
1

8/6/2009 1

Numerical Optimization

Instructor: Vira Chankong
Electrical Engineering and Computer Science
Case Western Reserve University

Phone: 216 368 4054, Fax: 216 368 3123
E-mail: vira@case.edu

A Workshop
At

Department of Mathematics
Chiang Mai University

August 4-15, 2009

8/6/2009 2Vira Chankong
EECS. CWRU

2

Session:
Methods For Constrained
Nonlinear Optimization Problems

Vira ChankongVira Chankong
Case Western Reserve UniversityCase Western Reserve University

Electrical Engineering and Computer ScienceElectrical Engineering and Computer Science

2

8/6/2009 3

NEOS Guide Optimization Tree

8/6/2009 4

Constrained Optimization Constrained Optimization
(Nonlinear Programming)(Nonlinear Programming)

N LP: m in ()

 . . () 0,

 () 0,

or m in ()

 . . c () 0,

 , 1, ..,

n

n

R

j E

j I

R

j

i i i

f

s t h j J

g j J

f

s t x j J

l x u i n

∈

∈

= ∈

≤ ∈

= ∈

≤ ≤ =

x

x

x

x

x

x

3

8/6/2009 5

Desirable Properties of
Numerical Methods

Terminate Terminate at aat a right solution, quickly right solution, quickly and and
cheaply cheaply every timeevery time

Converge:Converge: FindFind solutionsolution every time; Always stop every time; Always stop
at the right pointat the right point
Speed:Speed: FindFind solutionsolution quickly (low # of iterations)quickly (low # of iterations)
Cheap:Cheap: Low cost per iteration (Low cost per iteration (timetime: # of : # of
function evaluations; andfunction evaluations; and storage)storage)

Appropriate handling of optimality Appropriate handling of optimality v.sv.s. .
feasibilityfeasibility

8/6/2009 6

Optimality v.s. Feasibility

2 strategies:2 strategies:
Start feasible Start feasible ((x((1)) feasible)feasible), stay feasible , stay feasible
((x((k)) feasible)feasible), and work for optimality , and work for optimality ------
Feasible (primal) methodsFeasible (primal) methods
Start at a best convenient point Start at a best convenient point ((x((1))

infeasible)infeasible), stay on , stay on ““bestbest”” but relaxed but relaxed
course course ((x((k)) infeasible)infeasible), and work to achieve , and work to achieve
feasibilityfeasibility------Infeasible (dual) methodsInfeasible (dual) methods

4

8/6/2009 7

Pros and Cons
Feasible methods
Pros:

Can stop anytime,
and x(k) is always
usable since it is
feasible (although not
necessarily optimal)

Cons:
Less flexible to
move—generally take
longer and more
costly

Infeasible methods
Pros:

More flexible to
move—generally more
efficient and less costly

Cons:
Cannot stop until done,
and x(k) is not usable
since it is normally
infeasible

8/6/2009 8

Classes of MethodsClasses of Methods
To find search direction d(k): Solve a simpler problem
• Active Set-Strategy:

• Gradient projection

• Reduced gradient--Convert to equality constraints, eliminate
variables, and solve bound constrained problems in reduced
dimension

• Convert to unconstrained problems—penalty/barrier/Augmented
Lagrangian

• Use Linear/Quadratic approximations and solve series of LPs or
QPs—SLP/SQP

• Projective Transformation—interior point methods

5

8/6/2009 9

Common Classes of MethodsCommon Classes of Methods

Reduced Gradient (Feasible)
Penalty/Augmented Lagrangian
(Infeasible)
Successive Quadratic Programming
(SQP) (and Sequential Linear
Programming (SLP)) (Infeasible)
Interior-point (Feasible/Infeasible)

8/6/2009 10

Current Software and OptimizersCurrent Software and Optimizers

MATLAB, OPTIMA, SQP,
MATHCAD

SQPSQP

Callable by GAMS, AMPL or
stand-alone

SQPNPSOL,NLPQL,
SNOPT, SQOPT

Stand-alone LANCELOT in
various platforms

Augmented LagrangianLANCELOT

GAMS, AMPL Projected Augmented
Lagrangian

MINOS

GAMS, AMPL, AIMMS, MPLReduced GradientCONOPT

Excel Solver, LINGO/GINO,
GAMS, NAG, IMSL

Reduced GradientGRG, GRG2,
LSGRG2

In SoftwareMethodologyOptimizer

6

8/6/2009 11

Constrained Optimization Constrained Optimization
(Nonlinear Programming)(Nonlinear Programming)

•• CO CO -- nonlinear programming in the GAUSS language. nonlinear programming in the GAUSS language.
•• CONOPT CONOPT -- nonlinear programming. nonlinear programming.
•• DONLP2DONLP2 -- nonlinear programming. nonlinear programming.
•• DOTDOT -- Design Optimization Tools. Design Optimization Tools.
•• Excel and Quattro Pro SolversExcel and Quattro Pro Solvers -- spreadsheetspreadsheet--based linear, integer and based linear, integer and

nonlinear programming. nonlinear programming.
•• FSQPFSQP -- nonlinear and nonlinear and minmaxminmax constrained optimization, with feasible constrained optimization, with feasible

iterates. iterates.
•• GINOGINO -- nonlinear programming. nonlinear programming.
•• GRG2GRG2 -- nonlinear programming. nonlinear programming.
•• HARWELL LibraryHARWELL Library -- linear and nonlinear programming, nonlinear linear and nonlinear programming, nonlinear

equations, data fitting. equations, data fitting.
•• ILOGILOG -- constraintconstraint--based programming and nonlinear optimization. based programming and nonlinear optimization.
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems.
•• LINGOLINGO -- linear, integer, nonlinear programming with modeling language. linear, integer, nonlinear programming with modeling language.
•• LOQOLOQO -- Linear programming, unconstrained and constrained nonlinear Linear programming, unconstrained and constrained nonlinear

optimization. optimization.
•• LSGRG2LSGRG2 -- nonlinear programming. nonlinear programming.
•• MINOSMINOS -- linear programming and nonlinear optimization. linear programming and nonlinear optimization.

