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Constrained Optimization Constrained Optimization 
(Nonlinear Programming)(Nonlinear Programming)
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Desirable Properties of 
Numerical Methods

Terminate Terminate at aat a right solution, quickly right solution, quickly and and 
cheaply cheaply every timeevery time

Converge:Converge: FindFind solutionsolution every time; Always stop every time; Always stop 
at the right pointat the right point
Speed:Speed: FindFind solutionsolution quickly (low # of iterations)quickly (low # of iterations)
Cheap:Cheap: Low cost per iteration (Low cost per iteration (timetime: # of : # of 
function evaluations; andfunction evaluations; and storage)storage)

Appropriate handling of optimality Appropriate handling of optimality v.sv.s. . 
feasibilityfeasibility
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Optimality v.s. Feasibility

2 strategies:2 strategies:
Start feasible Start feasible ((x((1) ) feasible)feasible), stay feasible , stay feasible 
((x((k) ) feasible)feasible), and work for optimality , and work for optimality ------
Feasible (primal) methodsFeasible (primal) methods
Start at a best convenient point Start at a best convenient point ((x((1) ) 

infeasible)infeasible), stay on , stay on ““bestbest”” but relaxed but relaxed 
course course ((x((k) ) infeasible)infeasible), and work to achieve , and work to achieve 
feasibilityfeasibility------Infeasible (dual) methodsInfeasible (dual) methods
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Pros and Cons
Feasible methods
Pros:

Can stop anytime, 
and x(k) is always 
usable since it is 
feasible (although not 
necessarily optimal)

Cons:
Less flexible to 
move—generally take 
longer and more 
costly

Infeasible methods
Pros:

More flexible to 
move—generally more 
efficient and less costly

Cons:
Cannot stop until done, 
and x(k) is not usable 
since it is normally 
infeasible
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Classes of MethodsClasses of Methods
To find search direction d(k): Solve a simpler problem
• Active Set-Strategy: 

• Gradient projection

• Reduced gradient--Convert to equality constraints, eliminate 
variables, and solve bound constrained problems in reduced
dimension

• Convert to unconstrained problems—penalty/barrier/Augmented
Lagrangian

• Use Linear/Quadratic approximations and solve series of LPs or
QPs—SLP/SQP

• Projective Transformation—interior point methods
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Common Classes of MethodsCommon Classes of Methods

Reduced Gradient (Feasible)
Penalty/Augmented Lagrangian
(Infeasible)
Successive Quadratic Programming 
(SQP) (and Sequential Linear 
Programming (SLP)) (Infeasible)
Interior-point (Feasible/Infeasible)
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Current Software and OptimizersCurrent Software and Optimizers

MATLAB, OPTIMA, SQP, 
MATHCAD

SQPSQP

Callable by GAMS, AMPL or 
stand-alone

SQPNPSOL,NLPQL,
SNOPT, SQOPT

Stand-alone LANCELOT in 
various platforms

Augmented LagrangianLANCELOT

GAMS, AMPL Projected Augmented 
Lagrangian

MINOS

GAMS, AMPL, AIMMS, MPLReduced GradientCONOPT

Excel Solver, LINGO/GINO, 
GAMS, NAG, IMSL

Reduced GradientGRG, GRG2, 
LSGRG2

In SoftwareMethodologyOptimizer



6

8/6/2009 11

Constrained Optimization Constrained Optimization 
(Nonlinear Programming)(Nonlinear Programming)

•• CO CO -- nonlinear programming in the GAUSS language. nonlinear programming in the GAUSS language. 
•• CONOPT CONOPT -- nonlinear programming. nonlinear programming. 
•• DONLP2DONLP2 -- nonlinear programming. nonlinear programming. 
•• DOTDOT -- Design Optimization Tools. Design Optimization Tools. 
•• Excel and Quattro Pro SolversExcel and Quattro Pro Solvers -- spreadsheetspreadsheet--based linear, integer and based linear, integer and 

nonlinear programming. nonlinear programming. 
•• FSQPFSQP -- nonlinear and nonlinear and minmaxminmax constrained optimization, with feasible constrained optimization, with feasible 

iterates. iterates. 
•• GINOGINO -- nonlinear programming. nonlinear programming. 
•• GRG2GRG2 -- nonlinear programming. nonlinear programming. 
•• HARWELL LibraryHARWELL Library -- linear and nonlinear programming, nonlinear linear and nonlinear programming, nonlinear 

equations, data fitting. equations, data fitting. 
•• ILOGILOG -- constraintconstraint--based programming and nonlinear optimization. based programming and nonlinear optimization. 
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems. 
•• LINGOLINGO -- linear, integer, nonlinear programming with modeling language. linear, integer, nonlinear programming with modeling language. 
•• LOQOLOQO -- Linear programming, unconstrained and constrained nonlinear Linear programming, unconstrained and constrained nonlinear 

