¢ and the
value ¢(a)

* Suppose we also know values of some derivatives
e.g. ¢'(a) and ¢" ()
* We could approximate ¢(«) by a quadratic function
(@) = §(a)+ ¢'(a9)(a - ) +¢"(aV)(a - o)
Note that: q(a®) = d(a)
q'(a®) =¢'(a¥)
q"(e®) = ¢"(a®)
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~~ NEWTON'S METHOD

o If ¢"(a®) >0 = g"(a®) > 0 = g(c) has a minimum.
* We can use the minimizer of g(c) as the next
approximation of o*

* The minimizer of g(a) satisfies 4'(a.) = 0 or
¢'(@®)+ ¢"(a®)(e - al) =0
e If o*) is a minimizer of g(a) , then
' (a®)+¢" (a®) (@D - @) = 0
or o =q®- ¢ a®)/ ¢"(a)
which is used to produce successive
approximations of o’
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~ NEWTON'S METHOD
Notes:

* When Newton’s method works, it is the
best since it converges to o very quickly

* Itrequires ¢"(a¥) which is often
expensive or impractical to get which
limts the use of this method

* Itrequires ¢"(a¥) > 0 to converge so it
requires a very good starting point a0
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- Method of False Position

* To overcome the need to compute ¢"(a¥)) but
still use 2nd order info to have good
convergence, approximate ¢" (o) by

¢"(@®) = (¢'(a®) - ¢’ (D) )/(a® - alD)

= oD = q®- §'(ab) (@ - ab D)/ (@ @®) - §'(a))
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Cubic Interpolation

* Given a®1, ¢(akD), ¢"(akD) and a®), p(a®),
¢'(a™) are available, such that
¢'(akD) <0 and ¢'(a®) > 0
or ¢'(a®D) <0 and ¢p(a®D) < ¢p(a®)

* We can fit a cubic function c¢(c) though o<

and a®) having the same function values and
derivatives at aV) and o) as those of ¢(a)

* The minimizer of c(a) can then be used as the
next approximation of o’
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Cubic Interpolation

Here are the necessary formulas for Cubic
Interpolation Method:

a1 = a®-(aM- alD)[§ (M) +uru V¢ (@) (@) +2u,]
where

uy = ¢'(a®) + ¢'(a?) - 3[¢(a®) -p(atV)/[a®- alD]
and

Uy = [y §'(@) ¢/ (@)

* Quite powerful and not too difficult to implement
on computers if the assumptions are OK
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