8/6/2009 12

•• MOSEK MOSEK -- linear programming and convex nonlinear optimization. linear programming and convex nonlinear optimization.
•• NLPJOBNLPJOB -- MulicriteriaMulicriteria optimization. optimization.
•• NLPQLNLPQL -- nonlinear programming. nonlinear programming.
•• NLPQLBNLPQLB -- nonlinear programming with constraints. nonlinear programming with constraints.
•• NLPSPRNLPSPR -- nonlinear programming. nonlinear programming.
•• NPSOLNPSOL -- nonlinear programming. nonlinear programming.
•• NOVANOVA -- nonlinear programming. nonlinear programming.
•• OPTIMA LibraryOPTIMA Library -- optimization and sensitivity analysis. optimization and sensitivity analysis.
•• PROC NLPPROC NLP -- various nonlinear optimization capabilities. various nonlinear optimization capabilities.
•• OPTPACKOPTPACK -- constrained and unconstrained optimization. constrained and unconstrained optimization.
•• SNOPTSNOPT -- largelarge--scale quadratic and nonlinear programming problems. scale quadratic and nonlinear programming problems.
•• SQPSQP -- nonlinear programming. nonlinear programming.
•• SPRNLPSPRNLP -- sparse and dense nonlinear programming. sparse and dense nonlinear programming.
•• SYNAPS PointerSYNAPS Pointer -- multidiscplinarymultidiscplinary design optimization software. design optimization software.
•• What's BestWhat's Best -- Excel addExcel add--in for linear, integer, nonlinear programming.in for linear, integer, nonlinear programming.

Constrained Optimization Constrained Optimization
(Nonlinear Programming)(Nonlinear Programming)

7

8/6/2009 13

Quadratic ProgrammingQuadratic Programming
•• BQPD BQPD -- quadratic programming. quadratic programming.
•• CPLEX CPLEX -- linear, quadratic, and network linear programming. linear, quadratic, and network linear programming.
•• FortMPFortMP -- integer quadratic programming. integer quadratic programming.
•• LINDOLINDO -- linear, mixedlinear, mixed--integer and quadratic programming. integer and quadratic programming.
•• LOQOLOQO -- linear programming, unconstrained and constrained linear programming, unconstrained and constrained

nonlinear optimization. nonlinear optimization.
•• LSSOLLSSOL -- least squares problems. least squares problems.
•• MOSEKMOSEK -- linear programming and convex optimization (including linear programming and convex optimization (including

convex quadratic programming). convex quadratic programming).
•• OSLOSL -- linear, quadratic and mixedlinear, quadratic and mixed--integer programming. integer programming.
•• PORT 3PORT 3 -- minimization, least squares, etc. minimization, least squares, etc.
•• PROC NLPPROC NLP -- various nonlinear optimization capabilities. various nonlinear optimization capabilities.
•• SQOPTSQOPT -- largelarge--scale linear and convex quadratic programming. scale linear and convex quadratic programming.
•• SNOPTSNOPT -- largelarge--scale linear, quadratic, and nonlinear programming scale linear, quadratic, and nonlinear programming

problems (including problems (including nonconvexnonconvex quadratic programming. quadratic programming.
•• QLQL -- convex quadratic programming. convex quadratic programming.
•• QPOPTQPOPT -- linear and quadratic problemslinear and quadratic problems

8/6/2009 14

Nonlinear Least SquaresNonlinear Least Squares
•• DFNLPDFNLP -- nonlinear data fitting. nonlinear data fitting.
•• HARWELL LibraryHARWELL Library -- linear and nonlinear programming, nonlinear linear and nonlinear programming, nonlinear

equations, data fitting. equations, data fitting.
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems.
•• LOQOLOQO -- Linear programming, unconstrained and constrained Linear programming, unconstrained and constrained

nonlinear optimization. nonlinear optimization.
•• MINPACKMINPACK--11 -- nonlinear equations and least squares. nonlinear equations and least squares.
•• MODFITMODFIT -- parameter estimation in dynamic systems. parameter estimation in dynamic systems.
•• NLSSOLNLSSOL -- constrained nonlinear least squares problems. constrained nonlinear least squares problems.
•• ODRPACKODRPACK -- NLS and ODR problems NLS and ODR problems
•• PDEFIT PDEFIT -- parameter estimation in partial differential equations. parameter estimation in partial differential equations.
•• PORT 3PORT 3 -- minimization, least squares, etc. minimization, least squares, etc.
•• PROC NLPPROC NLP -- nonlinear minimization or maximization. nonlinear minimization or maximization.
•• SPRNLPSPRNLP -- sparse nonlinear least squares. sparse nonlinear least squares.
•• SYSFITSYSFIT -- parameter estimation in systems of nonlinear equations. parameter estimation in systems of nonlinear equations.
•• TENSOLVETENSOLVE -- nonlinear equations and least squares. nonlinear equations and least squares.
•• VE10VE10 -- nonlinear least squares.nonlinear least squares.

8

8/6/2009 15

Nonlinear EquationsNonlinear Equations
•• CONTINCONTIN -- systems of nonlinear equations. systems of nonlinear equations.
•• GAUSSGAUSS -- matrix programming language. matrix programming language.
•• HARWELL LibraryHARWELL Library -- linear and nonlinear linear and nonlinear

programming, nonlinear equations, data fitting. programming, nonlinear equations, data fitting.
•• HOMPACKHOMPACK -- nonlinear equations and polynomials. nonlinear equations and polynomials.
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems.
•• LOQOLOQO -- Linear programming, unconstrained and Linear programming, unconstrained and

constrained nonlinear optimization. constrained nonlinear optimization.
•• MINPACKMINPACK--11 -- nonlinear equations and least squares. nonlinear equations and least squares.
•• NITSOLNITSOL -- systems of nonlinear equations. systems of nonlinear equations.
•• OPTIMA LibraryOPTIMA Library -- optimization and sensitivity optimization and sensitivity

analysis. analysis.
•• PETScPETSc -- parallel solution of nonlinear equations and parallel solution of nonlinear equations and

unconstrained minimization problems.unconstrained minimization problems.

8/6/2009 16

Libraries with Optimization Libraries with Optimization
CapabilitiesCapabilities

•• HARWELL LibraryHARWELL Library -- linear and linear and
nonlinear programming, nonlinear nonlinear programming, nonlinear
equations, data fitting. equations, data fitting.

•• IMSLIMSL -- Fortran and C Library. Fortran and C Library.
•• NAG C LibraryNAG C Library -- nonlinear and nonlinear and

quadratic programming, minimization quadratic programming, minimization
•• NAG Fortran LibraryNAG Fortran Library -- nonlinear and nonlinear and

quadratic programming, quadratic programming, minimizminimiz ationation

9

8/6/2009 17

Optimization Systems/Optimization Systems/
Modeling LanguagesModeling Languages

•• The The AIMMS AIMMS modeling language. modeling language.
•• The The AMPL AMPL modeling language. modeling language.
•• DATAFORM DATAFORM -- model management system. model management system.
•• EASY FITEASY FIT -- parameter estimation in dynamic systems. parameter estimation in dynamic systems.
•• Excel and Quattro Pro SolversExcel and Quattro Pro Solvers -- spreadsheetspreadsheet--based linear, integer and nonlinear based linear, integer and nonlinear

programming. programming.
•• EZMODEZMOD -- modeling for decision support systems. modeling for decision support systems.
•• GAMSGAMS -- modeling language. modeling language.
•• GAUSSGAUSS -- language, oriented toward data analysis and statistical applicalanguage, oriented toward data analysis and statistical applications. tions.
•• LINGOLINGO -- linear, integer, nonlinear programming with modeling language. linear, integer, nonlinear programming with modeling language.
•• MATLABMATLAB -- optimization toolbox. optimization toolbox.
•• MODLERMODLER -- linear programming modeling language. linear programming modeling language.
•• MPLMPL -- modeling system. modeling system.
•• MPSIII MPSIII -- mathematical programming system (includes DATAFORM). mathematical programming system (includes DATAFORM).
•• OPL StudioOPL Studio -- optimization language and solver environment. optimization language and solver environment.
•• OPTIMAXOPTIMAX -- component software for optimization. component software for optimization.
•• PLAMPLAM -- algebraic modeling language for mixed integer programming, consalgebraic modeling language for mixed integer programming, constraint logic traint logic

programming, etc. programming, etc.
•• SPEAKEASYSPEAKEASY -- numerical problems and operations research. numerical problems and operations research.
•• PCOMPPCOMP -- modellingmodelling language with automatic differentiation. language with automatic differentiation.
•• PROC NLPPROC NLP -- nonlinear minimization or maximization. nonlinear minimization or maximization.
•• What'sBestWhat'sBest -- Excel addExcel add--in for linear, integer, and nonlinear programming.in for linear, integer, and nonlinear programming.

8/6/2009 18

Engineering Design Engineering Design
Optimization PackagesOptimization Packages

•• CONSOLCONSOL--OPTCADOPTCAD -- engineering system design. engineering system design.
•• COMPACTCOMPACT -- design optimization. design optimization.
•• DOCDOC -- design optimization control program. design optimization control program.
•• GENESISGENESIS -- structural optimization software. structural optimization software.
•• OPTDESOPTDES -- design optimization tool. design optimization tool.
•• SIMUSOLVSIMUSOLV -- modeling software. modeling software.
•• SOCSSOCS -- sparse optimal control; calls the sparse optimal control; calls the SPRNLPSPRNLP

package for nonlinear programming. package for nonlinear programming.
•• ULTRAMAXULTRAMAX -- design and process optimization.design and process optimization.

10

8/6/2009 19

More References on More References on
Software and MethodsSoftware and Methods

•• Optimization Software GuideOptimization Software Guide ((Jorge J. Jorge J.
MorMoréé and and Stephen J. WrightStephen J. Wright, SIAM , SIAM
Publications, 1993).Publications, 1993).

• NEOS—Network Optimization Software
http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide

• Nonlinear Optimization, Jorge Nocedal and
StephenStephen J. Wright, Springer, NY, 1999

8/6/2009 20

Constrained OptimizationConstrained Optimization

•• Basic Ideas still the same as unconstrained case:Basic Ideas still the same as unconstrained case:
–– Iterative: Iterative: Beginning at an initial Beginning at an initial xx(1)(1), , generate generate

sequence sequence xx(1)(1), x, x(2)(2),.., ,.., xx((kk)),..,.. until stop at until stop at x* x*
–– At a current iterate At a current iterate xx((kk)),,

•• Determine a search direction Determine a search direction dd((kk))

•• Determine a Determine a stepsizestepsize αα(k(k alongalong dd(k(k))

–– Update:Update: xx(k+1) (k+1) = = xx(k(k)) + + αα(k)(k)dd(k(k))

•• Only this time we need to consider Only this time we need to consider ““feasibilityfeasibility””
when searching forwhen searching for search direction and search direction and
stepsizestepsize..

11

8/6/2009 21

Constrained Optimization: Constrained Optimization:
Key IssuesKey Issues

•• When to stop? When to stop? ––Characterization of Characterization of
solution pointssolution points

•• How do we make progress? How do we make progress? ----
Determining search direction Determining search direction dd((kk))

and and stepsizestepsize αα(k(k

•• How do we measure progress toward How do we measure progress toward
achieving achieving feasibilityfeasibility and and optimalityoptimality? ?

8/6/2009 22

Characterizing Optimal Points.
For Constrained Problems

NLP: min ()

 . . () 0,

 () 0,

nR

j E

j I

f

s t h j J

g j J

∈

= ∈

≤ ∈

x
x

x

x
Unconstrained: JE = φ and JI = φ

Equality Constrained: JE ≠ φ and JI = φ

Inequality Constrained: JE = φ and JI ≠ φ

Mixed Inequality Constrained: JE ≠ φ and JI ≠ φ

12

8/6/2009 23

Characterizing Optimal Points:
Unconstrained Problems

See Notes on “Unconstrained Problems:

In a nutshell;
If x* is a local minimizer of f, then

∇f(x*) = 0 and ∇2f(x*) is positive semi-definite
(psd)

If ∇f(x*) = 0 and ∇2f(x*) is positive definite (pd),
then x* is a strict local minimizer of f

If f is convex ∇2f(x*) is pd for all x, then any local
minimizer is global

8/6/2009 24

Characterizing Optimal Points:
Equality Constrained Problems

For EP: min () s.t. , () = 0,

For some , , let the

 (,) () (),

If at *, (*), are linearly independent
E

n
j E

j E

j j
j J

j E

f R h j J

Lagrange multipliers j J Lagrangian

L f h

h j J

λ

λ
∈

∈ ∈

∈

= +

∇ ∈

∑

x x x

x λ x x

x x

()
() { }

*

2

(or some other constraint

qualification) and if there exist , such that

 i) *, * 0, and (*) 0,

 ii) *, * 0 for 0 in | (*) 0,

 (

j E

j E

T n
j E

j J

L h j J

L T R h j J

λ ∈

∇ = = ∈

∇ > ≠ = ∈ ∇ = ∈

x λ x

s x λ s s s x s

()
()

()

2i.e. * is in the tangent space T at *)

Then * is a strict local minimizer of subject to the equality constraints.

Moreover * is a unique global minimizer if is convex and each ()

is linear-
j

L pd

f

f h

∇ x x

x x

x x x

-a convex programming problem.

13

8/6/2009 25

Characterizing Optimal Points:
Mixed Inequality Constrained Problems

For NLP: min () s.t. , () = 0, ; () 0,

For some , , and , , let the

 (,) () () ()

Karush-Khun-
E I

n
j E j I

j E j I

j j j j
j J j J

f R h

mu

j J g j

ltipl

J

j J j J

L f h

L

g

agrangianiers λ μ

λ μ
∈ ∈

∈ ∈ ≤ ∈

∈ ∈

= + +∑ ∑

x x x x

x λ x x x

()

* *

If at *, (*), and (*), are linearly independent (or

some other constraint qualification) and if t

Tuck

here

er (KKT)

 exist , and ,

such that

Theore

 i) *, *

m:

j E j I

j E j I

h j J g j J

j J j J

L

λ μ

∇ ∈ ∇ ∈

∈ ∈

∇

x x x

x λ

*

*

0
 ii) (*) 0,

 iii) (*) 0,

 iv) 0,
Then * is of a KKT p the NLPo n .i t

j I

j j I

j I

g j J

g j J

j J

μ

μ

=

≤ ∈

= ∈

≥ ∈

x

x

x

8/6/2009 26

Characterizing Optimal Points:
Mixed Inequality Constrained Problems

For NLP: min () s.t. , () = 0, ; () 0,

 (,) () () ()

1)
SECOND-ORDER SUFFICIENCY: If

 * is KKT with multipliers point

E I

n
j E j I

j j j j
j J j J

Lagr
f R h j J g j J

L
angian

f h gλ μ
∈ ∈

∈ ∈ ≤ ∈

= + +∑ ∑

x x x x

x λ x

x

x x

()
{ }* *

2

| (*) 0, , (*) 0, with 0, (*) 0, with 0

*,and
2) , where

Then *is of NLP.
Mor

*, * 0 for 0 in the tangent space

a strict local min
eover it is

imizer
a un

iq

 n

j E j I j j I j

T

T R h j J g j J g j J

L T

μ μ= ∈ ∇ = ∈ ∇ = ∈ > ∇ ≤ ∈ =

∇ > ≠

s x s x s x s

x λ s s
λ

x

s

()if is convex, each ()
is linear, and each () is convex--a

ue global min
convex prog

im
ramming problem

izer
.

 j

j

f h
g

x x
x

14

8/6/2009 27

Making Progress
To find a new search direction d(k): Solve a
simpler problem

• Convert to unconstrained problems—
penalty/barrier/Augmented Lagrangian

• Convert to equality constraints, eliminate variables, and
solve bound constrained problems in reduced
dimension—reduced gradient/gradient projection

• Use Linear/Quadratic approximations and solve series of
LPs or QPs—SLP/SQP

• Projective Transformation—interior point methods

8/6/2009 28

Penalty Function Method

Convert to unconstrained problem using penalty:

q(x:c) = f(x) + cp(x)

{ }NLP: min () s.t. | () 0, n
j If X R g j J∈ = ∈ ≤ ∈x x x x

()21
2

0 when
where () for example, () = max(0, ()

= 0 when
penalty coefficient (large)

I

j
j J

X
p p g x

X
c

∈

> ∉⎧
⎨ ∈⎩

=

∑
x

x x
x

Hence, if c is large enough, minimizing q(x:c) with respect
to x (unconstrained) should yield a solution x* to the
original NLP such that p(x*) = 0, i.e x* ∈ X.

15

8/6/2009 29

Penalty Function Method SUMT:
Fiacco-McCormick (1968, 1990)

0: Choose x(0), and c0, set k = 0

1: Solve: min q(x:ck) = f(x) + ckp(x) to get x(k) using
x(k-1) as a starting point.

2: Let ck+1 > ck (e.g. ck+1 = 2ck), set k = k+1, and
repeat (1) until p(x(k)) < ε

(i.e. p(x(k) ≈ 0 ⇒x(k)∈X)

8/6/2009 30

Penalty Function Method SUMT:
Fiacco-McCormick (1968, 1990)

• Begin at a moderate c0 and gradually increase ck to
avoid dealing with ill-conditioned problem from the
beginning, By starting from the previous solution point
x(k-1), which is assumed closed to x(k) , we can deal with
ill conditioned better

• q reflects two things that we always want to achieve—
feasibility and optimality—it is sometime known as
merit function used to measure “progress”

• The method approaches x* from the outside—
infeasible method

16

8/6/2009 31

SUMT: Key properties

• Merit function q(x:c) is monotone non-decreasing:
q(x(k):ck) ≤ q(x(k+1):ck+1)

• Infeasibility measure is monotone non-increasing:
p(x(k)) ≥ p(x(k+1))

• Objective function is monotone non-decreasing:
f(x(k+1)) ≥ f(x(k))

• The algorithm converges to x*.

• Drawback: Need a large c to find x*, but get ill-
conditioned when ck becomes large

:

8/6/2009 32

Barrier Function Method

Convert to unconstrained problem using penalty:

r(x:c) = f(x) + (1/c)b(x)

{ }NLP: min () s.t. | () 0, n
j If X R g j J∈ = ∈ ≤ ∈x x x x

0 when interior of
where () and large coefficient

= when near boundary of
1e.g., () = ln(- ())
()

I I

j
j J j J j

X
b c

X

b g or
g∈ ∈

> ∈⎧
=⎨ ∞⎩

∑ ∑

x
x

x

x x
x

Thus we can minimize unconstrained r(x:c), starting from an
interior x(0) and a low c0 and successively increase ck (ck+1 > ck
>…) until ck is large enough, and this should yield a solution x* to
the original NLP. Note that the sequence x(k) should remain
interior, if x(0) is. Hence this is a feasible method.

17

8/6/2009 33

Augmented Lagrangian Method

Note: any inequality gj(x) ≤ 0 can be converted to
equality as gj(x) + v2 = 0 or gj(x) + v = 0, v ≥ 0.

Convert to unconstrained problem using augmented
Lagragian:

Hence, if λ and ρ are chosen properly, minimizing
unconstrained l(x: λ, ρ) should yield a solution x*
to the original NLP with hj(x*) = 0

Consider NLP: min () s.t. , () = 0, n
j Ef R h j J∈ ∈x x x

2
1
2 (, ,) () () ()

E I

j j j j
j J j J

l f h hρ λ ρ μ
∈ ∈

= + +∑ ∑x λ x x x

8/6/2009 34

Augmented Lagrangian Method
Why is this good? It has been shown that:

The last term of l(x,λ,ρ) has the effect of “CONVEXIFYING: the
problem by making l(x,λ,ρ) locally convex around x*. This lead to
the following very important results:

a) If x* is a local minimizer of l(x,λ,ρ) for some value of (λ(k),ρ(k)), such
that l(x, λ(k),ρ (k)) is locally convex and that ∇2 l(x, λ(k),ρ (k)) is pd
(second-order sufficient conditions), then x* is a minimizer of the
original NLP

b) If x* is regular point (gradients of all active constraints are active)
and a solution of the NLP with multipliers λ*, such that the second-
order sufficiency conditions apply , then there is ρ* < ∞ such that for
all ρ ≥ ρ*, x* is a local minimizer of l(x, λ*,ρ) .

18

8/6/2009 35

Augmented Lagrangian Method

Why is this good?

The result (b) in the previous page, indicates that
ρ does not need to be as high as that used in the
penalty function, hence avoiding the ill-
conditioned effect.

How do we choose a right (λ*,ρ*): ρ* is a little
easier to select, but a right λ* requires some work.

The following is a typical implementation:

8/6/2009 36

Augmented Lagrangian Method

Typical implementation:

Start with a low ρ0 (since we are going to update it by
doubling it) and a proper trial λ(0). Set inner iteration k =0,
and outer iteration l = 0

Solve h(x(λ) = 0: λ(k+1) = λ(k) + ρ(l)h(x(λ(k))

Minx L(x,λ(k),ρ(l))

λ(k+1)
λ(k) x(k)

ρ(l)

19

8/6/2009 37

Reduced Gradient Method

Simplify by eliminating variables:

Assume: A = m×n, m < n, and rank(A) = m

With row-column permutation if needed, collect m independent
columns of A and form

A = (B:C)

where B = m×m nonsinglar (basic) matrix

C = m×(n-m) (nonbasic) matrix

LNLP: min ()
s.t.
 0

f
=
≥

x
Ax b

x

8/6/2009 38

Reduced Gradient Method

()
1 1

1 1

1 1

Let , 0 : = -basic variables; z = (-)-basic variables

:

ˆ LNLP min (,) ()

 s.t. 0 can be

m n m

f f

− −

− −

− −

⎛ ⎞
= >⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⇒ =⎜ ⎟
⎝ ⎠

⇒ = −

∴ ≡ − =

− ≥

y
x y y

z

y
Ax b B C By + Cz = b

z

y B b B Cz =

B b B Cz z z
B b B Cz

()

ignored temporarily since 0
 0

ˆAround , LNLP becomes: P: min ()

k f

>
≥

y
z

z z

1 1

 0
 0− −

≥

− ≥

z
B b B Cz

20

8/6/2009 39

Reduced Gradient Method

1 1

()

ˆ P: min ()
 0 (1)

0 (2)
This is obviously easier to solve than LNLP:
dim() dim(); is a feasible point of P;
and (1)&(2) are simp

k

f

− −

≥

− ≥

<

z
z

B b B Cz

z x z

()
1 1

1

1

ler constraints.
Applying a modified steepest descent (to accommodate 0) to P:
Reduced Gradient is

ˆ () (,) () ()ˆ ()

() ()y z

f f f ff
z z y z

f f

− −
−

−

≥

∂ ∂ − ∂ ∂
= ∇ = = = − +

∂ ∂ ∂ ∂

= −∇ + ∇

z

z B b B Cz z y, z y, zr z B C

r y, z B C y, z

8/6/2009 40

Reduced Gradient Method

Zi
(k)

ri = any

⇒ Δzi = -ri

Zi
(k) =0

ri < 0

⇒ Δzi = -ri
-ri

Zi
(k) =0

ri > 0

⇒ Δzi = 0
-ri

1

.. using as foundi

n

z
z z

z

Δ⎛ ⎞
⎜ ⎟Δ = Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

Δz can be used as a search direction

We can show that if Δz = 0, x(k) is a KKT point.

21

8/6/2009 41

Reduced Gradient Method

To find a step size α(k):

Compute Δy = - B-1C Δz

()
3

()

1
0

()

2
0

3 1 2

(k) () ()

0

Compute:

Compute:

Then compute = min(,)

Finally, do line search to find min (,

min

min

i

i

k
i

y i

k
i

z i

k k

y
y

z
z

f
α α

α

α

α α α

α α α

Δ <

Δ <

< <

⎛ ⎞
= ⎜ ⎟−Δ⎝ ⎠

⎛ ⎞
= ⎜ ⎟−Δ⎝ ⎠

= + Δ + Δy z z z

8/6/2009 42

Successive Quadratic
Programming (SQP)

Basic Idea:

1) Approximate f(x) by a quadratic

and hj(x) and gj(x) by linear functions

()

(k) () () () () 2 () ()1
2

() () ()

() () ()

() ()

At , solve
QP : min () ()() () ()()

 s.t. () ()() 0,

 () ()() 0,

Note that

k

k k k k T k k

k k k
j j E

k k k
j j I

k k

f f f

h h j J

g g j J

+ ∇ − + − ∇ −

+ ∇ − = ∈

+ ∇ − = ∈

− =

x
x x x x x x x x x

x x x x

x x x x

x x d

22

8/6/2009 43

Successive Quadratic
Programming (SQP)

Solve QP(k) by a suitable method to get d(k)

Update x(k+1) = x(k) +d(k)

(k) () () () () 2 () ()1
2

() () ()

() () ()

So
QP : min () () ()

 s.t. () () 0,

 () () 0,

k k k k T k k

k k k
j j E

k k k
j j I

f f f

h h j J

g g j J

+ ∇ + ∇

+ ∇ = ∈

+ ∇ = ∈

x x d d x d

x x d

x x d

8/6/2009 44

Basic Idea of SQP: :
An IllustrationAn Illustration

2

1 2
2

2 1

1 2

1 2

(0)

Example 1
6NLP: min ()

 . . () 2 0
 () 1 0

2
1

R

x xf
x x

s t h x x
g x x

∈
= +

= − =
= − − + ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

x
x

x
x

x

23

8/6/2009 45

() ()

2
4 2 3
1 2 122 1

1 2 1 23 2 2
12 1 2 1

2 3 3
2 1 2

1 2 2 1 1 2

(0) (0) 2 (0)

(0

6 6 2
2 66 1(,) , (,)

126 2

(,) ; (,) 1 1

3 25
23 47 8 4() 12.25; () , ()

254 4 24
4

(

x
x x xx xf x x f x x

xx x x x
x x x

h x x x x g x x

f f f

h

−⎛ ⎞−⎜ ⎟⎛ ⎞− + ⎜ ⎟∇ = − ∇ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ −⎜ ⎟
⎝ ⎠

∇ = ∇ = − −

−⎛ ⎞
⎜ ⎟−⎛ ⎞= ∇ = ∇ = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

x x x

x () ()) (0) (0) (0)) 0; () 1 2 ; () 2; () 1 1h g g= ∇ = = − ∇ = − −x x x

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

8/6/2009 46

()

()

()

2

1 1(0)
1 2

2 2

1

2

1

2

(0) (1) (0) (0)

3 25
23 47 8 4QP : min () 12.25

254 4 24
4

 . . () 0 1 2 0

() 2 1 1 0

0.92 2
0.46 1

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

−⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞−⎛ ⎞= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⇒ = ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

x
x

x

x

d x x d
0.92 1.08

0.46 1.46
−⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

24

8/6/2009 47

() ()

()

()

2

1 1(1)
1 2

2 2

1

2

1

2

(1) (2) (1) (1)

6.46 4.40
QP : min () 1.78 2.18

4.40 4.16

 . . () 0.42 1.46 1.08 0

() 1.54 1 1 0

0.03 1.08
0.43 1

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

−⎛ ⎞ ⎛ ⎞⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

−⎛ ⎞
⇒ = ⇒ = + =⎜ ⎟

⎝ ⎠

x
x

x

x

d x x d (1)

(4) (4) 6

0.03 1.05
, () .01

.46 0.43 1.89

1.00014
Continue until: , () 0.62 10

1.99971

h

h −

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = − ×⎜ ⎟
⎝ ⎠

x

x x

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

8/6/2009 48

2 1 2

1 2
2

2 1

1 2

(0)

Example 2
NLP: min ()

6 . . () 5 0

 () 1 0
2
1

R
f x x

x xs t h
x x

g x x

∈
=

= + − =

= − − + ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

x
x

x

x

x

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

25

8/6/2009 49

()

()

()

()

2
1 2 2 1 1 2

2 1
1 2 1 23 2 2

2 1 2 1

(0) (0) 2 (0)

(0) (0) (0) (0)

0 1
(,) , (,)

1 0

2 66 1(,) ; (,) 1 1

0 1
() 2; () 1 2 , ()

1 0

29 23 47() ; () ; () 2; () 1 1
4 4 4

f x x x x f x x

x xh x x g x x
x x x x

f f f

h h g g

⎛ ⎞
∇ = ∇ = ⎜ ⎟

⎝ ⎠
⎛ ⎞− +

∇ = − ∇ = − −⎜ ⎟
⎝ ⎠

⎛ ⎞
= ∇ = ∇ = ⎜ ⎟

⎝ ⎠
−⎛ ⎞= ∇ = = − ∇ = − −⎜ ⎟

⎝ ⎠

x x x

x x x x

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

8/6/2009 50

() ()

()

2

1 1(0)
1 2

2 2

1

2

1

2

(0) (1) (0) (0)

0 1
QP : min () 2 1 2

1 0

29 23 47 . . () 0
4 4 4

() 2 1 1 0

1.75 2 1.75
0.24 1 0.24

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞−⎛ ⎞= + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⇒ = ⇒ = + = +⎜ ⎟ ⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝

x
x

x

x

d x x d
0.24
0.76

⎛ ⎞
=⎟ ⎜ ⎟

⎠ ⎝ ⎠

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

26

8/6/2009 51

Here the method does not work well, since h
is very sharp at x*= (1,2)T

⇒ Curvature of constraints are also
important in determining how well we can
approach x*

⇒ Need to improve on the basic method

Basic Idea of SQP: :
An Illustration (cont.)An Illustration (cont.)

8/6/2009 52

Successive Quadratic
Programming (SQP)

Advantages:

• Simple and efficient, if it works

• Linear approximation helps define direction

• Quadratic approximation helps define step size

Disadvantages:

• Approximation may be inaccurate

• Does not always work as planned (direction and/or
step size may be no good particularly if Hessian is
not pd.

27

8/6/2009 53

Successive Quadratic
Programming (SQP)

Strategies for improvement:

• Include curvature of constraints to get
better approx. Either

• Approx high curvature nonlinear
constraints as quadratics

• Include Hessian of constraints in
objective function—quadratic approx
of Lagrangian

8/6/2009 54

Successive Quadratic
Programming (SQP)

Strategies for improvement:

This is a constrained version of Newton’s
method: It has all disadvantages of Newton’s

• Improve by using line search using merit
function

• Use Quasi-Newton to approximate Hessian of
objective function to reduce computational
costs and ensure pd.

28

8/6/2009 55

SQP: Strategies for improvement:

Include curvature of constraints to get better
approximation: Strategy 1

Include Hessian of constraints in objective
function—quadratic approx of Lagrangian

()

(k) () () () () () () 2 () () ()1
2

() () ()

() () ()

(1) () ()

At , solve
QP : min (,) (,) (,)

 s.t. () () 0,

 () () 0,

Note that

k

k k k k k k T k k k

k k k
j j E

k k k
j j I

k k k

L L L

h h j J

g g j J

λ λ λ

+

+ ∇ + ∇

+ ∇ = ∈

+ ∇ ≤ ∈

= +

x
x x d d x d

x x d

x x d

x x d

8/6/2009 56

SQP: Strategies for improvement:

Include curvature of constraints to get better
approximation: Strategy 2

Approx high curvature nonlinear constraints as
quadratics

()

(k) () () () () () () 2 () () ()1
2

() () () () 2 () ()1
2

() () () () 21
2

At , solve
QP : min (,) (,) (,)

 s.t. () () () 0,

 () () (

k

k k k k k k T k k k

k k k k T k k
j j j E

k k k k T
j j j

L L L

h h h j J

g g g

λ λ λ+∇ + ∇

+∇ + ∇ = ∈

+∇ ∇

x
x x d d x d

x x d d x d

x x d d () ()

(1) () ()

) 0,

Note that

k k
I

k k k

j J
+

≤ ∈

= +

x d

x x d

29

8/6/2009 57

SQP: Strategies for improvement:
In any case, this is a constrained version of Newton’s
with all its disadvantages. Strategies for improvement

a) Improve by using line search using merit function

() ()()22

1 1

(k) (1) () (k) (k)

(,) () () max 0, ()

Use this merit function to find step size , and then

k l

i i
i i

k k

P R f R h g

α α
= =

+

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

= +

∑ ∑x x x x

x x d

8/6/2009 58

SQP: Strategies for improvement:
This is a constrained version of Newton’s with all its
disadvantages. Strategies for improvement

b) Use Quasi-Newton to approximate the Hessian of
objective function to reduce computational costs
and ensure positive definiteness.

()

(k) () () () () () ()1
2

() () ()

() () () (1) () ()

()

At , solve
QP : min () ()

 s.t. () () 0,

 () () 0, Note that

where

k

k k k k T k k

k k k
j j E

k k k k k k
j j I

k

f f

h h j J

g g j J +

+ ∇ +

+ ∇ = ∈

+ ∇ ≤ ∈ = +

x
x x d d H d

x x d

x x d x x d

H
() () 2

is updated by BFGS or DFP-like formular, so that
 is always positive definite and (*, *)k k L→ ∇H H x λ

30

8/6/2009 59

SQP: Implementation
To use SQP, we need an efficient method to solve

Quadratic Programs: How?
1
2QP: min

 s.t.

T Ta + +

=
≤

≥

q d d Qd
Ad b
Gd c
d 0

1) If Q is pd –easy: Use Wolfe’s method based on
LP simplex method

2) If Q is psd—Use Lemke’s method

3) If Q is id—Use Active set Strategy

8/6/2009 60

SQP: Implementation

1
2QP: min

 s.t.

T Tc + +

=
≥

q d d Qd
Ad b
d 0

All methods require solving the KKT conditions:
Assume that we have only equality constraints:

1) Any local solution is a global solution—
amazing for QP even if it is not convex.

2) Hence, any solution of QP must be a KKT
point and vice versa.

31

8/6/2009 61

SQP: Implementation
1
2QP: min

 s.t.

KKT Conditions: * is a KKT point of the QP
if and only if there exist multipliers * such that:

*

*

T Tc + +

=
≥

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠⎝ ⎠

T

q d d Qd
Ad b
d 0

d
λ

d -qQ -A
λ bA 0

Noting that * , we have

 (3)

All methods solve (3) in one way or another.

or⎟

= +

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

T

d d p c = Ad - b, g = Qd + q

-p gQ -A
=

λ * cA 0

8/6/2009 62

SQP: Implementation

2 2 2
1 2 3 1 1 2 1 3 2 3 2 3 1 2 3

1 3 2 3

1
2

For example:
min (, ,) 3 2 2 2.5 2 8 3 3
s.t. 3; 0, 0, 1,2,3

() 0 , where
8 6 2 1

1 0 1 3
3 , 2 5 2 , ,

0 1 1
2 1 2 4

i
T T

f x x x x x x x x x x x x x x x
x x x x x i

f

= + + + + + − − −
+ = + = ≥ =

⇒ = + +

−⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟= − = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

x q x x Qx

q Q A b
0

Solving the KKT conditions (3) yields:

2
3

 * 1 , *
2

1

⎛ ⎞
⎜ ⎟
⎝ ⎠

≥

⎛ ⎞
⎛ ⎞⎜ ⎟= − = ⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟

⎝ ⎠

d 0

x λ

32

8/6/2009 63

SQP: Implementation
Solving the KKT condition below:

 or

1) Direct solution: Using symmetric indefinite factorization:

(

3)

 T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=

T -p g -p gQ -A
= K

λ * c λ *A

P

0

KP

c

L
 where permutation matrix;
 unit lower triangular
 Block diagonal with 1x1 or 2x2 blocks

 Solve to get

ˆ ˆ Solve to get
ˆ Solve

T

T

T

=
=
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=

=

BL
P
L
B

g
Ly P y

c
By y y
L y y to get

 Set ⎛ ⎞
=⎜ ⎟

⎝ ⎠

y
-p

Py
λ *

Half the cost of
sparse Gaussian
Elimination

8/6/2009 64

SQP: Implementation

() ()

Solving the KKT condition below:

 or

2) Range-Space Method: Q is assumed pd:

3) Null

(

 Spac

3)
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −-1 T -

T

1AQ A λ* AQ

-p g -p gQ -A
= K

λ

g

*

c

c λ * cA 0

e Method:
 y z

y

T
y z

T T T
z y

 p = Yp + Zp

 AYp = -c

 - GYp - GZp + A λ* = g

 Z GZp = -(Z GYp + Z g)

4) Method based on conjugacy

T T (AY) λ* = Y (g + Gp)

33

8/6/2009 65

Projective Transformation:
Interior Point Methods

8/6/2009 66

Interior Point MethodInterior Point Method
0

1
KKT: () () 0 (1)

 () 0, 1,.., (2a)
 (2b)
 0, 1,..,

m
T

i i
i

i i

i i

f y f

f s i m

y s i m

=

∇ + ∇ + =

+ = =

=
= =

∑x x A z

x
Ax b

 (3)
 0, 0, 1,.., (4) i iy s i m≥ ≥ =

()() () () () () () ()

() () ()
0

Again at iteration with (, , ,) and , >0 and the duality gap

we solve the relaxed KKT for the new serach direction(, , ,):

 KKT : () () ()

k k k k k k k

k k k
i i i

i

k

f y y f

τ

Δ Δ Δ Δ

∇ + Δ + + Δ ∇ + Δ

x s y z s z

x s y z

x x x x ()

1

() ()

()

() 0 (1)

 () () 0, 1,.., (2a)

 ()

m
T k

k k
i i i

k

f s s i m
=

+ + Δ =

+ Δ + + Δ = =

+ Δ =

∑ A z z

x x

A x x b

()()() () ()

()

 (2b)

 (3)

Notice again that with > 0, the nonnegativity condition (4) is automatically

k k k

k

τ

τ

+ Δ + Δ =Y Y S S e e

satisfied.

34

8/6/2009 67

Interior Point MethodInterior Point Method
A typical strategy is to solve (1)-(3) above using a variant of Newton's method and
perform a simple line search to find stepsize to ensure strict nonnegativity.
The Newton method requires solving a lin

2 () () 2 () ()
0 1

1
2()()

3

4() ()

() () ()
1 0

1

earized version of the KKT:

() () 0 ()

() 0 0 KKT :
0 0 0

0 0

where () ()

m
k k k k T

i i
i

k Tk

k k

k k k
i i

i

f y f

f y f

=

=

⎛ ⎞∇ + ∇ ∇ Δ ⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ Δ ⎜ ⎟⎜ ⎟⎜ ∇ ⎟ =
⎜ ⎟⎜ ⎟Δ⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

= −∇ − ∇

∑x x f x A rx
rs

f x I
ry

A
rz

Y S

r x x () () () ()
2 3

() ()
4

() ()

()
1

()

()

; () ;

 and = for the prediction step, and

 = for the corrected centering step

()
Also, () .

()

m
T k k k k

k k

k k
aff aff k k

k

k

k
m

f

f

ρ μ

− = − − = −

−

− − Δ Δ +

⎛ ⎞
⎜ ⎟

= ⎜
⎜
⎝ ⎠

∑ A z r f x s r Ax

r Y S e

Y S e Y S e e

x
f x

x
()() () () ()

1 2 and () () : () : ... : ()k k k k
mf f f∇ = ∇ ∇ ∇⎟

⎟
f x x x x

8/6/2009 68

Interior Point MethodInterior Point Method

0
1

Two basic strategies:
1. The primal approach: Solve a Newton system and keep the primal feasibility
 This is equivalent to solving the Barrier problem:

 min () (log(()), s.t.

m

i
i

f fτ
=

+ − −∑x x Ax = b

The adjusted KKT system to be solved reflects the relaxed KKT system for the above
 Barrier problem. This will be discussed later.
2. The primal-dual approach which consists of the predition step and

2 ()

()

() ()

centering correction
 step similar to before. This is described in detail next. For convenient, we will write
 the relaxed linearized KKT to be solved as:

0
0 0

 KKT :
0 0 0

0

k T T
xx

k

k k

L∇ F A
F I
A

Y S

1

2

3

4

2 () 2 () () 2 () ()
0

1

0
1

0

where () () and ()

Note: (, , ,) () (()+) ()

m
k k k k k T

xx i i
i

m
T

i i i
i

L f y f

L f y f s

=

=

Δ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ =
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

∇ = ∇ + ∇ = ∇

= + + −

∑

∑

rx
rs
ry
rz

x x F f x

x s y z x x z Ax b

35

8/6/2009 69

1. Given (x(0), s(0), y(0), z(0)) with s(0) > 0, y(0) > 0 set k = 0.

2. Check for optimality: STOP if all of the following are true:

Predictor-Corrector
Primal-Dual Version

()

() () () () ()
1 0

1

() () ()
2

() ()
3

() ()

 dual feasibility: () ()

 primal feasibility: ()

 duality gap:

Note:

m
k k k k T k

i i k
i

k k k
k

k k
k

Tk k
k

k k

f y f

m

τ

τ

τ

τ

τ σ

=

• = ∇ + ∇ + ≤

• = + ≤

= ≤

• ≤

=

∑r x x A z

r f x s

r Ax

y s

kμ

8/6/2009 70

Predictor-Corrector
Primal-Dual Version

2 ()
1

2

3
() ()

4

() () () () () ()
1 0 2

1
()

3 4

3. Solve

0
0 0

0 0 0

0 0

 where () () ; () ;

 and ;

k T T
xx

k k

m
k k k T k k k

i i
i

k

L

f y f
=

Δ⎛ ⎞ ⎛ ⎞∇ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟Δ
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −∇ − ∇ − = − −

= −

∑

rxF A
rsF I
ryA
rzY S

r x x A z r f x s

r Ax r () ()=

 to get predicted Newton's direction

k k

aff

aff

aff

aff

−

⎛ ⎞Δ
⎜ ⎟

Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟⎜ ⎟Δ⎝ ⎠

Y S e

x
s
y
z

36

8/6/2009 71

Predictor-Corrector
Primal-Dual Version

()

: 0

()

: 0

predicted stepsizes min 1, min ;

 min 1, min

4. Comput

e :
aff
i

aff
i

k
primal i

aff affi s
i

k
dual i
aff affi z

i

s
s

y
y

α

α

Δ <

Δ <

⎛ ⎞−
= ⎜ ⎟Δ⎝ ⎠

⎛ ⎞−
= ⎜ ⎟Δ⎝ ⎠

()
() ()

() () ()

 Compute ;

 ; ;

 Then mi

n ,
aff k aff aff k aff

aff aff

aff k aff aff k aff aff k aff
a

primal dual
aff aff af

ff aff a

f

ff

α α

α

α α

α

α

α

= + Δ = + Δ

= + Δ = + Δ = +

=

Δ

x x x s s s

y y y z z z w w w

()

()() ()

duality gap ;

 and

 Compute estima

ted measure

 and estimated parameter

cent n eri g

Taff aff

aff

Tk

a

k

ff
k

k

m

m

μ

μ

μ
σ

μ

=

=

=

y s

y s

3

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

8/6/2009 72

Predictor-Corrector
Primal-Dual Version

2 ()
1

2

3
() ()

4

() () () () () ()
1 0 2

1
()

3 4

5. Solve

0
0 0

0 0 0

0 0

 where () () ; () ;

 and ;

k T T
xx

k k

m
k k k T k k k

i i
i

k

L

f y f
=

Δ⎛ ⎞ ⎛ ⎞∇ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟Δ
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −∇ − ∇ − = − −

= −

∑

rxF A
rsF I
ryA
rzY S

r x x A z r f x s

r Ax r () (

()

()

()

(

)

)

corrected centering d

=

 irect to g t ione

k

k k
aff aff

k

k

k

k

k

σ μ

⎛ ⎞Δ
⎜ ⎟

Δ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟⎜ ⎟Δ ⎠

− Δ Δ +

⎝

−

x

Y S e

s
y
z

Y S e e

37

8/6/2009 73

Predictor-Corrector
Primal-Dual Version

() ()

max () (): 0

m

() ()

:

a

0
6. Compute :

 shortened stepsize Use the to ensure strict interior i.e. 0 and 0) :

full stepsi

zes min 1, min , min

s
min 1,

aff aff
i i

k

k k

k

i i
k ki s i

i

k

z
i

s y
s y

α ηα

α
Δ < Δ <

⎛ ⎞− −
= ⎜ ⎟Δ Δ⎝

=

>

⎠

>s y

()
(1) () () (1) () ()

(1) () () (1) () ()

x

 ;

 where 0.

 ;

9 < 1

 Compute

 Repeat Ste

p

 2.

k k k k k k

k k k k
k k

k
k k

k

α

η

α

α α

+ +

+ +

= + Δ = + Δ

= + =

≤

Δ + Δ

x x x s s s

y y y z z z

Note that because of the coupling between the primal and
dual variables through (1), a common step-size must be
used in steps 4 and 6 above.

8/6/2009 74

Implementation
Again, the most expensive steps are Steps 3 and 5, which involve
solving a system of linear equations of the form:

1. Note that due to convexity, is psd. This along with the assumed “strict
feasibility”, strong duality holds and the system above always has a solution. In
addition, the direction generated should be a descent direction (i.e. the merit
function deceases along the generated direction.) So the line search used which is
a simple form of backtracking line search should produces a good acceptable size.

2. As before, one can use the last rows to eliminate Δz to get a reduced system which
can be solved using symmetric indefinite factorization. See the next slide.

2 ()
1

2

3
() ()

4

0
0 0

0 0 0
0 0

k T T
xx

k k

L Δ⎛ ⎞ ⎛ ⎞∇ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟Δ
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

rxF A
rsF I
ryA
rzY S

2 ()k
xxL∇

38

8/6/2009 75

Implementation

2 ()
1

1 1
2 4

3

0
0 0

k T T
xxL

− −

⎛ ⎞∇ Δ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− Δ = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

F A x r
F Y S y r Y r
A z r

Clearly the is symmetric and sparse (if A is sparse
and each depends on only a few variable).
The augmented system can be solved efficiently using

 coefficient ma

trix

the

i

sparse symmetric indef

f

inite as discu ssed earlier.factorization

The most effective ways to solve the above system begin with
the elimination of Δz yielding the augmented systems:

8/6/2009 76

Implementation

1 12 () 1
1 2 4

1
2 40

T Tk T T
xx L − −−

−

⎛ ⎞Δ⎛ ⎞ + −∇ + ⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟Δ −⎝ ⎠⎝ ⎠ ⎝ ⎠

x r F YS r F S rF YS F A
z r Y rA

Again the is symmetric and sparse (if Q, A, G are).
The augmented system can be solved efficiently using the

.
I

 coefficient matrix

f A=0, the above system is

a
sparse symmetric indefinite factorization

 normal equation with positive definite coefficient
which can be solved using Cholesky (or sparse Cholesky) factorization, or by
the Conjugate Gradient method or projected Conjugate gradient method.

Further elimination of Δz yields the a more compact
augmented system:

