

Numerical Optimization

A Workshop

At

Department of Mathematics Chiang Mai University August 4-15, 2009

Instructor: Vira Chankong

Electrical Engineering and Computer Science

Case Western Reserve University

Phone: 216 368 4054, Fax: 216 368 3123

E-mail: vira@case.edu

8/6/2009

Session:

Methods For Constrained Nonlinear Optimization Problems

Vira Chankong

Case Western Reserve University Electrical Engineering and Computer Science

8/6/2009 Vira Chankong 2

Constrained Optimization (Nonlinear Programming)

NLP:
$$\min_{\mathbf{x} \in R^n} f(\mathbf{x})$$

 $s.t.$ $h_j(\mathbf{x}) = 0, \ j \in J_E$
 $g_j(\mathbf{x}) \le 0, \ j \in J_I$
or $\min_{\mathbf{x} \in R^n} f(\mathbf{x})$
 $s.t.$ $c_j(x) = 0, \ j \in J$
 $l_i \le x_i \le u_i, \ i = 1,...,n$

Desirable Properties of Numerical Methods

- Terminate at a right solution, quickly and cheaply every time
 - ➤ Converge: Find *solution* every time; Always stop at the right point
 - > Speed: Find *solution* quickly (low # of iterations)
 - ➤ Cheap: Low cost per iteration (time: # of function evaluations; and storage)
- ➤ Appropriate handling of optimality v.s. feasibility

8/6/2009

5

Optimality v.s. Feasibility

2 strategies:

- > Start feasible ($x^{(1)}$ feasible), stay feasible ($x^{(k)}$ feasible), and work for optimality --Feasible (primal) methods
- ➤ Start at a best convenient point (x⁽¹⁾ infeasible), stay on "best" but relaxed course (x^(k) infeasible), and work to achieve feasibility---Infeasible (dual) methods

Pros and Cons

Feasible methods

Pros:

Can stop anytime, and x^(k) is always usable since it is feasible (although not necessarily optimal)

Cons:

Less flexible to move—generally take longer and more costly

Infeasible methods

Pros: More flexible to

More flexible to move—generally more efficient and less costly

Cons:

Cannot stop until done, and $x^{(k)}$ is not usable since it is normally infeasible

8/6/2009

Classes of Methods

To find search direction $\mathbf{d}^{(k)}$: Solve a simpler problem

- Active Set-Strategy:
 - Gradient projection
 - Reduced gradient--Convert to equality constraints, eliminate variables, and solve bound constrained problems in reduced dimension
- Convert to unconstrained problems—penalty/barrier/Augmented Lagrangian
- Use Linear/Quadratic approximations and solve series of LPs or QPs—SLP/SQP
- Projective Transformation—interior point methods

Common Classes of Methods

- ➤ Reduced Gradient (Feasible)
- > Penalty/Augmented Lagrangian (Infeasible)
- Successive Quadratic Programming (SQP) (and Sequential Linear **Programming (SLP)) (Infeasible)**
- ➤ Interior-point (Feasible/Infeasible)

8/6/2009

Current Software and Optimizers

Optimizer	Methodology	In Software
GRG, GRG2, LSGRG2	Reduced Gradient	Excel Solver, LINGO/GINO, GAMS, NAG, IMSL
CONOPT	Reduced Gradient	GAMS, AMPL, AIMMS, MPL
MINOS	Projected Augmented Lagrangian	GAMS, AMPL
LANCELOT	Augmented Lagrangian	Stand-alone LANCELOT in various platforms
SQP	SQP	MATLAB, OPTIMA, SQP, MATHCAD
NPSOL,NLPQL, SNOPT, SQOPT	SQP	Callable by GAMS, AMPL or stand-alone

Constrained Optimization (Nonlinear Programming)

- . CO nonlinear programming in the GAUSS language.
- **CONOPT** nonlinear programming.
- DONLP2 nonlinear programming.
- <u>DOT</u> Design Optimization Tools.
- Excel and Quattro Pro Solvers spreadsheet-based linear, integer and nonlinear programming.
- FSQP nonlinear and minmax constrained optimization, with feasible iterates.
- GINO nonlinear programming.
- GRG2 nonlinear programming.
- HARWELL Library linear and nonlinear programming, nonlinear equations, data fitting.
- ILOG constraint-based programming and nonlinear optimization.
- LANCELOT large-scale problems.
- LINGO linear, integer, nonlinear programming with modeling language.
- LOQO Linear programming, unconstrained and constrained nonlinear optimization.
- <u>LSGRG2</u> nonlinear programming.
- MINOS linear programming and nonlinear optimization.

8/6/2009

11

Constrained Optimization(Nonlinear Programming)

- MOSEK linear programming and convex nonlinear optimization.
- NLPJOB Mulicriteria optimization.
- NLPQL nonlinear programming.
- NLPQLB nonlinear programming with constraints.
- NLPSPR nonlinear programming.
- NPSOL nonlinear programming.
- NOVA nonlinear programming.
- OPTIMA Library optimization and sensitivity analysis.
- PROC NLP various nonlinear optimization capabilities.
- OPTPACK constrained and unconstrained optimization.
- <u>SNOPT</u> large-scale quadratic and nonlinear programming problems.
- SQP nonlinear programming.
- SPRNLP sparse and dense nonlinear programming.
- SYNAPS Pointer multidiscplinary design optimization software.
- What's Best Excel add-in for linear, integer, nonlinear programming.

Quadratic Programming

- BQPD quadratic programming.
- . CPLEX linear, quadratic, and network linear programming.
- FortMP integer quadratic programming.
- LINDO linear, mixed-integer and quadratic programming.
- LOQO linear programming, unconstrained and constrained nonlinear optimization.
- <u>LSSOL</u> least squares problems.
- MOSEK linear programming and convex optimization (including convex quadratic programming).
- OSL linear, quadratic and mixed-integer programming.
- PORT 3 minimization, least squares, etc.
- PROC NLP various nonlinear optimization capabilities.
- <u>SQOPT</u> large-scale linear and convex quadratic programming.
- <u>SNOPT</u> large-scale linear, quadratic, and nonlinear programming problems (including nonconvex quadratic programming.
- QL convex quadratic programming.
- **QPOPT** linear and quadratic problems

8/6/2009

Nonlinear Least Squares

- <u>DFNLP</u> nonlinear data fitting.
- HARWELL Library linear and nonlinear programming, nonlinear equations, data fitting.
- LANCELOT large-scale problems.
- LOQO Linear programming, unconstrained and constrained nonlinear optimization.
- MINPACK-1 nonlinear equations and least squares.
- MODFIT parameter estimation in dynamic systems.
- NLSSOL constrained nonlinear least squares problems.
- ODRPACK NLS and ODR problems
- PDEFIT parameter estimation in partial differential equations.
- PORT 3 minimization, least squares, etc.
- PROC NLP nonlinear minimization or maximization.
- SPRNLP sparse nonlinear least squares.
- SYSFIT parameter estimation in systems of nonlinear equations.
- <u>TENSOLVE</u> nonlinear equations and least squares.
- VE10 nonlinear least squares.

Nonlinear Equations

- **CONTIN** systems of nonlinear equations.
- GAUSS matrix programming language.
- HARWELL Library linear and nonlinear programming, nonlinear equations, data fitting.
- HOMPACK nonlinear equations and polynomials.
- LANCELOT large-scale problems.
- <u>LOQO</u> Linear programming, unconstrained and constrained nonlinear optimization.
- MINPACK-1 nonlinear equations and least squares.
- NITSOL systems of nonlinear equations.
- OPTIMA Library optimization and sensitivity analysis.
- <u>PETSc</u> parallel solution of nonlinear equations and unconstrained minimization problems.

8/6/2009

Libraries with Optimization Capabilities

- <u>HARWELL Library</u> linear and nonlinear programming, nonlinear equations, data fitting.
- IMSL Fortran and C Library.
- <u>NAG C Library</u> nonlinear and quadratic programming, minimization
- NAG Fortran Library nonlinear and quadratic programming, minimiz ation

Optimization Systems/ Modeling Languages

- The AIMMS modeling language.
- The AMPL modeling language.
- **DATAFORM** model management system.
- EASY FIT parameter estimation in dynamic systems.
- Excel and Quattro Pro Solvers spreadsheet-based linear, integer and nonlinear programming.
- **EZMOD** modeling for decision support systems.
- **GAMS** modeling language.
- GAUSS language, oriented toward data analysis and statistical applications.
- LINGO linear, integer, nonlinear programming with modeling language.
- MATLAB optimization toolbox.
- **MODLER** linear programming modeling language.
- MPL modeling system.
- **MPSIII** mathematical programming system (includes DATAFORM).
- OPL Studio optimization language and solver environment.
- **OPTIMAX** component software for optimization.
- PLAM algebraic modeling language for mixed integer programming, constraint logic programming, etc.
- SPEAKEASY numerical problems and operations research.
- PCOMP modelling language with automatic differentiation.
- PROC NLP nonlinear minimization or maximization.
- What'sBest Excel add-in for linear, integer, and nonlinear programming.

8/6/2009

17

Case Engineering Design **Optimization Packages**

- **CONSOL-OPTCAD** engineering system design.
- **COMPACT** design optimization.
- **DOC** design optimization control program.
- **GENESIS** structural optimization software.
- **OPTDES** design optimization tool.
- **SIMUSOLV** modeling software.
- **SOCS** sparse optimal control; calls the **SPRNLP** package for nonlinear programming.
- **ULTRAMAX** design and process optimization.

More References on Software and Methods

- Optimization Software Guide (Jorge J. Moré and Stephen J. Wright, SIAM Publications, 1993).
- NEOS—Network Optimization Software http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide
- Nonlinear Optimization, Jorge Nocedal and Stephen J. Wright, Springer, NY, 1999

8/6/2009

Constrained Optimization

- Basic Ideas still the same as unconstrained case:
 - Iterative: Beginning at an initial $x^{(1)}$, generate sequence $x^{(1)}$, $x^{(2)}$,..., $x^{(k)}$,... until stop at x^*
 - At a current iterate $\mathbf{x}^{(k)}$,
 - Determine a search direction **d**^(k)
 - Determine a stepsize α^(k) along d^(k)
 - Update: $x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$
- Only this time we need to consider "feasibility" when searching for search direction and stepsize.

CASE

Constrained Optimization: **Key Issues**

- When to stop? Characterization of solution points
- How do we make progress? --Determining search direction **d**^(k) and stepsize α(k
- How do we measure progress toward achieving feasibility and optimality?

8/6/2009

CASE Characterizing Optimal Points. **For Constrained Problems**

21

NLP:
$$\min_{\mathbf{x} \in R^n} f(\mathbf{x})$$

$$s.t. \quad h_j(\mathbf{x}) = 0, \ \ j \in J_E$$

$$g_j(\mathbf{x}) \le 0, \ j \in J_I$$

 $J_{\rm E} = \phi$ and $J_{\rm I} = \phi$ **Unconstrained:**

 $J_{\rm E} \neq \phi$ and $J_{\rm I} = \phi$ **Equality Constrained:**

 $J_{\rm E} = \phi$ and $J_{\rm I} \neq \phi$ **Inequality Constrained:**

 $J_{\rm E} \neq \phi$ and $J_{\rm I} \neq \phi$ **Mixed Inequality Constrained:**

Characterizing Optimal Points: Unconstrained Problems

See Notes on "Unconstrained Problems:

In a nutshell;

If x^* is a local minimizer of f, then

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*)$ is positive semi-definite (psd)

- If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*)$ is positive definite (pd), then x^* is a strict local minimizer of f
- If f is convex $\nabla^2 f(\mathbf{x}^*)$ is pd for all \mathbf{x} , then any local minimizer is global

23

Case Characterizing Optimal Points: **Equality Constrained Problems**

For EP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in R^n$, $h_i(\mathbf{x}) = 0$, $j \in J_E$

For some Lagrange multipliers λ_i , $j \in J_E$, let the Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i \in I_{-}} \lambda_{i} h_{i}(\mathbf{x}),$$

If at $\mathbf{x}^*, \nabla h_i(\mathbf{x}^*)$, $j \in J_E$ are linearly independent (or some other constraint qualification) and if there exist λ_i^* , $j \in J_E$ such that

i)
$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$
, and $h_j(\mathbf{x}^*) = 0$, $j \in J_E$

ii)
$$\mathbf{s}^T \nabla^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{s} > 0$$
 for $\mathbf{s} \neq 0$ in $T = \{ \mathbf{s} \in R^n | \nabla h_j(\mathbf{x}^*) \mathbf{s} = 0, j \in J_E \}$

(i.e. $\nabla^2 L(\mathbf{x}^*)$ is pd in the tangent space T at \mathbf{x}^*)

Then $\mathbf{x} * \mathbf{i} \mathbf{s}$ a strict local minimizer of $f(\mathbf{x})$ subject to the equality constraints.

Moreover $\mathbf{x} * \text{is a unique global minimizer if } f(\mathbf{x}) \text{ is convex and each } h_i(\mathbf{x})$ is linear--a convex programming problem.

Characterizing Optimal Points:

Mixed Inequality Constrained Problems

For NLP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in \mathbb{R}^n$, $h_i(\mathbf{x}) = 0$, $j \in J_E$; $g_i(\mathbf{x}) \leq 0$, $j \in J_I$ For some *multipliers* λ_j , $j \in J_E$, and μ_j , $j \in J_I$, let the *Lagrangian*

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j \in J_E} \lambda_j h_j(\mathbf{x}) + \sum_{j \in J_I} \mu_j g_j(\mathbf{x})$$

Karush-Khun-Tucker (KKT) Theorem:

If at $\mathbf{x}^*, \nabla h_j(\mathbf{x}^*)$, $j \in J_E$ and $\nabla g_j(\mathbf{x}^*)$, $j \in J_I$ are linearly independent (or some other constraint qualification) and if there exist λ_i^* , $j \in J_E$ and μ_i^* , $j \in J_I$ such that

i)
$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

ii)
$$g_j(\mathbf{x}^*) \leq 0, j \in J_I$$

iii)
$$\mu_{i}^{*}g_{i}(\mathbf{x}^{*}) = 0, j \in J_{I}$$

iv)
$$\mu_i^* \geq 0, j \in J_I$$

Then x * is a KKT point of the NLP.

8/6/2009

25

Case Characterizing Optimal Points:

Mixed Inequality Constrained Problems

For NLP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in R^n$, $h_i(\mathbf{x}) = 0$, $j \in J_E$; $g_i(\mathbf{x}) \le 0$, $j \in J_I$ Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j \in J_E} \lambda_j h_j(\mathbf{x}) + \sum_{j \in J_I} \mu_j g_j(\mathbf{x})$$

SECOND-ORDER SUFFICIENCY: If

1) $\mathbf{x} * \mathbf{i} \mathbf{s} \mathbf{K} \mathbf{K} \mathbf{T}$ point with multipliers λ^* , and

2) $\mathbf{s}^T \nabla^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{s} > 0$ for $\mathbf{s} \neq 0$ in the tangent space T, where

 $T = \left\{ \mathbf{s} \in R^n \mid \nabla h_i(\mathbf{x}^*) \mathbf{s} = 0, j \in J_v, \nabla g_i(\mathbf{x}^*) \mathbf{s} = 0, j \in J_v \text{ with } \mu_i^* > 0, \nabla g_i(\mathbf{x}^*) \mathbf{s} \le 0, j \in J_v \text{ with } \mu_i^* = 0 \right\}$

Then $\mathbf{x} * \mathbf{is}$ a strict local minimizer of NLP.

Moreover it is a unique global minimizer if $f(\mathbf{x})$ is convex, each $h_i(\mathbf{x})$

is linear, and each $g_i(\mathbf{x})$ is convex--a convex programming problem.

8/6/2009

Making Progress

To find a new search direction $\mathbf{d}^{(k)}$: Solve a simpler problem

- Convert to unconstrained problems penalty/barrier/Augmented Lagrangian
- Convert to equality constraints, eliminate variables, and solve bound constrained problems in reduced dimension—reduced gradient/gradient projection
- Use Linear/Quadratic approximations and solve series of LPs or QPs—SLP/SQP
- Projective Transformation—interior point methods

8/6/2009

27

Penalty Function Method

NLP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in X = \left\{ \mathbf{x} \in R^n | g_j(\mathbf{x}) \le 0, j \in J_I \right\}$

Convert to unconstrained problem using penalty:

$$q(\mathbf{x}:c) = f(\mathbf{x}) + cp(\mathbf{x})$$

where
$$p(\mathbf{x}) \begin{cases} > 0 \text{ when } \mathbf{x} \notin X \\ = 0 \text{ when } \mathbf{x} \in X \end{cases}$$
 for example, $p(\mathbf{x}) = \frac{1}{2} \sum_{j \in J_1} \left(\max(0, g_j(x)) \right)^2$

c = penalty coefficient (large)

Hence, if c is large enough, minimizing $q(\mathbf{x};c)$ with respect to \mathbf{x} (unconstrained) should yield a solution \mathbf{x}^* to the original NLP such that $p(\mathbf{x}^*) = 0$, i.e $\mathbf{x}^* \in X$.

8/6/2009

Penalty Function Method SUMT: Fiacco-McCormick (1968, 1990)

0: Choose $\mathbf{x}^{(0)}$, and c_0 , set k = 0

- 1: Solve: min $q(\mathbf{x}:c_k) = f(\mathbf{x}) + c_k p(\mathbf{x})$ to get $\mathbf{x}^{(k)}$ using $\mathbf{x}^{(k-1)}$ as a starting point.
- 2: Let $c_{k+1} > c_k$ (e.g. $c_{k+1} = 2c_k$), set k = k+1, and repeat (1) until $p(\mathbf{x}^{(k)}) < \varepsilon$

(i.e.
$$p(\mathbf{x}^{(k)} \approx 0 \Rightarrow \mathbf{x}^{(k)} \in X)$$

8/6/2009

Penalty Function Method SUMT: Fiacco-McCormick (1968, 1990)

29

- Begin at a moderate c_0 and gradually increase c_k to avoid dealing with ill-conditioned problem from the beginning, By starting from the previous solution point $\mathbf{x}^{(k-1)}$, which is assumed closed to $\mathbf{x}^{(k)}$, we can deal with ill conditioned better
- q reflects two things that we always want to achieve—feasibility and optimality—it is sometime known as merit function used to measure "progress"
- The method approaches x* from the outside infeasible method

SUMT: Key properties

:

- Merit function $q(\mathbf{x}:c)$ is monotone non-decreasing: $q(\mathbf{x}^{(k)}:c_k) \le q(\mathbf{x}^{(k+1)}:c_{k+1})$
- Infeasibility measure is monotone non-increasing: $p(\mathbf{x}^{(k)}) \ge p(\mathbf{x}^{(k+1)})$
- Objective function is monotone non-decreasing: $f(\mathbf{x}^{(k+1)}) \ge f(\mathbf{x}^{(k)})$
- The algorithm converges to \mathbf{x}^* .
- Drawback: Need a large c to find \mathbf{x}^* , but get ill-conditioned when c_k becomes large

09

Barrier Function Method

31

NLP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in X = \left\{ \mathbf{x} \in R^n | g_j(\mathbf{x}) \le 0, j \in J_I \right\}$ Convert to unconstrained problem using penalty:

$$r(\mathbf{x}:c) = f(\mathbf{x}) + (1/c)b(\mathbf{x})$$
where $b(\mathbf{x})$

$$\begin{cases} > 0 \text{ when } \mathbf{x} \in \text{interior of } X \\ = \infty \text{ when } \mathbf{x} \text{ near boundary of } X \end{cases}$$
 and $c = \text{large coefficient}$

e.g.,
$$b(\mathbf{x}) = \sum_{j \in J_I} \ln(-g_j(\mathbf{x})) \ or \sum_{j \in J_I} \frac{1}{g_j(\mathbf{x})}$$

Thus we can minimize unconstrained $r(\mathbf{x}:c)$, starting from an interior $\mathbf{x}^{(0)}$ and a low \mathbf{c}_0 and successively increase \mathbf{c}_k ($\mathbf{c}_{k+1} > \mathbf{c}_k > \ldots$) until \mathbf{c}_k is large enough, and this should yield a solution \mathbf{x}^* to the original NLP. Note that the sequence $\mathbf{x}^{(k)}$ should remain interior, if $\mathbf{x}^{(0)}$ is. Hence this is a feasible method.

Consider NLP: $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in R^n$, $h_j(\mathbf{x}) = 0$, $j \in J_E$ Note: any inequality $g_j(\mathbf{x}) \le 0$ can be converted to equality as $g_i(\mathbf{x}) + v^2 = 0$ or $g_i(\mathbf{x}) + v = 0$, $v \ge 0$.

Convert to unconstrained problem using augmented Lagragian:

$$l(\mathbf{x}, \lambda, \rho) = f(\mathbf{x}) + \sum_{j \in J_F} \lambda_j h_j(\mathbf{x}) + \frac{1}{2} \rho \sum_{j \in J_I} \mu_j \left| h_j(\mathbf{x}) \right|^2$$

Hence, if λ and ρ are chosen properly, minimizing unconstrained $l(\mathbf{x}: \lambda, \rho)$ should yield a solution \mathbf{x}^* to the original NLP with $h_i(\mathbf{x}^*) = 0$

8/6/2009

Why is this good? It has been shown that:

The last term of $l(\mathbf{x}, \lambda, \rho)$ has the effect of "CONVEXIFYING: the problem by making $l(\mathbf{x}, \lambda, \rho)$ locally convex around \mathbf{x}^* . This lead to the following very important results:

- a) If \mathbf{x}^* is a local minimizer of $l(\mathbf{x}, \lambda, \rho)$ for some value of $(\lambda^{(k)}, \rho^{(k)})$, such that $l(\mathbf{x}, \lambda^{(k)}, \rho^{(k)})$ is locally convex and that $\nabla^2 l(\mathbf{x}, \lambda^{(k)}, \rho^{(k)})$ is pd (second-order sufficient conditions), then \mathbf{x}^* is a minimizer of the original NLP
- b) If \mathbf{x}^* is regular point (gradients of all active constraints are active) and a solution of the NLP with multipliers λ^* , such that the second-order sufficiency conditions apply, then there is $\rho^* < \infty$ such that for all $\rho \ge \rho^*$, \mathbf{x}^* is a local minimizer of $l(\mathbf{x}, \lambda^*, \rho)$.

Case Augmented Lagrangian Method

Why is this good?

The result (b) in the previous page, indicates that ρ does not need to be as high as that used in the penalty function, hence avoiding the illconditioned effect.

How do we choose a right (λ^*, ρ^*) : ρ^* is a little easier to select, but a right λ^* requires some work.

The following is a typical implementation:

8/6/2009

35

Augmented Lagrangian Method

Typical implementation:

Start with a low ρ_0 (since we are going to update it by doubling it) and a proper trial $\lambda^{(0)}$. Set inner iteration k=0, and outer iteration l = 0

Reduced Gradient Method

LNLP: $\min f(\mathbf{x})$

s.t.
$$Ax = b$$

$$\mathbf{x} \ge 0$$

Simplify by eliminating variables:

Assume: $\mathbf{A} = m \times n$, m < n, and $rank(\mathbf{A}) = m$

With row-column permutation if needed, collect *m* independent columns of A and form

$$A = (B:C)$$

where $\mathbf{B} = m \times m$ nonsinglar (basic) matrix

$$C = m \times (n-m)$$
 (nonbasic) matrix

8/6/2009

37

Case Reduced Gradient Method

Let $\mathbf{x} = \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix}$, $\mathbf{y} > 0$: $\mathbf{y} = m$ -basic variables; $\mathbf{z} = (n-m)$ -basic variables

$$Ax = b \Rightarrow (B:C)\begin{pmatrix} y \\ z \end{pmatrix} = By + Cz = b$$

$$\Rightarrow$$
 y = B⁻¹b - B⁻¹Cz =

$$\therefore \text{ LNLP } \equiv \min \quad f(\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{C}\mathbf{z}, \mathbf{z}) = \hat{f}(\mathbf{z})$$

s.t. $\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{C}\mathbf{z} \ge 0$ can be ignored temporarily since $\mathbf{y} > 0$ $z \ge 0$

Around $\mathbf{z}^{(k)}$, LNLP becomes: P: min $\hat{f}(\mathbf{z})$

$$\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{C}\mathbf{z} \ge 0$$

Case Reduced Gradient Method

P:
$$\min \hat{f}(\mathbf{z})$$

$$\mathbf{z} \ge 0$$
 (1)

$$\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{C}\mathbf{z} \ge 0 \tag{2}$$

This is obviously easier to solve than LNLP:

 $\dim(\mathbf{z}) < \dim(\mathbf{x}); \ \mathbf{z}^{(k)}$ is a feasible point of P;

and (1)&(2) are simpler constraints.

Applying a modified steepest descent (to accommodate $z \ge 0$) to P:

Reduced Gradient is

$$\mathbf{r} = \nabla \hat{f}(\mathbf{z}) = \frac{\partial \hat{f}(\mathbf{z})}{\partial z} = \frac{\partial f(\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{C}\mathbf{z}, \mathbf{z})}{\partial z} = \frac{\partial f(\mathbf{y}, \mathbf{z})}{\partial y} \left(-\mathbf{B}^{-1}\mathbf{C} \right) + \frac{\partial f(\mathbf{y}, \mathbf{z})}{\partial z}$$

$$\mathbf{r} = -\nabla_{\mathbf{y}} f(\mathbf{y}, \mathbf{z}) \mathbf{B}^{-1} \mathbf{C} + \nabla_{\mathbf{z}} f(\mathbf{y}, \mathbf{z})$$

8/6/2009

39

Reduced Gradient Method

$$r_{i} = any$$

$$Z_{i}^{(k)} \Rightarrow \Delta z_{i} = -r_{i}$$

$$\begin{array}{ccc}
r_{i} = any \\
Z_{i}^{(k)} & \Rightarrow \Delta z_{i} = -r_{i} \\
r_{i} < 0 \\
Z_{i}^{(k)} = 0 \\
-r_{i} & \Rightarrow \Delta z_{i} = -r_{i}
\end{array}$$

$$\Delta z = \begin{pmatrix} \Delta z_{1} \\ ... \\ \Delta z_{n} \end{pmatrix} \text{ using } \Delta z_{i} \text{ as found}$$

$$r_{i} > 0$$

$$Z_{i}^{(k)} = 0$$

$$r_{i} \Rightarrow \Delta z_{i} = 0$$

∆z can be used as a search direction

We can show that if $\Delta z = 0$, $\mathbf{x}^{(k)}$ is a KKT point.

Reduced Gradient Method

To find a step size $\alpha^{(k)}$:

Compute $\Delta y = -B^{-1}C \Delta z$

Compute:
$$\alpha_1 = \min_{\Delta y_i < 0} \left(\frac{y_i^{(k)}}{-\Delta y_i} \right)$$

Compute:
$$\alpha_2 = \min_{\Delta z_i < 0} \left(\frac{z_i^{(k)}}{-\Delta z_i} \right)$$

Then compute $\alpha_3 = \min(\alpha_1, \alpha_2)$

Finally, do line search to find $\alpha^{(k)} = \min_{0 < \alpha < \alpha_3} \left(f(\mathbf{y}^{(k)} + \alpha \Delta \mathbf{z}, \mathbf{z}^{(k)} + \alpha \Delta \mathbf{z} \right)$

8/6/2009

Successive Quadratic Programming (SQP)

41

Basic Idea:

1) Approximate $f(\mathbf{x})$ by a quadratic and $h_j(\mathbf{x})$ and $g_j(\mathbf{x})$ by linear functions

At
$$\mathbf{x}^{(k)}$$
, solve

$$\begin{aligned} \text{QP}^{(k)} \colon \min f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(k)})^T \nabla^2 f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) \\ \text{s.t. } h_j(\mathbf{x}^{(k)}) + \nabla h_j(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) = 0, \ j \in J_E \\ g_j(\mathbf{x}^{(k)}) + \nabla g_j(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) = 0, \ j \in J_I \end{aligned}$$

Note that $\mathbf{x} - \mathbf{x}^{(k)} = \mathbf{d}^{(k)}$

Successive Quadratic Programming (SQP)

So

$$\begin{split} \text{QP}^{(k)} \colon \min f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} + \frac{1}{2} \mathbf{d}^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} \\ \text{s.t. } h_j(\mathbf{x}^{(k)}) + \nabla h_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} = 0, \ j \in J_E \\ g_j(\mathbf{x}^{(k)}) + \nabla g_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} = 0, \ j \in J_I \end{split}$$

Solve $QP^{(k)}$ by a suitable method to get $\mathbf{d}^{(k)}$

Update
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$$

8/6/2009

CASE THE RESTRICT Basic Idea of SQP: **An Illustration**

43

Example 1

NLP:
$$\min_{\mathbf{x} \in R^2} f(\mathbf{x}) = \frac{6x_1}{x_2} + \frac{x_2}{x_1^2}$$
s.t.
$$h(\mathbf{x}) = x_1 x_2 - 2 = 0$$

$$g(\mathbf{x}) = -x_1 - x_2 + 1 \le 0$$

$$\mathbf{x}^{(0)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Basic Idea of SQP: An Illustration (cont.)

$$\nabla f(x_1, x_2) = \begin{pmatrix} \frac{6}{x_2} - \frac{2x_2}{x_1^3} & \frac{-6x_1}{x_2^2} + \frac{1}{x_1^2} \end{pmatrix}, \nabla^2 f(x_1, x_2) = \begin{pmatrix} \frac{6x_2}{x_1^4} & \frac{-6}{x_2^2} - \frac{2}{x_1^3} \\ -\frac{6}{x_2^2} - \frac{2}{x_1^3} & \frac{12x_1}{x_2^3} \end{pmatrix}$$

$$\nabla h(x_1, x_2) = \begin{pmatrix} x_2 & x_1 \end{pmatrix}; \quad \nabla g(x_1, x_2) = \begin{pmatrix} -1 & -1 \end{pmatrix}$$

$$\nabla h(x_1, x_2) = (x_2 \quad x_1); \quad \nabla g(x_1, x_2) = (-1 \quad -1)$$

$$f(\mathbf{x}^{(0)}) = 12.25; \nabla f(\mathbf{x}^{(0)}) = \begin{pmatrix} \frac{23}{4} & \frac{-47}{4} \end{pmatrix}, \quad \nabla^2 f(\mathbf{x}^{(0)}) = \begin{pmatrix} \frac{3}{8} & \frac{-25}{4} \\ \frac{-25}{4} & 24 \end{pmatrix}$$

$$h(\mathbf{x}^{(0)}) = 0; \nabla h(\mathbf{x}^{(0)}) = (1 \quad 2); \quad g(\mathbf{x}^{(0)}) = -2; \nabla g(\mathbf{x}^{(0)}) = (-1 \quad -1)$$

CASE CITE Basic Idea of SQP: An Illustration (cont.)

QP⁽⁰⁾:
$$\min_{\mathbf{x} \in \mathbb{R}^2} q(\mathbf{x}) = 12.25 + \left(\frac{23}{4} - \frac{-47}{4}\right) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} + \left(d_1 - d_2\right) \begin{pmatrix} \frac{3}{8} - \frac{-25}{4} \\ \frac{-25}{4} - 24 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$$

s.t.
$$\hat{h}(\mathbf{x}) = 0 + \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\widehat{g}(\mathbf{x}) = -2 + (-1 \quad -1) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \le 0$$

$$\Rightarrow \mathbf{d}^{(0)} = \begin{pmatrix} -0.92 \\ 0.46 \end{pmatrix} \Rightarrow \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \mathbf{d}^{(0)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -0.92 \\ 0.46 \end{pmatrix} = \begin{pmatrix} 1.08 \\ 1.46 \end{pmatrix}$$

Case

Basic Idea of SQP: An Illustration (cont.)

$$\begin{aligned} \text{QP}^{(1)} \colon & \min_{\mathbf{x} \in \mathbb{R}^2} q(\mathbf{x}) = \begin{pmatrix} 1.78 & -2.18 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} + \begin{pmatrix} d_1 & d_2 \end{pmatrix} \begin{pmatrix} 6.46 & -4.40 \\ -4.40 & 4.16 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \\ & s.t. & \hat{h}(\mathbf{x}) = -0.42 + \begin{pmatrix} 1.46 & 1.08 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0 \\ & \hat{g}(\mathbf{x}) = -1.54 + \begin{pmatrix} -1 & -1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \leq 0 \\ & \Rightarrow \mathbf{d}^{(1)} = \begin{pmatrix} -0.03 \\ 0.43 \end{pmatrix} \Rightarrow \mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \mathbf{d}^{(1)} = \begin{pmatrix} 1.08 \\ 1.46 \end{pmatrix} + \begin{pmatrix} -0.03 \\ 0.43 \end{pmatrix} = \begin{pmatrix} 1.05 \\ 1.89 \end{pmatrix}, h(\mathbf{x}^{(1)}) = .01 \end{aligned}$$
Continue until:
$$\mathbf{x}^{(4)} = \begin{pmatrix} 1.00014 \\ 1.99971 \end{pmatrix}, h(\mathbf{x}^{(4)}) = -0.62 \times 10^{-6} \end{aligned}$$

8/6/2009 47

Case The Rest Rest Basic Idea of SQP: An Illustration (cont.)

Example 2

NLP:
$$\min_{\mathbf{x} \in R^2} f(\mathbf{x}) = x_1 x_2$$

s.t.
$$h(\mathbf{x}) = \frac{6x_1}{x_2} + \frac{x_2}{x_1^2} - 5 = 0$$

$$g(\mathbf{x}) = -x_1 - x_2 + 1 \le 0$$

$$\mathbf{x}^{(0)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

CASE

Basic Idea of SQP: An Illustration (cont.)

$$\nabla f(x_1, x_2) = (x_2 \quad x_1), \nabla^2 f(x_1, x_2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\nabla h(x_1, x_2) = \left(\frac{6}{x_2} - \frac{2x_2}{x_1^3} \quad \frac{-6x_1 + 1}{x_2^2} \cdot \frac{1}{x_1^2}\right); \quad \nabla g(x_1, x_2) = (-1 \quad -1)$$

$$f(\mathbf{x}^{(0)}) = 2; \nabla f(\mathbf{x}^{(0)}) = (1 \quad 2), \quad \nabla^2 f(\mathbf{x}^{(0)}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$h(\mathbf{x}^{(0)}) = \frac{29}{4}; \nabla h(\mathbf{x}^{(0)}) = \left(\frac{23}{4} \quad \frac{-47}{4}\right); \quad g(\mathbf{x}^{(0)}) = -2; \nabla g(\mathbf{x}^{(0)}) = (-1 \quad -1)$$

8/6/2009

Case The Resident Basic Idea of SQP: **An Illustration (cont.)**

$$\begin{aligned} \mathbf{QP}^{(0)} \colon & \min_{\mathbf{x} \in \mathbb{R}^2} q(\mathbf{x}) = 2 + \left(1 - 2\right) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} + \left(d_1 - d_2\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \\ s.t. & \hat{h}(\mathbf{x}) = \frac{29}{4} + \left(\frac{23}{4} - \frac{-47}{4}\right) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0 \\ & \hat{g}(\mathbf{x}) = -2 + \left(-1 - 1\right) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \le 0 \\ & \Rightarrow \mathbf{d}^{(0)} = \begin{pmatrix} -1.75 \\ -0.24 \end{pmatrix} \Rightarrow \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \mathbf{d}^{(0)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -1.75 \\ -0.24 \end{pmatrix} = \begin{pmatrix} 0.24 \\ 0.76 \end{pmatrix} \end{aligned}$$

Basic Idea of SQP: An Illustration (cont.)

Here the method does not work well, since h is very sharp at $\mathbf{x}^* = (1,2)^T$

- ⇒ Curvature of constraints are also important in determining how well we can approach x*
- ⇒ Need to improve on the basic method

8/6/2009

Successive Quadratic Programming (SQP)

Advantages:

- Simple and efficient, if it works
- Linear approximation helps define direction
- Quadratic approximation helps define step size

Disadvantages:

- Approximation may be inaccurate
- Does not always work as planned (direction and/or step size may be no good particularly if Hessian is not pd.

8/6/2009

52

Case The Chara Successive Quadratic **Programming (SQP)**

Strategies for improvement:

- Include curvature of constraints to get better approx. Either
 - Approx high curvature nonlinear constraints as quadratics
 - Include Hessian of constraints in objective function—quadratic approx of Lagrangian

8/6/2009

53

Successive Quadratic Programming (SQP)

Strategies for improvement:

This is a constrained version of Newton's method: It has all disadvantages of Newton's

- Improve by using line search using merit function
- Use Quasi-Newton to approximate Hessian of objective function to reduce computational costs and ensure pd.

8/6/2009

CASE SCHOOL DE INCLINEERING SQP: Strategies for improvement:

Include curvature of constraints to get better approximation: Strategy 1

Include Hessian of constraints in objective function—quadratic approx of Lagrangian

At $\mathbf{x}^{(k)}$, solve

$$\begin{split} \text{QP}^{(k)} \colon \min L(\mathbf{x}^{(k)}, \lambda^{(k)}) + \nabla L(\mathbf{x}^{(k)}, \lambda^{(k)}) \mathbf{d}^{(k)} + \frac{1}{2} \mathbf{d}^{(k)T} \nabla^2 L(\mathbf{x}^{(k)}, \lambda^{(k)}) \mathbf{d}^{(k)} \\ \text{s.t. } h_j(\mathbf{x}^{(k)}) + \nabla h_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} = 0, \ j \in J_E \\ g_j(\mathbf{x}^{(k)}) + \nabla g_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} \leq 0, \ j \in J_I \end{split}$$

Note that $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$

8/6/2009

55

CASE SQP: Strategies for improvement:

Include curvature of constraints to get better approximation: Strategy 2

Approx high curvature nonlinear constraints as quadratics

At $\mathbf{x}^{(k)}$, solve

$$\begin{split} \text{QP}^{(k)} \colon \min L(\mathbf{x}^{(k)}, \lambda^{(k)}) + \nabla L(\mathbf{x}^{(k)}, \lambda^{(k)}) \mathbf{d}^{(k)} + \frac{1}{2} \mathbf{d}^{(k)T} \nabla^2 L(\mathbf{x}^{(k)}, \lambda^{(k)}) \mathbf{d}^{(k)} \\ \text{s.t. } h_j(\mathbf{x}^{(k)}) + \nabla h_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} + \frac{1}{2} \mathbf{d}^{(k)T} \nabla^2 h_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} = 0, \ j \in J_E \\ g_j(\mathbf{x}^{(k)}) + \nabla g_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} \frac{1}{2} \mathbf{d}^{(k)T} \nabla^2 g_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} \leq 0, \ j \in J_I \end{split}$$

Note that $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$

8/6/2009

SQP: Strategies for improvement:

In any case, this is a constrained version of Newton's with all its disadvantages. Strategies for improvement

a) Improve by using line search using merit function

$$P(\mathbf{x}, R) = f(\mathbf{x}) + R \left\{ \sum_{i=1}^{k} (h_i(\mathbf{x}))^2 + \sum_{i=1}^{l} (\max(0, g_i(\mathbf{x})))^2 \right\}$$

Use this merit function to find step size $\alpha^{(k)}$, and then $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$

8/6/2009 57

SQP: Strategies for improvement:

This is a constrained version of Newton's with all its disadvantages. Strategies for improvement

b) Use Quasi-Newton to approximate the Hessian of objective function to reduce computational costs and ensure positive definiteness.

At
$$\mathbf{x}^{(k)}$$
, solve

$$QP^{(k)}: \min f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})\mathbf{d}^{(k)} + \frac{1}{2}\mathbf{d}^{(k)T}\mathbf{H}^{(k)}\mathbf{d}^{(k)}$$

s.t.
$$h_j(\mathbf{x}^{(k)}) + \nabla h_j(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} = 0, j \in J_E$$

$$g_j(\mathbf{x}^{(k)}) + \nabla g_j(\mathbf{x}^{(k)})\mathbf{d}^{(k)} \le 0, \ j \in J_I$$
 Note that $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$

where $\mathbf{H}^{(k)}$ is updated by BFGS or DFP-like formular, so that

 $\mathbf{H}^{(k)}$ is always positive definite and $\mathbf{H}^{(k)} \to \nabla^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*)$

SQP: Implementation

To use SQP, we need an efficient method to solve Quadratic Programs: How?

QP: $\min a + \mathbf{q}^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{Q} \mathbf{d}$ s.t. $\mathbf{A} \mathbf{d} = \mathbf{b}$ $\mathbf{G} \mathbf{d} \le \mathbf{c}$ $\mathbf{d} \ge \mathbf{0}$

- 1) If **Q** is *pd* –easy: Use Wolfe's method based on LP simplex method
- 2) If **Q** is *psd*—Use Lemke's method
- 3) If **Q** is *id*—Use Active set Strategy

8/6/2009

59

SQP: Implementation

QP: min
$$c + \mathbf{q}^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{Q} \mathbf{d}$$

s.t. $\mathbf{A} \mathbf{d} = \mathbf{b}$
 $\mathbf{d} \ge \mathbf{0}$

All methods require solving the KKT conditions:

Assume that we have only equality constraints:

- 1) Any local solution is a global solution—amazing for QP even if it is not convex.
- 2) Hence, any solution of QP must be a KKT point and vice versa.

8/6/2009

SQP: Implementation

QP: min
$$c + \mathbf{q}^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{Q} \mathbf{d}$$

s.t.
$$Ad = b$$

$$d \ge 0$$

KKT Conditions: d* is a KKT point of the QP

if and only if there exist multipliers λ^* such that:

$$\begin{pmatrix} \mathbf{Q} & -\mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{d}^{*} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} -\mathbf{q} \\ \mathbf{b} \end{pmatrix} \quad or$$

Noting that $d^* = d + p$, c = Ad - b, g = Qd + q we have

$$\begin{pmatrix} \mathbf{Q} & -\mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} -\mathbf{p} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix}$$
 (3)

All methods solve (3) in one way or another.

8/6/2009

61

SQP: Implementation

For example:

$$\min f(x_1, x_2, x_3) = 3x_1^2 + 2x_1x_2 + x_1x_3 + 2x_2x_3 + 2.5x_2^2 + 2x_3^2 - 8x_1 - 3x_2 - 3x_3$$

s.t. $x_1 + x_3 = 3$; $x_2 + x_3 = 0$, $x_i \ge 0$, $i = 1, 2, 3$

$$\Rightarrow f(\mathbf{x}) = 0 + \mathbf{q}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$$
, where

$$\mathbf{q} = \begin{pmatrix} -8 \\ -3 \\ -2 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 6 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 4 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$d \ge 0$$

Solving the KKT conditions (3) yields:

$$\mathbf{x}^* = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \ \lambda^* = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

8/6/2009

SQP: Implementation

Solving the KKT condition below:

$$\begin{pmatrix} \mathbf{Q} & -\mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} -\mathbf{p} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix} \text{ or } \mathbf{K} \begin{pmatrix} -\mathbf{p} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix}$$
(3)

1) Direct solution: Using symmetric indefinite factorization:

$$\mathbf{P}^T \mathbf{K} \mathbf{P} = \mathbf{L} \mathbf{B} \mathbf{L}^T$$

where P = permutation matrix;

L = unit lower triangular

 $\mathbf{B} = \text{Block diagonal with } 1x1 \text{ or } 2x2 \text{ blocks}$

Solve
$$\mathbf{L}\mathbf{y} = \mathbf{P}^T \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix}$$
 to get \mathbf{y}

Solve $\mathbf{B}\hat{\mathbf{y}} = \mathbf{y}$ to get $\hat{\mathbf{y}}$

Solve $\mathbf{L}^T \overline{\mathbf{y}} = \hat{\mathbf{y}}$ to get $\overline{\mathbf{y}}$

$$\operatorname{Set} \begin{pmatrix} -\mathbf{p} \\ \lambda * \end{pmatrix} = \mathbf{P} \overline{\mathbf{y}}$$

8/6/2009

Half the cost of sparse Gaussian Elimination

63

SQP: Implementation

Solving the KKT condition below:

$$\begin{pmatrix} \mathbf{Q} & -\mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} -\mathbf{p} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix} \text{ or } \mathbf{K} \begin{pmatrix} -\mathbf{p} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{c} \end{pmatrix}$$
 (3)

2) Range-Space Method: Q is assumed pd:

$$\left(\mathbf{A}\mathbf{Q}^{\text{-}1}\mathbf{A}^{\text{T}}\right)\boldsymbol{\lambda}^{*} = \left(\mathbf{A}\mathbf{Q}^{\text{-}1}\mathbf{g} - \mathbf{c}\right)$$

3) Null Space Method:

$$\begin{aligned} \mathbf{p} &= \mathbf{Y} \mathbf{p}_{y} + \mathbf{Z} \mathbf{p}_{z} \\ \mathbf{A} \mathbf{Y} \mathbf{p}_{y} &= -\mathbf{c} \\ -\mathbf{G} \mathbf{Y} \mathbf{p}_{y} -\mathbf{G} \mathbf{Z} \mathbf{p}_{z} + \mathbf{A}^{T} \boldsymbol{\lambda}^{*} &= \mathbf{g} \\ \mathbf{Z}^{T} \mathbf{G} \mathbf{Z} \mathbf{p}_{z} &= -(\mathbf{Z}^{T} \mathbf{G} \mathbf{Y} \mathbf{p}_{y} + \mathbf{Z}^{T} \mathbf{g}) \\ (\mathbf{A} \mathbf{Y})^{T} \boldsymbol{\lambda}^{*} &= \mathbf{Y}^{T} (\mathbf{g} + \mathbf{G} \mathbf{p}) \end{aligned}$$

4) Method based on conjugacy

8/6/2009

8/6/2009 65

KKT:
$$\nabla f_0(\mathbf{x}) + \sum_{i=1}^m y_i \nabla f_i(\mathbf{x}) + \mathbf{A}^T \mathbf{z} = 0$$
 (1)

$$f_i(\mathbf{x}) + s_i = 0, \quad i = 1,..,m$$
 (2a)

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2b}$$

$$y_i s_i = 0, \quad i = 1,..,m$$
 (3)

$$y_i \ge 0, s_i \ge 0, \quad i = 1,..,m$$
 (4)

Again at iteration k with $(\mathbf{x}^{(k)}, \mathbf{s}^{(k)}, \mathbf{y}^{(k)}, \mathbf{z}^{(k)})$ and $(\mathbf{s}^{(k)}, \mathbf{z}^{(k)}) > 0$ and the duality gap $\tau^{(k)}$ we solve the relaxed KKT for the new serach direction $(\Delta \mathbf{x}, \Delta \mathbf{s}, \Delta \mathbf{y}, \Delta \mathbf{z})$:

$$KKT^{(k)}: \nabla f_0(\mathbf{x}^{(k)} + \Delta \mathbf{x}) + \sum_{i=1}^m (y_i + \Delta y_i) \nabla f_i(\mathbf{x}^{(k)} + \Delta \mathbf{x}) + \mathbf{A}^T(\mathbf{z}^{(k)} + \Delta \mathbf{z}) = 0$$
 (1)

$$f_i(\mathbf{x}^{(k)} + \Delta \mathbf{x}) + (s_i^{(k)} + \Delta s_i) = 0, \quad i = 1,...,m$$
 (2a)

$$\mathbf{A}(\mathbf{x}^{(k)} + \Delta \mathbf{x}) = \mathbf{b} \tag{2b}$$

$$(\mathbf{Y}^{(k)} + \Delta \mathbf{Y})(\mathbf{S}^{(k)} + \Delta \mathbf{S})\mathbf{e} = \tau^{(k)}\mathbf{e}$$
(3)

Notice again that with $\tau^{(k)} > 0$, the nonnegativity condition (4) is automatically satisfied.

Interior Point Method

A typical strategy is to solve (1)-(3) above using a variant of Newton's method and perform a simple line search to find stepsize to ensure strict nonnegativity.

The Newton method requires solving a linearized version of the KKT:

$$\text{KKT}^{(k)} \colon \begin{pmatrix} \nabla^2 f_0(\mathbf{x}^{(k)}) + \sum_{i=1}^m y_i^{(k)} \nabla^2 f_i(\mathbf{x}^{(k)}) & 0 & \nabla \mathbf{f}(\mathbf{x}^{(k)}) & \mathbf{A}^T \\ \nabla \mathbf{f}(\mathbf{x}^{(k)})^T & \mathbf{I} & 0 & 0 \\ \mathbf{A} & 0 & 0 & 0 \\ 0 & \mathbf{Y}^{(k)} & \mathbf{S}^{(k)} & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{s} \\ \Delta \mathbf{y} \\ \Delta \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{pmatrix}$$
 where $\mathbf{r}_1 = -\nabla f_0(\mathbf{x}^{(k)}) - \sum_{i=1}^m y_i^{(k)} \nabla f_i(\mathbf{x}^{(k)}) - \mathbf{A}^T \mathbf{z}^{(k)}; \ \mathbf{r}_2 = -\mathbf{f}(\mathbf{x}^{(k)}) - \mathbf{s}^{(k)}; \ \mathbf{r}_3 = -\mathbf{A}\mathbf{x}^{(k)}$

where
$$\mathbf{r}_1 = -\nabla f_0(\mathbf{x}^{(k)}) - \sum_{i=1}^m y_i^{(k)} \nabla f_i(\mathbf{x}^{(k)}) - \mathbf{A}^T \mathbf{z}^{(k)}; \ \mathbf{r}_2 = -\mathbf{f}(\mathbf{x}^{(k)}) - \mathbf{s}^{(k)}; \mathbf{r}_3 = -\mathbf{A}\mathbf{x}^{(k)}$$

and $\mathbf{r}_{A} = -\mathbf{Y}^{(k)}\mathbf{S}^{(k)}\mathbf{e}$ for the prediction step, and

=
$$-\mathbf{Y}^{(k)}\mathbf{S}^{(k)}\mathbf{e} - \Delta\mathbf{Y}_{aff}\Delta\mathbf{S}_{aff}\mathbf{e} + \rho_k \mu_k \mathbf{e}$$
 for the corrected centering step

Also,
$$\mathbf{f}(\mathbf{x}^{(k)}) = \begin{pmatrix} f_1(\mathbf{x}^{(k)}) \\ \vdots \\ f_m(\mathbf{x}^{(k)}) \end{pmatrix}$$
 and $\nabla \mathbf{f}(\mathbf{x}^{(k)}) = (\nabla f_1(\mathbf{x}^{(k)}) : \nabla f_2(\mathbf{x}^{(k)}) : \dots : \nabla f_m(\mathbf{x}^{(k)}))$

8/6/2009 67

Interior Point Method

Two basic strategies:

1. The primal approach: Solve a Newton system and keep the primal feasibility This is equivalent to solving the Barrier problem:

$$\min f_0(\mathbf{x}) + \tau(-\sum_{i=1}^m \log(-f_i(\mathbf{x})), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}$$

The adjusted KKT system to be solved reflects the relaxed KKT system for the above Barrier problem. This will be discussed later.

2. The primal-dual approach which consists of the predition step and centering correction step similar to before. This is described in detail next. For convenient, we will write

$$KKT^{(k)} \colon \begin{pmatrix} \nabla_{xx}^2 L^{(k)} & 0 & \mathbf{F}^T & \mathbf{A}^T \\ \mathbf{F} & \mathbf{I} & 0 & 0 \\ \mathbf{A} & 0 & 0 & 0 \\ 0 & \mathbf{Y}^{(k)} & \mathbf{S}^{(k)} & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{s} \\ \Delta \mathbf{y} \\ \Delta \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{pmatrix}$$

where
$$\nabla_{xx}^2 L^{(k)} = \nabla^2 f_0(\mathbf{x}^{(k)}) + \sum_{i=1}^m y_i^{(k)} \nabla^2 f_i(\mathbf{x}^{(k)})$$
 and $\mathbf{F} = \nabla \mathbf{f}(\mathbf{x}^{(k)})^T$

Note:
$$L(\mathbf{x}, \mathbf{s}, \mathbf{y}, \mathbf{z}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} y_i (f_i(\mathbf{x}) + s_i) + \mathbf{z}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

8/6/2009

Predictor-Corrector Primal-Dual Version

- 1. Given $(\mathbf{x}^{(0)}, \mathbf{s}^{(0)}, \mathbf{y}^{(0)}, \mathbf{z}^{(0)})$ with $\mathbf{s}^{(0)} > \mathbf{0}$, $\mathbf{y}^{(0)} > \mathbf{0}$ set k = 0.
- 2. Check for optimality: STOP if all of the following are true:

• dual feasibility:
$$\|\mathbf{r}_{i}^{(k)}\| = \|\nabla f_{0}(\mathbf{x}^{(k)}) + \sum_{i=1}^{m} y_{i}^{(k)} \nabla f_{i}(\mathbf{x}^{(k)}) + \mathbf{A}^{T} \mathbf{z}^{(k)}\| \le \tau_{k}$$

• primal feasibility:
$$\|\mathbf{r}_{2}^{(k)}\| = \|\mathbf{f}(\mathbf{x}^{(k)}) + \mathbf{s}^{(k)}\| \le \tau_{k}$$
$$\|\mathbf{r}_{3}^{(k)}\| = \|\mathbf{A}\mathbf{x}^{(k)}\| \le \tau_{k}$$

• duality gap:
$$(\mathbf{y}^{(k)})^T \mathbf{s}^{(k)} \leq m\tau_k$$

Note:
$$\tau_k = \sigma_k \mu_k$$

8/6/2009 69

Predictor-Corrector Primal-Dual Version

3. Solve

$$\begin{pmatrix} \nabla_{xx}^{2} \boldsymbol{L}^{(k)} & 0 & \boldsymbol{F}^{T} & \boldsymbol{A}^{T} \\ \boldsymbol{F} & \boldsymbol{I} & 0 & 0 \\ \boldsymbol{A} & 0 & 0 & 0 \\ 0 & \boldsymbol{Y}^{(k)} & \boldsymbol{S}^{(k)} & 0 \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{x} \\ \Delta \boldsymbol{s} \\ \Delta \boldsymbol{y} \\ \Delta \boldsymbol{z} \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{1} \\ \boldsymbol{r}_{2} \\ \boldsymbol{r}_{3} \\ \boldsymbol{r}_{4} \end{pmatrix}$$

where
$$\mathbf{r}_1 = -\nabla f_0(\mathbf{x}^{(k)}) - \sum_{i=1}^m y_i^{(k)} \nabla f_i(\mathbf{x}^{(k)}) - \mathbf{A}^T \mathbf{z}^{(k)}; \mathbf{r}_2 = -\mathbf{f}(\mathbf{x}^{(k)}) - \mathbf{s}^{(k)};$$

and $\mathbf{r}_3 = -\mathbf{A}\mathbf{x}^{(k)}; \mathbf{r}_4 = -\mathbf{Y}^{(k)} \mathbf{S}^{(k)} \mathbf{e}$

to get predicted Newton's direction
$$\begin{bmatrix} \Delta \mathbf{x}^{aff} \\ \Delta \mathbf{s}^{aff} \\ \Delta \mathbf{y}^{aff} \\ \Delta \mathbf{z}^{aff} \end{bmatrix}$$

8/6/2009

Predictor-Corrector Primal-Dual Version

4. Compute predicted stepsizes: $\alpha_{aff}^{primal} = \min \left(1, \min_{i:\Delta s_i^{eff} < 0} \frac{-s_i^{(k)}}{\Delta s_i^{eff}} \right);$

$$\alpha_{aff}^{dual} = \min\left(1, \min_{i: \Delta z_i^{aff} < 0} \frac{-y_i^{(k)}}{\Delta y_i^{aff}}\right)$$

Then $\alpha_{aff} = \min(\alpha_{aff}^{primal}, \alpha_{aff}^{dual})$

Compute $\mathbf{x}^{aff} = \mathbf{x}^{(k)} + \alpha_{aff} \Delta \mathbf{x}^{aff}; \mathbf{s}^{aff} = \mathbf{s}^{(k)} + \alpha_{aff} \Delta \mathbf{s}^{aff}$

$$\mathbf{y}^{\mathit{aff}} = \mathbf{y}^{(\mathit{k})} + \alpha_{\mathit{aff}} \Delta \mathbf{y}^{\mathit{aff}} ; \mathbf{z}^{\mathit{aff}} = \mathbf{z}^{(\mathit{k})} + \alpha_{\mathit{aff}} \Delta \mathbf{z}^{\mathit{aff}} ; \mathbf{w}^{\mathit{aff}} = \mathbf{w}^{(\mathit{k})} + \alpha_{\mathit{aff}} \Delta \mathbf{w}^{\mathit{aff}}$$

Compute estimated duality gap measure $\mu_{aff} = \frac{\left(\mathbf{y}^{aff}\right)^T \mathbf{s}^{aff}}{m}$;

and
$$\mu_k = \frac{\left(\mathbf{y}^{(k)}\right)^T \mathbf{s}^{(k)}}{m}$$

and estimated centering parameter $\sigma_k = \left(\frac{\mu_{aff}}{\mu_k}\right)^3$

71

Predictor-Corrector Primal-Dual Version

5. Solve

$$\begin{pmatrix} \nabla_{xx}^{2} \boldsymbol{L}^{(k)} & 0 & \boldsymbol{F}^{T} & \boldsymbol{A}^{T} \\ \boldsymbol{F} & \boldsymbol{I} & 0 & 0 \\ \boldsymbol{A} & 0 & 0 & 0 \\ 0 & \boldsymbol{Y}^{(k)} & \boldsymbol{S}^{(k)} & 0 \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{x} \\ \Delta \boldsymbol{s} \\ \Delta \boldsymbol{y} \\ \Delta \boldsymbol{z} \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{1} \\ \boldsymbol{r}_{2} \\ \boldsymbol{r}_{3} \\ \boldsymbol{r}_{4} \end{pmatrix}$$

where
$$\mathbf{r}_1 = -\nabla f_0(\mathbf{x}^{(k)}) - \sum_{i=1}^m y_i^{(k)} \nabla f_i(\mathbf{x}^{(k)}) - \mathbf{A}^T \mathbf{z}^{(k)}; \mathbf{r}_2 = -\mathbf{f}(\mathbf{x}^{(k)}) - \mathbf{s}^{(k)};$$

and
$$\mathbf{r}_3 = -\mathbf{A}\mathbf{x}^{(k)}$$
; $\mathbf{r}_4 = -\mathbf{Y}^{(k)}\mathbf{S}^{(k)}\mathbf{e} - \Delta\mathbf{Y}_{aff}\Delta\mathbf{S}_{aff}\mathbf{e} + \sigma_k\mu_k\mathbf{e}$

to get corrected centering direction $\begin{pmatrix} \Delta \mathbf{x}^{(k)} \\ \Delta \mathbf{s}^{(k)} \\ \Delta \mathbf{y}^{(k)} \\ \Delta \mathbf{z}^{(k)} \end{pmatrix}$

8/6/2009

Predictor-Corrector Primal-Dual Version

6. Compute full stepsizes:
$$\alpha_{\max} = \min \left(1, \min_{i:\Delta i_i^{\text{off}} < 0} \frac{-s_i^{(k)}}{\Delta s_i^{(k)}}, \min_{i:\Delta i_i^{\text{off}} < 0} \frac{-y_i^{(k)}}{\Delta y_i^{(k)}} \right)$$

Use the shortened stepsizes to ensure strict interior i.e. $\mathbf{s}^{(k)} > 0$ and $\mathbf{y}^{(k)} > 0$):

$$\alpha_k = \min(1, \eta \alpha_{\max})$$
 where $0.9 \le \eta < 1$

Compute
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \Delta \mathbf{x}^{(k)}; \ \mathbf{s}^{(k+1)} = \mathbf{s}^{(k)} + \alpha_k \Delta \mathbf{s}^{(k)}$$

 $\mathbf{y}^{(k+1)} = \mathbf{y}^{(k)} + \alpha_k \Delta \mathbf{y}^{(k)}; \ \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} + \alpha_k \Delta \mathbf{z}^{(k)}$

Repeat Step 2.

Note that because of the coupling between the primal and dual variables through (1), a common step-size must be used in steps 4 and 6 above.

8/6/2009 73

Again, the most expensive steps are Steps 3 and 5, which involve solving a system of linear equations of the form:

$$\begin{pmatrix} \nabla_{xx}^{2} \mathbf{\mathcal{L}}^{(k)} & \mathbf{0} & \mathbf{F}^{T} & \mathbf{A}^{T} \\ \mathbf{F} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Y}^{(k)} & \mathbf{S}^{(k)} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{y} \\ \Delta \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \\ \mathbf{r}_{4} \end{pmatrix}$$

- 1. Note that due to convexity, $\nabla_{xx}^2 L^{(k)}$ is *psd*. This along with the assumed "strict" feasibility", strong duality holds and the system above always has a solution. In addition, the direction generated should be a descent direction (i.e. the merit function deceases along the generated direction.) So the line search used which is a simple form of backtracking line search should produces a good acceptable size.
- 2. As before, one can use the last rows to eliminate Δz to get a reduced system which can be solved using symmetric indefinite factorization. See the next slide.

CASE THE RESERVE Implementation

The most effective ways to solve the above system begin with the elimination of Δz yielding the augmented systems:

$$\begin{pmatrix} \nabla_{xx}^{2} \mathbf{L}^{(k)} & \mathbf{F}^{T} & \mathbf{A}^{T} \\ \mathbf{F} & -\mathbf{Y}^{-1} \mathbf{S} & 0 \\ \mathbf{A} & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} - \mathbf{Y}^{-1} \mathbf{r}_{4} \\ \mathbf{r}_{3} \end{pmatrix}$$

Clearly the coefficient matrix is symmetric and sparse (if A is sparse and each f_i depends on only a few variable).

The augmented system can be solved efficiently using the sparse symmetric indefinite factorization as discussed earlier.

8/6/2009 75

Implementation Implementation

Further elimination of Δz yields the a more compact augmented system:

$$\begin{pmatrix} \nabla_{xx}^{2} L^{(k)} + \mathbf{F}^{T} \mathbf{Y} \mathbf{S}^{-1} \mathbf{F} & \mathbf{A}^{T} \\ \mathbf{A} & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{1} + \mathbf{F}^{T} \mathbf{Y} \mathbf{S}^{-1} \mathbf{r}_{2} - \mathbf{F}^{T} \mathbf{S}^{-1} \mathbf{r}_{4} \\ \mathbf{r}_{2} - \mathbf{Y}^{-1} \mathbf{r}_{4} \end{pmatrix}$$

Again the coefficient matrix is symmetric and sparse (if Q, A, G are). The augmented system can be solved efficiently using the

sparse symmetric indefinite factorization.

If A=0, the above system is a normal equation with positive definite coefficient which can be solved using Cholesky (or sparse Cholesky) factorization, or by the Conjugate Gradient method or projected Conjugate gradient method.