optimization. optimization. 
•• LSGRG2LSGRG2 -- nonlinear programming. nonlinear programming. 
•• MINOSMINOS -- linear programming and nonlinear optimization. linear programming and nonlinear optimization. 
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•• MOSEK MOSEK -- linear programming and convex nonlinear optimization. linear programming and convex nonlinear optimization. 
•• NLPJOBNLPJOB -- MulicriteriaMulicriteria optimization. optimization. 
•• NLPQLNLPQL -- nonlinear programming. nonlinear programming. 
•• NLPQLBNLPQLB -- nonlinear programming with constraints. nonlinear programming with constraints. 
•• NLPSPRNLPSPR -- nonlinear programming. nonlinear programming. 
•• NPSOLNPSOL -- nonlinear programming. nonlinear programming. 
•• NOVANOVA -- nonlinear programming. nonlinear programming. 
•• OPTIMA LibraryOPTIMA Library -- optimization and sensitivity analysis. optimization and sensitivity analysis. 
•• PROC NLPPROC NLP -- various nonlinear optimization capabilities. various nonlinear optimization capabilities. 
•• OPTPACKOPTPACK -- constrained and unconstrained optimization. constrained and unconstrained optimization. 
•• SNOPTSNOPT -- largelarge--scale quadratic and nonlinear programming problems. scale quadratic and nonlinear programming problems. 
•• SQPSQP -- nonlinear programming. nonlinear programming. 
•• SPRNLPSPRNLP -- sparse and dense nonlinear programming. sparse and dense nonlinear programming. 
•• SYNAPS PointerSYNAPS Pointer -- multidiscplinarymultidiscplinary design optimization software. design optimization software. 
•• What's BestWhat's Best -- Excel addExcel add--in for linear, integer, nonlinear programming.in for linear, integer, nonlinear programming.

Constrained Optimization Constrained Optimization 
(Nonlinear Programming)(Nonlinear Programming)
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Quadratic ProgrammingQuadratic Programming
•• BQPD BQPD -- quadratic programming. quadratic programming. 
•• CPLEX CPLEX -- linear, quadratic, and network linear programming. linear, quadratic, and network linear programming. 
•• FortMPFortMP -- integer quadratic programming. integer quadratic programming. 
•• LINDOLINDO -- linear, mixedlinear, mixed--integer and quadratic programming. integer and quadratic programming. 
•• LOQOLOQO -- linear programming, unconstrained and constrained linear programming, unconstrained and constrained 

nonlinear optimization. nonlinear optimization. 
•• LSSOLLSSOL -- least squares problems. least squares problems. 
•• MOSEKMOSEK -- linear programming and convex optimization (including linear programming and convex optimization (including 

convex quadratic programming). convex quadratic programming). 
•• OSLOSL -- linear, quadratic and mixedlinear, quadratic and mixed--integer programming. integer programming. 
•• PORT 3PORT 3 -- minimization, least squares, etc. minimization, least squares, etc. 
•• PROC NLPPROC NLP -- various nonlinear optimization capabilities. various nonlinear optimization capabilities. 
•• SQOPTSQOPT -- largelarge--scale linear and convex quadratic programming. scale linear and convex quadratic programming. 
•• SNOPTSNOPT -- largelarge--scale linear, quadratic, and nonlinear programming scale linear, quadratic, and nonlinear programming 

problems (including problems (including nonconvexnonconvex quadratic programming. quadratic programming. 
•• QLQL -- convex quadratic programming. convex quadratic programming. 
•• QPOPTQPOPT -- linear and quadratic problemslinear and quadratic problems

8/6/2009 14

Nonlinear Least SquaresNonlinear Least Squares
•• DFNLPDFNLP -- nonlinear data fitting. nonlinear data fitting. 
•• HARWELL LibraryHARWELL Library -- linear and nonlinear programming, nonlinear linear and nonlinear programming, nonlinear 

equations, data fitting. equations, data fitting. 
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems. 
•• LOQOLOQO -- Linear programming, unconstrained and constrained Linear programming, unconstrained and constrained 

nonlinear optimization. nonlinear optimization. 
•• MINPACKMINPACK--11 -- nonlinear equations and least squares. nonlinear equations and least squares. 
•• MODFITMODFIT -- parameter estimation in dynamic systems. parameter estimation in dynamic systems. 
•• NLSSOLNLSSOL -- constrained nonlinear least squares problems. constrained nonlinear least squares problems. 
•• ODRPACKODRPACK -- NLS and ODR problems NLS and ODR problems 
•• PDEFIT PDEFIT -- parameter estimation in partial differential equations. parameter estimation in partial differential equations. 
•• PORT 3PORT 3 -- minimization, least squares, etc. minimization, least squares, etc. 
•• PROC NLPPROC NLP -- nonlinear minimization or maximization. nonlinear minimization or maximization. 
•• SPRNLPSPRNLP -- sparse nonlinear least squares. sparse nonlinear least squares. 
•• SYSFITSYSFIT -- parameter estimation in systems of nonlinear equations. parameter estimation in systems of nonlinear equations. 
•• TENSOLVETENSOLVE -- nonlinear equations and least squares. nonlinear equations and least squares. 
•• VE10VE10 -- nonlinear least squares.nonlinear least squares.
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Nonlinear EquationsNonlinear Equations
•• CONTINCONTIN -- systems of nonlinear equations. systems of nonlinear equations. 
•• GAUSSGAUSS -- matrix programming language. matrix programming language. 
•• HARWELL LibraryHARWELL Library -- linear and nonlinear linear and nonlinear 

programming, nonlinear equations, data fitting. programming, nonlinear equations, data fitting. 
•• HOMPACKHOMPACK -- nonlinear equations and polynomials. nonlinear equations and polynomials. 
•• LANCELOTLANCELOT -- largelarge--scale problems. scale problems. 
•• LOQOLOQO -- Linear programming, unconstrained and Linear programming, unconstrained and 

constrained nonlinear optimization. constrained nonlinear optimization. 
•• MINPACKMINPACK--11 -- nonlinear equations and least squares. nonlinear equations and least squares. 
•• NITSOLNITSOL -- systems of nonlinear equations. systems of nonlinear equations. 
•• OPTIMA LibraryOPTIMA Library -- optimization and sensitivity optimization and sensitivity 

analysis. analysis. 
•• PETScPETSc -- parallel solution of nonlinear equations and parallel solution of nonlinear equations and 

unconstrained minimization problems.unconstrained minimization problems.
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Libraries with Optimization Libraries with Optimization 
CapabilitiesCapabilities

•• HARWELL LibraryHARWELL Library -- linear and linear and 
nonlinear programming, nonlinear nonlinear programming, nonlinear 
equations, data fitting. equations, data fitting. 

•• IMSLIMSL -- Fortran and C Library. Fortran and C Library. 
•• NAG C LibraryNAG C Library -- nonlinear and nonlinear and 

quadratic programming, minimization quadratic programming, minimization 
•• NAG Fortran LibraryNAG Fortran Library -- nonlinear and nonlinear and 

quadratic programming, quadratic programming, minimizminimiz ationation
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Optimization Systems/Optimization Systems/
Modeling LanguagesModeling Languages

•• The The AIMMS AIMMS modeling language. modeling language. 
•• The The AMPL AMPL modeling language. modeling language. 
•• DATAFORM DATAFORM -- model management system. model management system. 
•• EASY FITEASY FIT -- parameter estimation in dynamic systems. parameter estimation in dynamic systems. 
•• Excel and Quattro Pro SolversExcel and Quattro Pro Solvers -- spreadsheetspreadsheet--based linear, integer and nonlinear based linear, integer and nonlinear 

programming. programming. 
•• EZMODEZMOD -- modeling for decision support systems. modeling for decision support systems. 
•• GAMSGAMS -- modeling language. modeling language. 
•• GAUSSGAUSS -- language, oriented toward data analysis and statistical applicalanguage, oriented toward data analysis and statistical applications. tions. 
•• LINGOLINGO -- linear, integer, nonlinear programming with modeling language. linear, integer, nonlinear programming with modeling language. 
•• MATLABMATLAB -- optimization toolbox. optimization toolbox. 
•• MODLERMODLER -- linear programming modeling language. linear programming modeling language. 
•• MPLMPL -- modeling system. modeling system. 
•• MPSIII MPSIII -- mathematical programming system (includes DATAFORM). mathematical programming system (includes DATAFORM). 
•• OPL StudioOPL Studio -- optimization language and solver environment. optimization language and solver environment. 
•• OPTIMAXOPTIMAX -- component software for optimization. component software for optimization. 
•• PLAMPLAM -- algebraic modeling language for mixed integer programming, consalgebraic modeling language for mixed integer programming, constraint logic traint logic 

programming, etc. programming, etc. 
•• SPEAKEASYSPEAKEASY -- numerical problems and operations research. numerical problems and operations research. 
•• PCOMPPCOMP -- modellingmodelling language with automatic differentiation. language with automatic differentiation. 
•• PROC NLPPROC NLP -- nonlinear minimization or maximization. nonlinear minimization or maximization. 
•• What'sBestWhat'sBest -- Excel addExcel add--in for linear, integer, and nonlinear programming.in for linear, integer, and nonlinear programming.
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Engineering Design Engineering Design 
Optimization PackagesOptimization Packages

•• CONSOLCONSOL--OPTCADOPTCAD -- engineering system design. engineering system design. 
•• COMPACTCOMPACT -- design optimization. design optimization. 
•• DOCDOC -- design optimization control program. design optimization control program. 
•• GENESISGENESIS -- structural optimization software. structural optimization software. 
•• OPTDESOPTDES -- design optimization tool. design optimization tool. 
•• SIMUSOLVSIMUSOLV -- modeling software. modeling software. 
•• SOCSSOCS -- sparse optimal control; calls the sparse optimal control; calls the SPRNLPSPRNLP

package for nonlinear programming. package for nonlinear programming. 
•• ULTRAMAXULTRAMAX -- design and process optimization.design and process optimization.
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More References on More References on 
Software and MethodsSoftware and Methods

•• Optimization Software GuideOptimization Software Guide ((Jorge J. Jorge J. 
MorMoréé and and Stephen J. WrightStephen J. Wright, SIAM , SIAM 
Publications, 1993).Publications, 1993).

• NEOS—Network Optimization Software 
http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide

• Nonlinear Optimization, Jorge Nocedal and 
StephenStephen J. Wright, Springer, NY, 1999
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Constrained OptimizationConstrained Optimization

•• Basic Ideas still the same as unconstrained case:Basic Ideas still the same as unconstrained case:
–– Iterative: Iterative: Beginning at an initial Beginning at an initial xx(1)(1), , generate generate 

sequence  sequence  xx(1)(1), x, x(2)(2),.., ,.., xx((kk)),..,.. until stop at until stop at x* x* 
–– At a current iterate At a current iterate xx((kk)),,

•• Determine a search direction Determine a search direction dd((kk))

•• Determine a Determine a stepsizestepsize αα(k(k alongalong dd(k(k))

–– Update:Update: xx(k+1) (k+1) = = xx(k(k)) + + αα(k)(k)dd(k(k))

•• Only this time we need to consider Only this time we need to consider ““feasibilityfeasibility””
when searching forwhen searching for search direction and search direction and 
stepsizestepsize..
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Constrained Optimization: Constrained Optimization: 
Key IssuesKey Issues

•• When to stop? When to stop? ––Characterization of Characterization of 
solution pointssolution points

•• How do we make progress? How do we make progress? ----
Determining search direction Determining search direction dd((kk))

and and stepsizestepsize αα(k(k

•• How do we measure progress toward How do we measure progress toward 
achieving achieving feasibilityfeasibility and and optimalityoptimality? ? 
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Characterizing Optimal Points. 
For Constrained Problems

NLP:   min ( )
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Equality Constrained: JE ≠ φ and JI = φ

Inequality Constrained: JE = φ and JI ≠ φ

Mixed Inequality Constrained: JE ≠ φ and JI ≠ φ
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Characterizing Optimal Points: 
Unconstrained Problems

See Notes on “Unconstrained Problems:

In a nutshell;
If x* is a local minimizer of f, then 

∇f(x*) = 0 and ∇2f(x*) is positive semi-definite 
(psd)

If ∇f(x*) = 0 and ∇2f(x*) is positive definite (pd),
then x* is a strict local minimizer of f

If f is convex ∇2f(x*) is pd for all x, then any local 
minimizer is global
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Characterizing Optimal Points:
Equality Constrained Problems

For   EP: min ( )  s.t. , ( ) = 0, 
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Characterizing Optimal Points:
Mixed Inequality Constrained Problems

For   NLP: min ( )  s.t. , ( ) = 0, ; ( )  0, 

For some ,  , and ,  , let the   
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Characterizing Optimal Points:
Mixed Inequality Constrained Problems

For   NLP: min ( )  s.t. , ( ) = 0, ; ( )  0, 
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Making Progress
To find a new search direction d(k): Solve a 
simpler problem

• Convert to unconstrained problems—
penalty/barrier/Augmented Lagrangian

• Convert to equality constraints, eliminate variables, and 
solve bound constrained problems in reduced
dimension—reduced gradient/gradient projection

• Use Linear/Quadratic approximations and solve series of 
LPs or QPs—SLP/SQP

• Projective Transformation—interior point methods

8/6/2009 28

Penalty Function Method

Convert to unconstrained problem using penalty:

q(x:c) = f(x) + cp(x) 

{ }NLP: min ( )  s.t. | ( )  0, n
j If X R g j J∈ = ∈ ≤ ∈x x x x

( )21
2

0 when 
where  ( )    for example, ( ) = max(0, ( )

= 0 when 
penalty coefficient (large)

I

j
j J

X
p p g x

X
c

∈

> ∉⎧
⎨ ∈⎩

=

∑
x

x x
x

Hence, if c is large enough, minimizing q(x:c) with respect 
to x (unconstrained) should yield a solution x* to the 
original NLP such that p(x*) = 0, i.e x* ∈ X.
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Penalty Function Method SUMT: 
Fiacco-McCormick (1968, 1990)

0: Choose x(0), and c0, set k = 0

1: Solve: min q(x:ck) = f(x) + ckp(x)  to get x(k) using 
x(k-1) as a starting point.

2: Let ck+1 > ck (e.g. ck+1 = 2ck), set k = k+1, and
repeat (1) until p(x(k)) < ε

(i.e. p(x(k) ≈ 0 ⇒x(k)∈X)
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Penalty Function Method SUMT: 
Fiacco-McCormick (1968, 1990)

• Begin at a moderate c0 and gradually increase ck to 
avoid dealing with ill-conditioned problem from the 
beginning,  By starting from the previous solution point 
x(k-1), which is assumed closed to x(k) , we can deal with 
ill conditioned better

• q reflects two things that we always want to achieve—
feasibility and optimality—it is sometime known as 
merit function used to measure “progress”

• The method approaches x* from the outside—
infeasible method
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SUMT: Key properties

• Merit function q(x:c) is monotone non-decreasing: 
q(x(k):ck) ≤ q(x(k+1):ck+1)

• Infeasibility measure is monotone non-increasing: 
p(x(k)) ≥ p(x(k+1))

• Objective function is monotone non-decreasing: 
f(x(k+1)) ≥ f(x(k))

• The algorithm converges to x*.

• Drawback: Need a large c to find x*, but get ill-
conditioned when ck becomes large

:
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Barrier Function Method

Convert to unconstrained problem using penalty:

r(x:c) = f(x) + (1/c)b(x) 

{ }NLP: min ( )  s.t. | ( )  0, n
j If X R g j J∈ = ∈ ≤ ∈x x x x

0 when interior of        
where  ( )   and large coefficient

=  when  near boundary of 
1e.g., ( ) = ln( - ( ))  
( )

I I

j
j J j J j

X
b c

X

b g or
g∈ ∈

> ∈⎧
=⎨ ∞⎩

∑ ∑

x
x

x

x x
x

Thus we can minimize unconstrained r(x:c), starting from an 
interior x(0) and a low c0 and successively increase ck (ck+1 > ck
>…) until ck is large enough, and this should yield a solution x* to 
the original NLP.  Note that the sequence x(k) should remain 
interior, if x(0) is. Hence this is a feasible method.
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Augmented Lagrangian Method

Note: any inequality gj(x) ≤ 0 can be converted to 
equality as gj(x) + v2 = 0 or gj(x) + v = 0, v ≥ 0.

Convert to unconstrained problem using augmented 
Lagragian:

Hence, if λ and ρ are chosen properly, minimizing 
unconstrained l(x: λ, ρ ) should yield a solution x* 
to the original NLP with hj(x*) = 0

Consider NLP: min ( )  s.t. , ( ) = 0, n
j Ef R h j J∈ ∈x x x

2
1
2 ( , , ) ( ) ( )  ( )

E I

j j j j
j J j J

l f h hρ λ ρ μ
∈ ∈

= + +∑ ∑x λ x x x
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Augmented Lagrangian Method
Why is this good?  It has been shown that:

The last term of l(x,λ,ρ) has the effect of “CONVEXIFYING: the 
problem by making l(x,λ,ρ) locally convex around x*.  This lead to 
the following very important results:

a) If x* is a local minimizer of l(x,λ,ρ) for some value of (λ(k),ρ(k)), such 
that l(x, λ(k),ρ (k)) is locally convex and that ∇2 l(x, λ(k),ρ (k)) is pd
(second-order sufficient conditions), then x* is a minimizer of the 
original NLP

b) If x* is regular point (gradients of all active constraints are active) 
and a solution of the NLP with multipliers λ*, such that the second-
order sufficiency conditions apply , then there is ρ* < ∞ such that for 
all ρ ≥ ρ*, x*  is a local minimizer of l(x, λ*,ρ) .
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Augmented Lagrangian Method

Why is this good? 

The result (b) in the previous page, indicates that 
ρ does not need to be as high as that used in the 
penalty function, hence avoiding the ill-
conditioned effect. 

How do we choose a right (λ*,ρ*): ρ* is a little 
easier to select, but a right λ* requires some work.

The following is a typical implementation:

8/6/2009 36

Augmented Lagrangian Method

Typical implementation:

Start with a low ρ0 (since we are going to update it by 
doubling it) and a proper trial λ(0). Set inner iteration k =0, 
and outer iteration l = 0

Solve h(x(λ) = 0: λ(k+1) = λ(k) + ρ(l)h(x(λ(k))

Minx L(x,λ(k),ρ(l))

λ(k+1)
λ(k) x(k)

ρ(l)
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Reduced Gradient Method

Simplify by eliminating variables:

Assume: A = m×n, m < n, and rank(A) = m

With row-column permutation if needed, collect m independent 
columns of A and form

A = (B:C) 

where B = m×m nonsinglar (basic) matrix

C = m×(n-m) (nonbasic) matrix

LNLP: min ( )  
s.t.           
                  0

f
=
≥

x
Ax b

x

8/6/2009 38

Reduced Gradient Method

( )
1 1

1 1

1 1

Let , 0 :  = -basic variables; z = ( - )-basic variables

:

           
ˆ LNLP min    ( , ) ( )

                   s.t.    0  can be 

m n m

f f

− −

− −

− −

⎛ ⎞
= >⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⇒ =⎜ ⎟
⎝ ⎠

⇒ = −

∴ ≡ − =

− ≥

y
x y y

z

y
Ax b B C By + Cz = b

z

y B b B Cz =

B b B Cz z z
B b B Cz

( )

ignored temporarily since 0
                                              0
                            

ˆAround  , LNLP becomes:  P: min  ( )
                                                    

k f

>
≥

y
z

z z

1 1

        0
                                         0− −

≥

− ≥

z
B b B Cz
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Reduced Gradient Method

1 1

( )

ˆ  P:         min  ( )
                     0           (1)

0             (2)
This is obviously easier to solve than LNLP: 
dim( ) dim( );   is a feasible point of P; 
and (1)&(2) are simp

k

f

− −

≥

− ≥

<

z
z

B b B Cz

z x z

( )
1 1

1

1

ler constraints.
Applying a modified steepest descent (to accommodate 0) to P:
Reduced Gradient is 

ˆ ( ) ( , ) ( ) ( )ˆ ( )

( ) ( )y z

f f f ff
z z y z

f f

− −
−

−

≥

∂ ∂ − ∂ ∂
= ∇ = = = − +

∂ ∂ ∂ ∂

= −∇ + ∇

z

z B b B Cz z y, z y, zr z B C

r y, z B C y, z
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Reduced Gradient Method

Zi
(k)

ri = any

⇒  Δzi = -ri

Zi
(k) =0

ri < 0

⇒  Δzi = -ri
-ri

Zi
(k) =0

ri > 0

⇒  Δzi = 0
-ri

1

..  using  as foundi

n

z
z z

z

Δ⎛ ⎞
⎜ ⎟Δ = Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

Δz can be used as a search direction

We can show that if Δz = 0, x(k) is a KKT point.
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Reduced Gradient Method

To find a step size α(k):

Compute Δy = - B-1C Δz

( )
3

( )

1
0

( )

2
0

3 1 2

(k) ( ) ( )

0

Compute:  

Compute:  

Then compute  = min( , )

Finally, do line search to find min ( ,

min

min

i

i

k
i

y i

k
i

z i

k k

y
y

z
z

f
α α

α

α

α α α

α α α

Δ <

Δ <

< <

⎛ ⎞
= ⎜ ⎟−Δ⎝ ⎠

⎛ ⎞
= ⎜ ⎟−Δ⎝ ⎠

= + Δ + Δy z z z
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Successive Quadratic 
Programming (SQP)

Basic Idea: 

1) Approximate f(x) by a quadratic

and hj(x) and gj(x) by linear functions

( )

(k) ( ) ( ) ( ) ( ) 2 ( ) ( )1
2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

At , solve   
QP : min ( ) ( )( ) ( ) ( )( )

          s.t. ( ) ( )( ) 0,  

               ( ) ( )( ) 0,  

Note that 

k

k k k k T k k

k k k
j j E

k k k
j j I

k k

f f f

h h j J

g g j J

+ ∇ − + − ∇ −

+ ∇ − = ∈

+ ∇ − = ∈

− =

x
x x x x x x x x x

x x x x

x x x x

x x d  
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Successive Quadratic 
Programming (SQP)

Solve QP(k) by a suitable method to get d(k)

Update x(k+1) = x(k) +d(k)

(k) ( ) ( ) ( ) ( ) 2 ( ) ( )1
2

( ) ( ) ( )

( ) ( ) ( )

So
QP : min ( ) ( ) ( )

          s.t. ( ) ( ) 0,  

               ( ) ( ) 0,            

k k k k T k k

k k k
j j E

k k k
j j I

f f f

h h j J

g g j J

+ ∇ + ∇

+ ∇ = ∈

+ ∇ = ∈

x x d d x d

x x d

x x d
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Basic Idea of SQP: : 
An IllustrationAn Illustration

2

1 2
2

2 1

1 2

1 2

(0)

Example 1
6NLP:   min ( )

            . .   ( ) 2 0
                    ( ) 1 0

2
1

R

x xf
x x

s t h x x
g x x

∈
= +

= − =
= − − + ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

x
x

x
x

x
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( ) ( )

2
4 2 3
1 2 122 1

1 2 1 23 2 2
12 1 2 1

2 3 3
2 1 2

1 2 2 1 1 2

(0) (0) 2 (0)

(0

6 6 2
2 66 1( , ) , ( , )

126 2

( , ) ; ( , ) 1 1

3 25
23 47 8 4( ) 12.25; ( ) , ( )

254 4 24
4

(

x
x x xx xf x x f x x

xx x x x
x x x

h x x x x g x x

f f f

h

−⎛ ⎞−⎜ ⎟⎛ ⎞− + ⎜ ⎟∇ = − ∇ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ −⎜ ⎟
⎝ ⎠

∇ = ∇ = − −

−⎛ ⎞
⎜ ⎟−⎛ ⎞= ∇ = ∇ = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

x x x

x ( ) ( )) (0) (0) (0)) 0; ( ) 1 2 ; ( ) 2; ( ) 1 1h g g= ∇ = = − ∇ = − −x x x

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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( )

( )

( )

2

1 1(0)
1 2

2 2

1

2

1

2

(0) (1) (0) (0)

3 25
23 47 8 4QP :   min ( ) 12.25

254 4 24
4

            . .   ( ) 0 1 2 0

( ) 2 1 1 0

0.92 2
0.46 1

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

−⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞−⎛ ⎞= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⇒ = ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

x
x

x

x

d x x d
0.92 1.08

0.46 1.46
−⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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( ) ( )

( )

( )

2

1 1(1)
1 2

2 2

1

2

1

2

(1) (2) (1) (1)

6.46 4.40
QP :   min ( ) 1.78 2.18

4.40 4.16

            . .   ( ) 0.42 1.46 1.08 0

( ) 1.54 1 1 0

0.03 1.08
0.43 1

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

−⎛ ⎞ ⎛ ⎞⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

−⎛ ⎞
⇒ = ⇒ = + =⎜ ⎟

⎝ ⎠

x
x

x

x

d x x d (1)

(4) (4) 6

0.03 1.05
, ( ) .01

.46 0.43 1.89

1.00014
Continue until: , ( ) 0.62 10

1.99971

h

h −

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = − ×⎜ ⎟
⎝ ⎠

x

x x

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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2 1 2

1 2
2

2 1

1 2

(0)

Example 2
NLP:   min ( )

6           . .   ( ) 5 0

                   ( ) 1 0
2
1

R
f x x

x xs t h
x x

g x x

∈
=

= + − =

= − − + ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

x
x

x

x

x

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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( )

( )

( )

( )

2
1 2 2 1 1 2

2 1
1 2 1 23 2 2

2 1 2 1

(0) (0) 2 (0)

(0) (0) (0) (0)

0 1
( , ) , ( , )

1 0

2 66 1( , ) ; ( , ) 1 1

0 1
( ) 2; ( ) 1 2 , ( )

1 0

29 23 47( ) ; ( ) ; ( ) 2; ( ) 1 1
4 4 4

f x x x x f x x

x xh x x g x x
x x x x

f f f

h h g g

⎛ ⎞
∇ = ∇ = ⎜ ⎟

⎝ ⎠
⎛ ⎞− +

∇ = − ∇ = − −⎜ ⎟
⎝ ⎠

⎛ ⎞
= ∇ = ∇ = ⎜ ⎟

⎝ ⎠
−⎛ ⎞= ∇ = = − ∇ = − −⎜ ⎟

⎝ ⎠

x x x

x x x x

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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( ) ( )

( )

2

1 1(0)
1 2

2 2

1

2

1

2

(0) (1) (0) (0)

0 1
QP :   min ( ) 2 1 2

1 0

29 23 47            . .   ( ) 0
4 4 4

( ) 2 1 1 0

1.75 2 1.75
0.24 1 0.24

R

d d
q d d

d d

d
s t h

d

d
g

d

∈

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞−⎛ ⎞= + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

= − + − − ≤⎜ ⎟
⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⇒ = ⇒ = + = +⎜ ⎟ ⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝

x
x

x

x

d x x d
0.24
0.76

⎛ ⎞
=⎟ ⎜ ⎟

⎠ ⎝ ⎠

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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Here the method does not work well, since h
is very sharp at x*= (1,2)T

⇒ Curvature of constraints are also 
important in determining how well we can 
approach x*

⇒ Need to improve on the basic method

Basic Idea of SQP: : 
An Illustration (cont.)An Illustration (cont.)
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Successive Quadratic 
Programming (SQP)

Advantages:

• Simple and efficient, if it works

• Linear approximation helps define direction 

• Quadratic approximation helps define step size

Disadvantages:

• Approximation may be inaccurate

• Does not always work as planned (direction and/or 
step size may be no good particularly if Hessian is 
not pd.
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Successive Quadratic 
Programming (SQP)

Strategies for improvement:

• Include curvature of constraints to get 
better approx. Either

• Approx high curvature nonlinear 
constraints as quadratics

• Include Hessian of constraints in 
objective function—quadratic approx 
of Lagrangian

8/6/2009 54

Successive Quadratic 
Programming (SQP)

Strategies for improvement:

This is a constrained version of Newton’s 
method: It has all disadvantages of Newton’s

• Improve by using line search using merit  
function

• Use Quasi-Newton to approximate Hessian of 
objective function to reduce computational 
costs and ensure pd. 
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SQP: Strategies for improvement:

Include curvature of constraints to get better 
approximation: Strategy 1

Include Hessian of constraints in objective 
function—quadratic approx of Lagrangian

( )

(k) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )1
2

( ) ( ) ( )

( ) ( ) ( )

( 1) ( ) ( )

At , solve   
QP : min ( , ) ( , ) ( , )

          s.t. ( ) ( ) 0,  

               ( ) ( ) 0,  

Note that 

k

k k k k k k T k k k

k k k
j j E

k k k
j j I

k k k

L L L

h h j J

g g j J

λ λ λ

+

+ ∇ + ∇

+ ∇ = ∈

+ ∇ ≤ ∈

= +

x
x x d d x d

x x d

x x d

x x d  
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SQP: Strategies for improvement:

Include curvature of constraints to get better 
approximation: Strategy 2

Approx high curvature nonlinear constraints as 
quadratics

( )

(k) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )1
2

( ) ( ) ( ) ( ) 2 ( ) ( )1
2

( ) ( ) ( ) ( ) 21
2

At , solve   
QP : min ( , ) ( , ) ( , )

          s.t. ( ) ( ) ( ) 0,  

               ( ) ( ) (

k

k k k k k k T k k k

k k k k T k k
j j j E

k k k k T
j j j

L L L

h h h j J

g g g

λ λ λ+∇ + ∇

+∇ + ∇ = ∈

+∇ ∇

x
x x d d x d

x x d d x d

x x d d ( ) ( )

( 1) ( ) ( )

) 0,  

Note that   

k k
I

k k k

j J
+

≤ ∈

= +

x d

x x d
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SQP: Strategies for improvement:
In any case, this is a constrained version of Newton’s 
with all its disadvantages. Strategies for improvement 

a) Improve by using line search using merit function

( ) ( )( )22

1 1

(k) ( 1) ( ) (k) (k)

( , ) ( ) ( ) max 0, ( )

Use this merit function to find step size ,  and then 

k l

i i
i i

k k

P R f R h g

α α
= =

+

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

= +

∑ ∑x x x x

x x d
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SQP: Strategies for improvement:
This is a constrained version of Newton’s with all its 
disadvantages. Strategies for improvement

b) Use Quasi-Newton to approximate the Hessian of 
objective function to reduce computational costs 
and ensure positive definiteness.

( )

(k) ( ) ( ) ( ) ( ) ( ) ( )1
2

( ) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( )

( )

At , solve   
QP : min ( ) ( )

          s.t. ( ) ( ) 0,  

               ( ) ( ) 0,          Note that  

where  

k

k k k k T k k

k k k
j j E

k k k k k k
j j I

k

f f

h h j J

g g j J +

+ ∇ +

+ ∇ = ∈

+ ∇ ≤ ∈ = +

x
x x d d H d

x x d

x x d x x d

H
( ) ( ) 2

is updated by BFGS or DFP-like formular, so that
 is always positive definite and ( *, *)k k L→ ∇H H x λ



30

8/6/2009 59

SQP: Implementation
To use SQP, we need an efficient method to solve 

Quadratic Programs: How?
1
2QP: min 

          s.t. 
               
                

T Ta + +

=
≤

≥

q d d Qd
Ad b
Gd c
d 0

1) If Q is pd –easy: Use Wolfe’s method based on 
LP simplex method

2) If Q is psd—Use Lemke’s method

3) If Q is id—Use Active set Strategy 
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SQP: Implementation

1
2QP: min 

          s.t. 
                

T Tc + +

=
≥

q d d Qd
Ad b
d 0

All methods require solving the KKT conditions:
Assume that we have only equality constraints: 

1) Any local solution is a global solution—
amazing for QP even if it is not convex.

2) Hence, any solution of QP must be a KKT 
point and vice versa.
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SQP: Implementation
1
2QP: min 

          s.t. 
                
KKT Conditions: *  is a KKT point of the QP 
if and only if there exist multipliers *  such that:

*
               

*

T Tc + +

=
≥

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠⎝ ⎠

T

q d d Qd
Ad b
d 0

d
λ

d -qQ -A
λ bA 0

Noting that * ,   we have

                              (3)

All methods solve (3) in one way or another.

or⎟

= +

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

T

d d p c = Ad - b, g = Qd + q

-p gQ -A
=

λ * cA 0
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SQP: Implementation

2 2 2
1 2 3 1 1 2 1 3 2 3 2 3 1 2 3

1 3 2 3

1
2

For example:
min ( , , ) 3 2 2 2.5 2 8 3 3
s.t.     3;  0,  0,   1,2,3

( )  0 ,  where 
8 6 2 1

1 0 1 3
3 , 2 5 2 , ,

0 1 1
2 1 2 4

i
T T

f x x x x x x x x x x x x x x x
x x x x x i

f

= + + + + + − − −
+ = + = ≥ =

⇒ = + +

−⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟= − = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

x q x x Qx

q Q A b
0

                
Solving the KKT conditions (3) yields: 

2
3

 * 1 ,  *
2

1

⎛ ⎞
⎜ ⎟
⎝ ⎠

≥

⎛ ⎞
⎛ ⎞⎜ ⎟= − = ⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟

⎝ ⎠

d 0

x λ
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SQP: Implementation
Solving the KKT condition below:

  or              

1) Direct solution: Using symmetric indefinite factorization:
                       

 

 

(

  

3)

  T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=

T -p g -p gQ -A
= K

λ * c λ *A

P

0

KP

c

L
    where permutation matrix;
               unit lower triangular
               Block diagonal with 1x1 or 2x2 blocks

    Solve  to get 

ˆ ˆ    Solve  to get 
ˆ    Solve  

T

T

T

=
=
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=

=

BL
P
L
B

g
Ly P y

c
By y y
L y y to get 

    Set ⎛ ⎞
=⎜ ⎟

⎝ ⎠

y
-p

Py
λ *

Half the cost of 
sparse Gaussian 
Elimination
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SQP: Implementation

( ) ( )

Solving the KKT condition below:

 or              

2) Range-Space Method: Q is assumed pd:

                            

3) Null

(

 Spac

3)
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −-1 T -

T

1AQ A λ* AQ

-p g -p gQ -A
= K

λ

g

*

c

c λ * cA 0

e Method:
                           y z

y

T
y z

T T T
z y

 p = Yp + Zp

                            AYp = -c

                            - GYp - GZp + A λ* = g

                             Z GZp = -(Z GYp + Z g)

                         
4) Method based on conjugacy

T T   (AY) λ* = Y (g + Gp)
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Projective Transformation: 
Interior Point Methods

8/6/2009 66

Interior Point MethodInterior Point Method
0

1
KKT:  ( ) ( ) 0         (1)

               ( ) 0, 1,..,                (2a)
                                                        (2b)
               0, 1,..,         

m
T

i i
i

i i

i i

f y f

f s i m

y s i m

=

∇ + ∇ + =

+ = =

=
= =

∑x x A z

x
Ax b

              (3)
               0, 0, 1,..,                 (4) i iy s i m≥ ≥ =

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0

Again at iteration  with ( , , , ) and , >0 and the duality gap  

we solve the relaxed KKT for the new serach direction( , , , ):

 KKT :  ( ) ( ) ( )

k k k k k k k

k k k
i i i

i

k

f y y f

τ

Δ Δ Δ Δ

∇ + Δ + + Δ ∇ + Δ

x s y z s z

x s y z

x x x x ( )

1

( ) ( )

( )

( ) 0         (1)

               ( ) ( ) 0, 1,..,                                       (2a)

               ( )                                                     

m
T k

k k
i i i

k

f s s i m
=

+ + Δ =

+ Δ + + Δ = =

+ Δ =

∑ A z z

x x

A x x b

( )( )( ) ( ) ( )

( )

                        (2b)

                                                                  (3)

Notice again that with  > 0, the nonnegativity condition (4) is automatically 

k k k

k

τ

τ

+ Δ + Δ =Y Y S S e e

satisfied.
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Interior Point MethodInterior Point Method
A typical strategy is to solve (1)-(3) above using a variant of Newton's method and
perform a simple line search to find stepsize to ensure strict nonnegativity.
The Newton method requires solving a lin
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Interior Point MethodInterior Point Method

0
1

Two basic strategies:
1. The primal approach: Solve a Newton system and keep the primal feasibility
    This is equivalent to solving the Barrier problem:

     min ( ) ( log( ( )),  s.t. 

    

m

i
i

f fτ
=

+ − −∑x x Ax = b

The adjusted KKT system to be solved reflects the relaxed KKT system for the above
    Barrier problem. This will be discussed later.
2. The primal-dual approach which consists of the predition step and

2 ( )

( )

( ) ( )

centering correction
    step similar to before. This is described in detail next. For convenient, we will write 
    the relaxed linearized KKT to be solved as:
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1. Given (x(0), s(0), y(0), z(0)) with  s(0) > 0, y(0) > 0 set k = 0.

2. Check for optimality: STOP if all of the following are true:

Predictor-Corrector 
Primal-Dual Version

( )

( ) ( ) ( ) ( ) ( )
1 0
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Predictor-Corrector 
Primal-Dual Version
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3.  Solve
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Predictor-Corrector 
Primal-Dual Version
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Predictor-Corrector 
Primal-Dual Version
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5.  Solve
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Predictor-Corrector 
Primal-Dual Version
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Note that because of the coupling between the primal and 
dual variables through (1), a common step-size must be 
used in steps 4 and 6 above.
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Implementation
Again, the most expensive steps are Steps 3 and 5, which involve
solving a system of linear equations of the form:

1. Note that due to convexity,             is psd. This along with the assumed “strict 
feasibility”, strong duality holds and the system above always has a solution. In 
addition, the direction generated should be a descent direction (i.e. the merit 
function deceases along the generated direction.) So the line search used which is 
a simple form of backtracking line search should produces a good acceptable size.

2. As before, one can use the last rows to eliminate Δz to get a reduced system which 
can be solved using symmetric indefinite factorization. See the next slide.
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Implementation

2 ( )
1

1 1
2 4
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0 0
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xxL

− −
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⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

F A x r
F Y S y r Y r
A z r

Clearly the is symmetric and sparse (if A is sparse
and each  depends on only a few variable).  
The augmented system can be solved efficiently using 

  coefficient ma

 

trix

 
the 

i

sparse symmetric indef

f

inite  as discu ssed earlier.factorization

The most effective ways to solve the above system begin with 
the elimination of Δz yielding the augmented systems:
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Implementation

1 12 ( ) 1
1 2 4

1
2 40

T Tk T T
xx L − −−

−
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= ⎜ ⎟⎜ ⎟⎜ ⎟Δ −⎝ ⎠⎝ ⎠ ⎝ ⎠

x r F YS r F S rF YS F A
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Again the is symmetric and sparse (if Q, A, G are).  
The augmented system can be solved efficiently using the 

.
I

  coefficient matrix 

f A=0, the above system is 
   

a
sparse symmetric indefinite factorization

 normal equation with positive definite coefficient
which can be solved using Cholesky (or sparse Cholesky) factorization, or by
the Conjugate Gradient method or projected Conjugate gradient method.

Further elimination of Δz yields the a more compact 
augmented system:


